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Spin squeezing inequalities (SSI) repre-
sent a major tool to probe quantum en-
tanglement among a collection of few-level
atoms, and are based on collective spin
measurements and their fluctuations. Yet,
for atomic ensembles of spin-j atoms and
ultracold spinor gases, many experiments
can image the populations in all Zeeman
sublevels s = −j,−j + 1, . . . , j, potentially
revealing finer features of quantum en-
tanglement not captured by SSI. Here
we present a systematic approach which
exploits Zeeman-sublevel population mea-
surements in order to construct novel en-
tanglement criteria, and illustrate our ap-
proach on ground states of spin-1 and
spin-2 Bose-Einstein condensates. Beyond
these specific examples, our approach al-
lows one to infer, in a systematic manner,
the optimal permutationally-invariant en-
tanglement witness for any given set of col-
lective measurements in an ensemble of d-
level quantum systems.

1 Introduction
To prepare and detect quantum-entangled states
has become a central goal for experimental many-
body physics. On the one hand, it demonstrates
the ability to probe regimes unthinkable within a
classical framework, either at equilibrium or dur-
ing the dynamics. On the other hand, it repre-
sents a crucial step towards using such systems
as resources for quantum-enhanced applications,
such as sensing [17, 31], or the simulation of quan-
tum many-body problems [15].
Guillem Müller-Rigat: guillem.muller@icfo.eu
Irénée Frérot: irenee.frerot@neel.cnrs.fr

Here, our main focus are those many-body
systems which are most easily probed by col-
lective measurements, such as atomic ensembles
and ultracold spinor gases. In such systems,
entanglement can be famously revealed by so-
called spin-squeezing inequalities (SSI), which in-
volve measurements of first- and second-moments
of collective spin operators [22, 29, 31, 36, 37,
39, 41, 42, 44]. SSI and their generalizations
[16, 39, 41, 42] have found an impressively broad
range of successful applications, from detecting
entanglement in cold and hot atomic ensembles
[23, 31] to unveiling many-body Bell non-locality
[8, 30, 32, 35], from probing quantum phase tran-
sitions [11] and quantum quenches [5, 6] to ap-
plications in quantum-enhanced metrology [31].
In particular, a handful of generalized SSI is suf-
ficient to capture the complete palette of entan-
glement that can be revealed via collective-spin
measurement in j = 1/2 spin ensembles [39]. In
the context of j = 1 spinor Bose-Einstein con-
densates (BEC), by restricting the spin states
to effective two-dimensional subspaces, entan-
glement has also been probed via those SSI
[7, 18, 24, 25, 33]. In parallel, the last decade
has witnessed the development of several exper-
iments investigating much-larger-j spinor gases
[1, 3, 4, 9, 10, 13, 14, 18, 19, 24–28, 33, 40, 43, 45],
mixtures [2, 20], or effective qudits ensembles
[34]. In these systems, the populations of all
Zeeman sublevels s = −j,−j + 1, . . . , j can be
measured, typically by fluorescence imaging after
collective spin rotations and Stern-Gerlach split-
ting [9, 10, 14, 18, 24–26, 28, 33, 45]. The SSI
generalized in refs. [42] to spin j > 1/2 can be
potentially be applied in such systems in order
to detect entanglement. Yet, the entanglement
patterns incorporated by j > 1/2 spin ensembles

Accepted in Quantum 2022-12-21, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
3.

13
54

7v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

4 
D

ec
 2

02
2

https://quantum-journal.org/?s=Probing%20quantum%20entanglement%20from%20magnetic-sublevels%20populations:%20beyond%20spin%20squeezing%20inequalities&reason=title-click
https://quantum-journal.org/?s=Probing%20quantum%20entanglement%20from%20magnetic-sublevels%20populations:%20beyond%20spin%20squeezing%20inequalities&reason=title-click
https://orcid.org/0000-0002-7703-8539
mailto:guillem.muller@icfo.eu
mailto:irenee.frerot@neel.cnrs.fr


is potentially much richer than what can be cap-
tured by SSI, with new classes of entangled states
and new entanglement mechanisms. The opti-
mal use of such collective imaging data to probe
entanglement beyond SSI has remained an open
problem, for which our paper offers a novel ap-
proach.

In order to do so, we actually formulate and
solve a more general problem: considering a set
of single-atom observables, we assume that their
average value and pair correlations, averaged over
all permutations of the atoms, can be estimated.
In ref. [41], a similar framework was proposed,
and new entanglement witnesses were derived.
Yet, in order to potentially find one violated in-
equality, in general the latter framework requires
to test a number of inequalities which grows ex-
ponentially with the number of local observables,
such as populations in different Zeeman sublevels
as we consider here. In this work, we instead de-
rive a single inequality based on such data to re-
veal entanglement. This inequality not only sum-
marizes all known SSI [39, 41, 42], but also detects
new forms of entanglement. Specializing then
to Zeeman-sublevels population measurements in
spinor gases, we apply this general approach to
discover novel families of entanglement criteria,
akin to but not captured by SSI. We illustrate
our findings on representative states of a spin-
1 BEC, as produced and characterized in several
experiments [9, 10, 18, 33, 45]. Finally, we extend
these findings to the largely unexplored case of a
spin-2 BEC.

Framework. Our goal is to exclude the pos-
sibility to decompose ρ̂, the many-body density
operator of the system, as a statistical mixture of
product states over individual atoms: ρ̂ 6= ρ̂sep :=∑
λ pλ⊗Ni=1ρ̂λ(i). Here, ρ̂λ(i) is an arbitrary inter-

nal state (pure or mixed) for atom i = 1, . . . , N ,
and pλ > 0 is an arbitrary probability distribu-
tion, defining a separable state ρ̂sep. Our starting
point is to consider for each atom a set ofK differ-
ent observables {ôk(i)}Kk=1, some of which must
be non-commuting in order to potentially detect
entanglement. We then assume that data of the

following form are available:

mk = 1
N

N∑
i=1
〈ôk(i)〉 , (1)

Ckl = 1
N(N − 1)

∑
i 6=j
〈ôk(i)ôl(j)〉 , (2)

where 〈. . . 〉 = Tr(ρ̂ . . . ) is an expectation value
over many identically-prepared systems. In prac-
tice, as we illustrate below, the correlations Ckl
might be available for only a subset of pairs (k, l),
something which can be accommodated within
our approach. It is also central to our method to
find the bound β defined as:

β = 1
N

N∑
i=1

max
|ψ〉

{
K∑
k=1
|〈ψ|ôk(i)|ψ〉|2

}
, (3)

where |ψ〉 is an arbitrary internal state of atom
i. Depending on the choice of observables ôk(i),
the bound β might be computable analytically,
but in general it may be found numerically, opti-
mizing over the states of atom i. In the examples
studied in this work, the local observables ôk(i)
are the same for all atoms (they are the compo-
nents of the spin, or projectors onto spin states),
and we simply parametrize |ψ〉 =

∑d
α=1 cα|α〉

with its complex coefficients cα in a fixed basis.∑K
k=1 |〈ψ|ôk(i)|ψ〉|2 is then a function of the coef-

ficient cα (and is independent of i in the examples
we study), that we optimized using standard nu-
merical routines.

Our central result is the following inequality,
valid for any separable state of the many-body
system:

N Tr[P (C −m⊗m)] ≥ Tr(C)− β , (4)

where we introduced the notation [m ⊗m]kl =
mkml, and P is any projector (namely a K ×K
symmetric matrix obeying P 2 = P ). The de-
tailed proof of Eq. (4) is given in Appendix
A. The optimal choice to most strongly violate
Eq. (4) is to project onto the subspace corre-
sponding to all negative eigenvalues of the matrix
C −m ⊗m. As a special case, Eq. (4) contains
all generalized SSI of ref. [42] when choosing the
spin in orthogonal directions x, y, z as local ob-
servables (see Appendix B for a detailed deriva-
tion). As we shall see, when applied to suitable
states of a spinor gas, it allows us to find novel
entanglement criteria beyond SSI.
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Zeeman-sublevels population measure-
ments. In order to illustrate the relevance
of our new approach to probe entanglement
in a spin-j atomic ensemble, we assume that
the populations N̂a,s of all Zeeman sublevels
s = −j, . . . , j can be measured, for different
quantization axes a (at least, for the purpose
of entanglement detection, along two different
orientations). This is typically achieved by first
applying collective spin rotations to map a given
orientation a onto the z axis, followed by a spatial
splitting of the atoms in a magnetic-field gradi-
ent. The intensity of fluorescence imaging finally
allows one to estimate the number of atoms in
each Zeeman sublevel. For each orientation a,
average populations 〈N̂a,s〉 and their correlations
〈N̂a,sN̂a,s′〉 can be inferred in this manner. In the
general framework presented above, the single-
atom observables correspond to the projectors
onto the spin states n̂a,s(i) = |sa〉i〈sa|i (namely,
the label k of previous section is now a pair
of labels (a, s) denoting both the quantization
axis and the spin state). Correspondingly, one
reconstructs the average values ma,s = 〈N̂a,s〉/N ,
and the diagonal blocks of the correlation
matrix corresponding to a fixed orientation
C(a,s)(a,s′) = 〈N̂a,s[N̂a,s′ − δs,s′ ]〉/[N(N − 1)].
The projector P in Eq. (4) is then chosen
in a block-diagonal form, projecting onto the
negative eigenspace of each block, defined by the
matrices C(a,s)(a,s′) − ma,sma,s′ for the different
quantization axes a.

2 Applications to a spin-1 BEC
We first illustrate our approach on a BEC of spin-
1 atoms, as investigated recently in several ex-
periments [9, 10, 18, 33, 45]. We consider N
spin-1 atoms with contact isotropic interactions
in the single-mode approximation, adiabatically
prepared from the so-called polar state |0, N, 0〉 =
⊗Ni=1|0z〉i (with |N−, N0, N+〉 the state written in
the collective population basis along the z quan-
tization axis). In an external magnetic field, the
Hamiltonian reads (see Appendix C for details):

Ĥj=1 = c

N
Ĵ2 + qQ̂z , (5)

where Ĵa =
∑j
s=−j sN̂a,s is the collective spin in

direction a ∈ {x, y, z} and Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z ;

Q̂z =
∑j
s=−j s

2N̂z,s is the collective quadrupole
operator; and {x, y, z} is an orthornormal basis
of R3. Notice that the linear Zeeman term,
proportional to Ĵz, is omitted as it commutes
with Ĵ2 and acts trivially on the initial state:
Ĵz|0, N, 0〉 = 0. The initial state is also the
ground state of Q̂z; and by varying the mag-
netic field intensity (q) one can adiabatically
prepare the ground state of Ĥj=1 for either
ferromagnetic interactions (c ≤ 0) or antifer-
romagnetic interactions (c ≥ 0). Notice that
in the case of ferromagnetic interactions, two
quantum phase transitions occur at q/|c| = ±4,
so that adiabaticity is possible only for finite
N . As the Zeeman sublevel populations are
related by

∑j
s=−j N̂a, = N for all directions,

ma,s and C(a,s)(a,s′) for all s, s′ are not all
independent. As local observables in Eqs. (1)
and (2) we used the spin Ŝa(i) =

∑j
s=−j sn̂a,s(i)

and the projector onto the Zeeman sublevel
s = 0, n̂a,0(i). We use these data as input to
Eq. (4), with bound βj=1 = 3/2 in Eq. (3) (see
Appendix F). Notice that for j = 1, we have
Q̂a = N̂a,+ + N̂a,− = N − N̂a,0.

Antiferromagnetic interactions. For anti-
ferromagnetic interactions (c > 0) and q/c . 4.4
(N = 100), we find violation of Eq. (4), with an
entanglement witness (EW) which reads (see Ap-
pendix F):

Var(Ĵ)− 1
N − 1〈N̂

2
0〉 ≥

N(N − 3)
2(N − 1) , (6)

with the notations Var(Ĵ) = Var(Ĵx) +
Var(Ĵy) + Var(Ĵz), Var(Ô) = 〈Ô2〉 − 〈Ô〉2
and N̂0 = (N̂x,0, N̂y,0, N̂z,0). The EW of Eq. (6)
is maximally violated at q = 0, where the ground
state of Eq. (5) is a spin singlet (Var(Ĵ) = 0). In
particular, we also applied our method using as
input the experimental data of ref. [10], where
an almost perfect spin singlet is prepared, and
all populations are measured; we also recovered
Eq. (6) as the optimal violated EW. This EW is
reminiscent of, yet generally more powerful than,
the generalized SSI Var(Ĵ) ≥ Nj (with j = 1
here) derived in ref. [42]. For a quantitative com-
parison of both criteria, in Fig. 1(a) we illustrate
their detection power for N = 100 and states
with 〈Ĵ〉 = 0 (vanishing mean spin, as is the
case in the ground state of Ĥj=1, Eq. (5)) in the
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Figure 1: (a) Comparison of the population-based wit-
ness [Eq. (6)] (solid line) with the SSI Var(Ĵ) ≥ Nj
(dashed line) for spin-1 states (N = 100 atoms). The
light grey area are data points which cannot be achieved
(see text and Appendix E). The dotted line indicates the
ground state of Eq. (5) for both antiferromagnetic in-
teractions (c = 1), varying the quadratic Zeeman term
(−10 ≤ q ≤ 10). Three representative states are also in-
dicated: the polar state |0, N, 0〉 (q →∞) which is sep-
arable, the spin singlet s.t. Ĵ2|Ψ〉 = 0 (q = 0), and the
twin-Fock state |N/2, 0, N/2〉 (q → −∞). (b) Compar-
ison of the population-based witness [Eq. (7)] with a re-
lated SSI (see text) for spin-1 states. Graphical conven-
tions as in panel (a). Here, the ground state is computed
for ferromagnetic interactions (c = −1). At q = 0, we
obtain the Dicke state Ĵ2|Dicke〉 = N(N + 1)|Dicke〉,
Ĵz|Ψ〉 = 0.

plane (x = 〈Ĵ2〉/N, y = 〈N̂2
0〉/[N(N − 1)]),

where violation occurs respectively for
x − y < (N − 3)/[2(N − 1)] [Eq. (6)] and
x < 1 (SSI). We plot the data points corre-
sponding to the ground state of Ĥj=1 for c > 0
and both q > 0 and q < 0. More generally,
not all combinations of 〈Ĵ2〉 and 〈N̂2

0〉 are
physically allowed. As detailed in Appendix E
(see also [38]), the physically-allowed region can
be obtained by considering all quantum ground
states of Hamiltonians of the form λ1Ĵ2 + λ2N̂2

0
for all values of λ1, λ2, and forming the convex
envelope of the corresponding data points. The
excluded (non-feasible) region is indicated in
light grey in Fig. 1(a). Regarding the ground
state of Ĥj=1, three limiting cases are especially
illustrative. For q → +∞, the ground state is
the polar state |0, N, 0〉 = ⊗Ni=1|0z〉i, which is
separable and therefore does not violate any
EW. For q = 0, the ground state is a spin
singlet, and violates both our witness Eq. (6)
and the SSI Var(Ĵ) ≥ Nj. In-between, we
notice that our EW detects entanglement in
the ground state of Ĥj=1 for a larger range of
values of q than SSIs. Finally, for q → −∞, the
ground state is a twin Fock state |N/2, 0, N/2〉.
This state does not violate any EW if only
collective spin observables are measured (notice,
though, that it does violate a generalized SSI
for j = 1/2 particles, when considering only the
two-dimensional subspace spanned by Zeeman
sublevels s = ±1). Yet, the twin-Fock states
robustly violates the EW of Eq. (6) (with
Var(Ĵ) = N and 〈N̂2

0〉 = N(3N + 2)/4, so that
the l.h.s is ∼ N/4, while the r.h.s is ∼ N/2). The
polar, singlet and twin-Fock states are indicated
on Fig. 1(a).

Ferromagnetic interactions. For ferromag-
netic interactions (c < 0) and q/|c| . 1.2 (N =
100), we find violation of (see Appendix F):

(N − 1)Var(Ĵz)−N〈Q̂z〉 − 〈Ĵ2
x + Ĵ2

y 〉〉

+3N(N + 1)
2 ≥ 〈N̂2

0〉 . (7)

Maximal violation is found close to q = 0 where
the state is a Dicke state, such that Ĵ2|Dicke〉 =
Nj(Nj + 1)|Dicke〉 (maximal total spin), and
Ĵz|Dicke〉 = 0. Eq. (7) can be compared to an-
other SSI of ref. [42] violated by the Dicke state,
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namely (N − 1)Var(Ĵz) − N〈Q̂z〉 − 〈Ĵ2
x + Ĵ2

y 〉 +
Nj(Nj + 1) ≥ 0. In Fig. 1(b), we compare their
power in detecting entanglement in the ground
state of Ĥj=1. In particular, for q . |c|, the
ground state of Ĥj=1 is very close to the twin-
Fock state |N/2, 0, N/2〉, which robustly violates
Eq. (7): the l.h.s is equal to N(N+1)/2 ∼ N2/2,
while on the r.h.s 〈N̂2

0〉 = N(3N + 2)/4 ∼
4N2/4. To conclude on the spin-1 BEC, we find
that collective population measurements in or-
thogonal Zeeman sublevels can reveal entangle-
ment beyond collective spin observables, and our
method can be used to infer novel EWs in an
optimal and data-agnostic way from these mea-
surements. These new EWs are generically more
powerful than SSIs (which can be recovered as
a special case in our approach, see Appendix
B). In particular, we exhibit two EWs [Eqs. (6)
and (7)] robustly violated by the twin-Fock state
|N/2, 0, N/2〉, stabilized as the ground state of
Ĥj=1 in the limit q � |c|; yet no generalized SSI
for spin-1 ensembles is violated by the twin-Fock
state.

3 Applications to a spin-2 BEC

The Hamiltonian of a BEC of j = 2 atoms in-
teracting via pairwise isotropic interactions reads
(see Appendix C):

Ĥj=2 = c

N
Ĵ2 + p

N
Θ̂†2Θ̂2 + qQ̂z . (8)

In contrast to the spin-1 case [Eq. (5)], the Hamil-
tonian contains the additional pairing term Θ̂†2Θ̂2
where Θ̂2 =

∑j
s=−j(−1)sâsâ−s annihilates time-

reversal pairs ±s, with âs annihilating an atom
in the spin state |sz〉. Notice that [Ĵ2, Θ̂†2Θ̂2] = 0.
We explored the ground state of Ĥj=2 to find
novel violated EW. Using as local operators Ŝa(i)
(the spin) and n̂a,0(i) (the projector onto the
s = 0 spin state) for a ∈ {x, y, z}, the bound in
Eq. (3) is numerically found as β2 ≈ 4.3. For this
choice of local operators, we found that general-
izations of Eqs. (6) and (7) are violated. These
EW can be further generalized to arbitrary inte-
ger spins, and read (see Appendix F):

Var(Ĵ)− 1
N − 1〈N̂0(N̂0−1)〉 ≥ N [j(j+1)−βj ] ,

(9)

0.0 0.5 1.0 1.5 2.0
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Spin EW
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GS spin- 2 p =+1

Polar

Twin-Fock

Singlet pairs

Singlet trios

0.5 1.0 1.5 2.0

Populations EW

Spin EW

GS spin- 2 p =- 1

GS spin- 2 p =+1

Figure 2: Comparison of the population-based entan-
glement witness of Eq. (9) (solid line) with the related
SSI Var(Ĵ) ≥ Nj (dashed line) for spin-2 ensembles
(N = 24). The light grey area are data points which
cannot be achieved (see text and Appendix E). Data in
the ground state of Eq. (8) are computed for c = 1,
and p = 1 (dotted line) or p = −1 (dashed-dotted
line). Four representative states are indicated: the polar
state |0, 0, N, 0, 0〉 (with 〈J2/(2N)〉 = 3), the twin-Fock
state |N/2, 0, 0, 0, N/2〉 and two forms of spin singlets
(Var(J) = 0), obtained either as a pair condensate or a
triplet condensate (see text).

and:

(N − 1)Var(Ĵz)−N〈Q̂z〉 − 〈Ĵ2
x + Ĵ2

y 〉
+N [(N − 1)βj + j(j + 1)] ≥ 〈N̂0(N̂0 − 1)〉 ,

(10)

where 1 = (1, 1, 1) and βj is the corresponding
bound in Eq. (3). As for the spin-1 case, one
can compare the entanglement detection power
of these witnesses with the related SSIs; this
comparison is presented in Fig. 2 for Eq. (9),
while for Eq. (10) we notice that the improve-
ment with respect to the SSI is mild, and not
systematic. Interestingly, as in the case of spin-
1, the twin-Fock state |N/2, 0, 0, 0, N/2〉 (ob-
tained in the limit q → −∞) violates Eq. (9),
while it does not violate any generalized SSI
for spin-2 collective spin observables. As a fi-
nal exploration of the entanglement patterns in
the ground state of a spin-2 BEC, we have fo-
cused on many-body singlets (〈Ĵ2〉 = 0), stabi-
lized at q = 0 for antiferromagnetic interactions
(c > 0). In the spin-1 case, there is a unique
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such state for a BEC, obtained as a “pair con-
densate” (Θ̂†2)N/2 |vac.〉. This pair condensate is
also stabilized in the spin-2 case for p < 0. Yet,
for p > 0, the many-body singlet is instead a
“triplet condensate” (Θ̂†3)N/3 |vac.〉, where Θ†3 =
−9[(a†−1)2a†2+(a†1)2a†−2]+

√
6a†0[−(a†0)2+3a†1a

†
−1+

6a†2a
†
−2] is the singlet-trio creation operator.

Both states are entangled and violate Eq. (9).
However, considering as local measurements
{n̂a,+2(i), n̂a,+1(i), n̂a,−1(i), n̂a,−2(i)}a∈{x,y,z}, we
found the following EW violated only by the pair
condensate and not by the triplet condensate (see
Appendix G):

〈σ̂2
2 + σ̂2

1〉 −
N − 1
N

(〈σ̂2〉2 + 〈σ̂1〉2)

− 2
N
〈N̂2

+2 + N̂2
+1 + N̂2

−1 + N̂2
−2〉

+(1− 2
N

)〈N̂0 · 1〉+ 3 ≥ 0 , (11)

where we denoted by σ̂a,s = N̂a,s − N̂a,−s the
population imbalance between opposed levels
along direction a. Notice that {σ̂x,s, σ̂y,s, σ̂z,s}
generate an su(2) subalgebra of su(5). This
result illustrates the difference in entanglement
properties of two different spin singlets, which
by definition cannot be distinguished if only
collective spin observables are measured.

4 Conclusions
We have presented a new method to infer vi-
olated entanglement witnesses from the collec-
tive measurement of Zeeman-sublevel popula-
tions in spinor gases of arbitrary spin-j atoms.
Our method recovers all known generalized spin
squeezing inequalities [42] as a special case, in
a data-agnostic way. But when considering ap-
propriate correlations between Zeeman-sublevel
populations, one can also construct novel entan-
glement criteria which have no analog if only
the collective spin is measured. We have illus-
trated our method on the ground states of spin-1
and spin-2 BECs, interacting with contact two-
body isotropic interactions in an external mag-
netic field. In particular, for both j = 1 and j = 2
we showed that the twin Fock state robustly vio-
lates an entanglement witness involving all pop-
ulations in three orthogonal directions, while en-
tanglement cannot be detected if only the collec-
tive spin is measured. For j = 2, we presented

an entanglement witness distinguishing between
two forms of many-body singlets, namely a pair
condensate and a triplet condensate. Overall, our
new approach appears especially suited to probe
entanglement among many particles in high-spin
spinor gases, for which entanglement detection
has remained a considerable challenge. We would
like to emphasized that, although we have fo-
cused on collective measurements which are in-
variant under the permutations of the atoms, our
approach is not limited to this situation. It could
also be used to probe entanglement in spatially-
structured systems by using different local ob-
servables ôk(i) for each atom; a straightforward
example is to introduce local phases eiφk(i), leav-
ing the bound β invariant in Eq. (3). As pointed
out recently [12], this offers considerable flexibil-
ity to probe entanglement through components of
the structure factors. Finally, a limitation of our
current implementation is that there is no opti-
mal and systematic way of incorporating all avail-
able first- and second-order moments of popula-
tion measurements into our main inequality (4).
Indeed, while adding more measurement opera-
tors a priori improves the entanglement detection
power, this leads to an increase of the β bound in
Eq. (3), and can make Eq. (4) harder to violate.
The optimization of the choice of measurement
operators is left open to future studies.

Code availability. The code used to diagonal-
ize the spin-1 and spin-2 Hamiltonians, to com-
pute the collective populations in the ground
state, and to infer the optimal entanglement
witnesses presented in this paper, is avail-
able at https://github.com/GuillemMRR/EW_
Zeeman. See Appendix H for a concrete exam-
ple.
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A Derivation of the main entanglement witness inequality
In this section, we derive our central result, Eq. (4). In order to detect entanglement from the available
data [Eqs. (1) and (2)], our starting point to is to assume that the latter are explained by a separable
state, namely a quantum state of the form:

ρ̂sep =
∑
λ

pλ ⊗Ni=1 ρ̂λ(i) , (12)

and to arrive at a contradiction. We introduce the notations:

mk(λ, i) := Tr[ρ̂λ(i)ôk(i)] (13)

mk(λ) := 1
N

N∑
i=1

mk(λ, i) . (14)

The key insight of our approach is that, if the state is separable, we may interpret the quantitiesmk(λ, i)
as local classical variables, whose collective fluctuations must reproduce the observed fluctuations of
collective observables. The constraints that such local classical variables must obey give rise to our
central inequality [Eq. (4)]. Most importantly, the constraints of Eq. (3) can be expressed as:

1
N

N∑
i=1

∑
k

[mk(λ, i)]2 ≤ β (15)

for all λ. With the above notations, the one-body quantum data [Eq. (1)] read:

mk = 1
N

N∑
i=1
〈ôk(i)〉 =

∑
λ

pλmk(λ) (16)

We then introduce the vector notation m := (mk), and the outer product notation [u ⊗ v]ab = uavb.
With these notations, the two-body quantum data [Eq. (2)] read:

C = 1
N(N − 1)

∑
i 6=j

∑
λ

pλ m(λ, i)∗ ⊗m(λ, j) . (17)

We now introduce the fluctuations of the mk(λ, i) variables:

A :=
∑
λ

pλ[m(λ)−m]∗ ⊗ [m(λ)−m] � 0 (18)

a :=
∑
λ

pλ
1
N

∑
i

[m(λ, i)−m(λ)]∗ ⊗ [m(λ, i)−m(λ)] � 0 (19)

The notation M � 0 means the the matrix M is positive semidefinite (PSD), that is, for any vector
u, u†Mu ≥ 0. This PSD property is straightforward to verify, since A and a are both of the form∑
xwxvv† with wx ≥ 0 and v a one-dimensional vector.
The matrix C is then:

C = N

N − 1[m∗ ⊗m +A]− 1
N(N − 1)

∑
λ

pλ
∑
i

m(λ, i)∗ ⊗m(λ, i) (20)

= m∗ ⊗m +A− 1
N − 1a . (21)

From Eq. (20) and Eq. (15)], we have:

Tr(C) ≥ N

N − 1Tr[m∗ ⊗m +A]− β

N − 1 . (22)
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We then introduce a projector P , and write:

Tr[m∗ ⊗m +A] = Tr[P (m∗ ⊗m +A)] + Tr[(1− P )(m∗ ⊗m +A)] (23)
= Tr[P (m∗ ⊗m +A)] + Tr[(1− P )(C + a/(N − 1))] (24)

where we used Eq. (21). From the positivity of A and P , we have Tr(PA) ≥ 0. Similarly, from the
positivity of a and 1− P (which is also a projector), we have Tr[(1− P )a] ≥ 0. Hence:

Tr[m∗ ⊗m +A] ≥ Tr[P (m∗ ⊗m)] + Tr[(1− P )C] (25)

Introducing this inequality into Eq. (22), and reorganizing the terms, this leads to our central result:

L(P ) := N Tr[P (C −m∗ ⊗m)] ≥ Tr(C)− β , (26)

which is valid for any projector P whenever the state is separable [Eq. (12)]. This central inequality is a
generalization of the results contained of Vitagliano et al. [42]. In order to detect entanglement at best,
one has to find the optimal projector P such that inequality (26) is violated – which would invalidate
our starting assumption, namely that the state is separable. This optimization is straightforward: in
order to minimize L over the projector P , one has to choose P as the projector onto the subspace of
negative eigenvalues of C −m∗ ⊗m.

B Recovering the generalized spin-squeezing inequalities of ref. [42].
In ref. [42], a family of SSI was derived that can be obtained as a special case of our approach. These
inequalities are valid for all fully-separable states of N spin-j atoms, and involve first and (modified)
second moments of collective spins in three orthogonal directions: Ĵx, Ĵy, Ĵz. We write here these
inequalities (Eq. (9) of ref. [42]) for completeness:

〈Ĵ2
x + Ĵ2

y + Ĵ2
z 〉 ≤ Nj(Nj + 1) (27)

Var(Ĵx) + Var(Ĵy) + Var(Ĵz) ≥ Nj (28)

〈Ĵ2
l 〉 −

N∑
i=1
〈[Ŝl(i)]2〉+ 〈Ĵ2

m〉 −
N∑
i=1
〈[Ŝm(i)]2〉 ≤ (N − 1)

[
Var(Ĵk)−

N∑
i=1
〈[Ŝk(i)]2〉

]
+N(N − 1)j2 (29)

〈Ĵ2
m〉 −

N∑
i=1
〈[Ŝm(i)]2〉 −N(N − 1)j2 ≤ (N − 1)

[
Var(Ĵk)−

N∑
i=1
〈[Ŝk(i)]2〉

+Var(Ĵl)−
N∑
i=1
〈[Ŝl(i)]2〉

]
(30)

The labels k, l,m in the last two inequalities may take all permutations of x, y, z. As we shall show,
these inequalities are obtained from our main inequality Eq. (4) (or equivalently Eq. (26) in Appendix
A), using as local observables ôk(i) the three spin observables Ŝx(i), Ŝy(i), Ŝz(i). We then have:

mk = 〈Ĵk〉/N (31)

Ckl = 1
N(N − 1)

[
〈ĴkĴl〉 −

∑
i

〈Ŝk(i)Ŝl(i)〉
]
. (32)

Furthermore, the β bound is β = j2, since for any state of a spin-j atom, one has 〈Sx(i)〉2 + 〈Sy(i)〉2 +
〈Sz(i)〉2 ≤ j2, with equality if the atomic spin is fully polarized along some direction. Hence we have:

Tr(C)− β = 1
N(N − 1)(〈J2

x + J2
y + J2

z 〉)−
1

N − 1j(j + 1)− j2 (33)
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where we used that 〈[Sx(i)]2 + [Sy(i)]2 + [Sz(i)]2〉 = j(j + 1). As we will show explicitly, the 8 SSI
[Eqs. (27) to (30)] are obtained by choosing the projector P in Eq. (26) diagonal, leading to inequalities
of the form:

N
∑
k∈E

[Ckk −m2
k] ≥ Tr(C)− j2 (34)

with E any subset of {x, y, z}. This last inequality can be written more explicitly as:

∑
k∈E

[
N〈Ĵ2

k 〉 − (N − 1)〈Ĵk〉2 −N
∑
i

〈[Sk(i)]2〉
]
≥ 〈J2

x + J2
y + J2

z 〉 −Nj(Nj + 1) . (35)

Choosing E = ∅ directly gives Eq. (27).
Choosing E = {x, y, z} gives:

(N − 1)
[
Var(Ĵx) + Var(Ĵy) + Var(Ĵz)

]
≥ Nj(j + 1)−Nj(Nj + 1) , (36)

namely Eq. (28).
To obtain Eqs. (29) and (30), we rewrite Eq. (35) as:∑
k∈E

[
N〈Ĵ2

k 〉 − (N − 1)〈Ĵk〉2 −N
∑
i

〈[Sk(i)]2〉
]
≥ 〈J2

x + J2
y + J2

z 〉 −
∑
i

〈
[Ŝx(i)]2 + [Ŝy(i)]2 + [Ŝz(i)]2

〉
−N(N − 1)j2 . (37)

Taking then e.g. E = {x}, we find:

(N − 1)
[
var(Ĵx)−

∑
i

〈[Ŝx(i)]2〉
]
≥ 〈J2

y + J2
z 〉 −

∑
i

〈
[Ŝy(i)]2 + [Ŝz(i)]2

〉
−N(N − 1)j2 , (38)

namely Eq. (29) for (k, l,m) = (x, y, z), and similarly for E = {y} or E = {z}.
Finally, Eq. (30) is obtained by choosing E = {x, y}, E = {x, z} or E = {y, z}.
This concludes the proof that the generalized SSI of ref. [42] are incorporated in the framework pre-
sented in this paper when choosing the spin components as local observables.

C The spinor Bose gas model
In this section, we present some background information, based on Ref. [21], on the BEC Hamiltonians
used in the main text [Eqs. (5) and (8)]. We consider an ensemble of spin-j bosonic atoms with contact,
two-body, spin-conserving interactions in R3. In the single-mode approximation, its Hamiltonian reads:

Ĥ0({gf}jf=0) =
j∑

s1s2,s3s4=−j
gfC

j⊗j=2f
s1s2,s3s4 â

†
s1 â
†
s2 âs3 âs4 , (39)

where gf is the scattering amplitude of the spin-2f channel. The matrix element of the projection of a
composite spin-2f onto two spin-j atoms is Cj⊗j=2f

s1s2,s3s4 = 〈j, s1|j ⊗〈j, s2|j Pj⊗j=2f |j, s3〉j ⊗ |j, s4〉j , with
Pj⊗j=2f =

∑2f
S=−2f |2f, S〉j⊗j 〈2f, S|j⊗j , where S is the spin projection of the composite spin-2f . The

operators âs(â†s) annihilate (create) a bosonic mode with spin projection s ∈ {−j,−j + 1, .., j}. The
total number of atoms N̂ =

∑j
s=−j N̂s, where N̂s = â†sâs, is fixed to N .

In the following we will express the Hamiltonian (39) in terms of collective operators. This is done
via the identification:

Ô =
j∑

sL,sR=−j
〈sL| ô |sR〉 â†sL

âsR , (40)

where Ô =
∑N
i=1 ô(i) is the collective operator corresponding to the local observable ô acting on a

single-atom spin-j degree of freedom. Note that in particular the population operator N̂s is a collective
operator with 〈sL| n̂s |sR〉 := 〈sL|s〉 〈s|sR〉 = δsL,sδs,sR .
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Spin 1. For spin-1, the spin projection onto the cartesian basis {x, y, z} reads:

Ĵx = 1√
2

(
â+1 â0 â−1

)0 1 0
1 0 1
0 1 0


â+1
â0
â−1

 (41)

Ĵy = 1√
2

(
â+1 â0 â−1

)0 −i 0
i 0 −i
0 i 0


â+1
â0
â−1

 (42)

Ĵz =
(
â+1 â0 â−1

)1 0 0
0 0 0
0 0 −1


â+1
â0
â−1

 , (43)

where i is the imaginary unit, i2 = −1. With this expressions, we can compute the total spin, using
the bosonic commutation relations and Nz,+1 +Nz,0 +Nz,−1 = N we have:

Ĵ2 : = Ĵ2
x + Ĵ2

y + Ĵ2
z =

= Ĵ2
z + N̂ + N̂0 + 2N̂0(N − N̂0) + 2((â†0)2â+1â−1 + h.c.) (44)

Alternatively, by identifying the pair annihilation operator Θ̂2 = â2
0 − 2â+1â−1, we can write Ĵ

2 =
N2 − Θ̂†Θ̂. As first observation, we notice that unlike the spin-1/2 case, Ĵ2 is not diagonal in the
occupation basis. Direct computation shows that the Hamiltonian (39) is equivalent to:

Ĥ0(c1) = c1Ĵ2 , (45)

where c1 = (g1 − g0)/3.

Spin 2. For spin-2, there is a second relevant interaction channel. In this case, the Hamiltonian
reads:

Ĥ0(c2, p) = c2Ĵ2+p[N̂0(N̂0−1)+4(N̂1N̂−1+N̂−2N̂2)+2(T̂+
0,−2T̂

+
0,2−T̂

+
0,−1T̂

+
0,1−2T̂+

1,2T̂
+
−1,−2+(+↔ −))] ,

(46)
where c2 = (g4 − g2)/7, p = (7g0 − 10g2 + 3g4)/35 and we introduced the collective operators T̂+

s,s′ =
â†sâs′ + h.c., T̂−s,s′ = i(â†sâs′ − h.c.). Using the pair anhiliation operator for spin-2, Θ̂2 = â2

0 − 2â1â−1 +
2â+2â−2, the term coupling p can be interpreted as a pair amplitude Θ̂†2Θ̂2. This term commutes
with Ĵ2, although we do not have written it explicitly in a rotationally invariant way using cartesian
coordinates.

Quadratic Zeeman shift. In this work we consider the gas is immersed in a uniform magnetic field
of intensity B along the z direction. In this case, the total Hamiltonian becomes Ĥ = Ĥ0/N + qQ̂z,
where q ∝ B2 and Q̂z =

∑N
i=1 Ĵ

2
z . We introduce a scaling to make the Hamiltonian extensive in N .

We consider an experiment where all atoms are initially prepared in the state ⊗Ni=1|0z〉, so that we
may remove the linear Zeeman term, proportional to Ĵz (as Ĵz is a symmetry of Ĥ, and acts trivially
on the state).

D Computation of the quantum data
In this appendix, we provide technical details on the computation of the quantum data used in the
illustration of our method. Specifically, one has to compute one and two body Zeeman sublevel
correlations of the form:

〈N̂a,s〉 , 〈N̂a,sN̂a,s′〉 , etc. , (47)

in the ground state of relevant Hamiltonians of spin-j ensembles.
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Diagonalization of the Hamiltonians. The Hamiltonians considered in this paper are polynomials
of collective operators Ôk =

∑N
i=1 ôk(i) with the spin projection Ĵz a symmetry. Since operators acting

in different atoms commute, we notice that the collective operators {Ôk} obey the same algebra as
their their local counterparts, {ôk(i)}. Accordingly, the problem reduces to compute the matrices of
the irreducible representations (irreps) of the algebra, describing the collective operators. The local
operators can be described by d× d Hermitian matrices, where d = 2j + 1. Let {λ̂α}d

2−1
α=1 be a basis of

d × d Hermitian traceless matrices fulfilling the orthogonality condition Tr[λ̂αλ̂β] = δαβ , for instance
the so-called generalized Gell-Mann matrices. The commutation relations:

λ̂αλ̂β − λ̂βλ̂α = i
d2−1∑
γ=1

fαβγ λ̂γ , (48)

are characterized by the structure constants fαβγ . The structure constants are the same for the
generators of the SU(d) group with the Lie bracket [λ̂α, λ̂β] := λ̂αλ̂β − λ̂βλ̂α. The representations of
SU(d) are labelled by partitions of N in d parts as the permutation group of N d-level atoms. In
the totally symmetric sector with respect to the exchange of atoms, the matrix representation of the
generators is computed {Λ̂α = I[λ̂α]}d2−1

α=1 . The operator Λ̂α is the collective counterpart of λ̂α, that is
Λ̂α =

∑N
i=1 λ̂α(i). Consequently, for any other operator ô, the map I distributes linearly

I[ô] = NTr[ô] I
D

+
d2−1∑
α=1

Tr[λ̂αô]Λ̂α := Ô , (49)

where D is the dimension of the representation, and the identity element I is added in order to
account for the trace of ô. The multiplicity N is introduced to consistently transform the identity,
I[1] =

∑N
i=1 1 = N . The expression (49) is an alternative of the second-quantization form (40)

providing the advantage that higher moments are computed just by multiplying matrices, as specified
in the following.

Gathering the correlations. The Hamiltonian is diagonalized using the previous matrix represen-
tation, allowing one to find the ground state |GS〉. Then, the computation of moments reduces to matrix
multiplication matrices and computing expectation values in the ground state: 〈Ôa〉 = 〈GS| I[ôa] |GS〉,
〈ÔaÔb〉 = 〈GS| I[ôa]I[ôb] |GS〉, etc, for any collective operators Ôa. In this work in particular we probe
the GS with magnetic-sublevel populations along a direction a, {N̂a,s}js=−j . These are generated from
the single-atom observable n̂a,s =

∏j
s 6=s′=−j(s − Ŝa)/(s − s′), where Ŝa is the atomic spin projection

along direction a ∈ {x, y, z}, i.e Ŝa := a · Ŝ.

E Computation of the physically feasible region of a set of average values
In this section, we explain how to compute the feasible region showed in the figures of the main text.
Formally, given two observables X̂ and Ŷ , acting on the Hilbert space for N qudits, our goal is find
the possible combinations of “feasible” mean values (x = 〈X̂〉, y = 〈Ŷ 〉), that is, combinations of mean
values which can be obtained in some (generally mixed) quantum state. Equivalently, one may look
for the extremal values of 〈Ŷ 〉, while keeping fixed the mean value x = 〈X̂〉. By making statistical
mixtures of the corresponding quantum states, the full convex hull of these extremal points is also
feasible. This problem can be solved introducing a Lagrange multiplier λx, and finding the ground
state of Hamiltonians of the form:

L̂(λx) = ±Ŷ − λx(X̂ − x1) . (50)

Adjusting the multiplier λx ensures that the constraint 〈X̂〉 = x is met in the ground state. More
generally, the extremal points (x, y) are found as the expectation values of X̂, Ŷ in the ground state
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of:
L̂(λx, λy) = λxX̂ + λyŶ , (51)

varying the parameters λx, λy between −∞ and +∞. By forming statistical mixtures of these ground
states, the full convex hull of the extremal points are also feasible, which leads to the construction
showed in the figures of the main text.

In order to find the ground state of L̂, the same technique outlined above for the Bose gas Hamiltonian
can be applied since in the cases of interest here, L̂ is a polynomial of collective operators.

F Derivation of the entanglement witness inequalities (6), (7) and their general-
ization to arbitrary integer spins Eqs. (9), (10)

These inequalities are found by choosing, as local measurements, the spin observables Ŝa(i) =∑j
s=−j sn̂a,s(i), as well as the projectors n̂a,0(s) onto the s = 0 magnetic sublevels, along the three

orthogonal directions a ∈ {x, y, z}. For completeness, we rewrite here the EW inequalities (9) and (10)
of the main text:

Var(Ĵ)− 1
N − 1〈N̂0(N̂0 − 1)〉 ≥ N [j(j + 1)− βj ] , (52)

and:
(N − 1)Var(Ĵz)−N〈Q̂z〉 − 〈Ĵ2

x + Ĵ2
y 〉+N [(N − 1)βj + j(j + 1)] ≥ 〈N̂0(N̂0 − 1)〉 , (53)

where 1 = (1, 1, 1) and βj is the corresponding bound in Eq. (3). We evaluated this bound numerically,
and the corresponding values are:

spin j 1 2 3 4 5
β {S,n0} 1.5 4.3 9.2 16.15 25.22

Table 1: Numerical separable bound β for the basis of local measurements {{Ŝa(i), n̂a,0(i)}a={x,y,z}}i={1,2,..,N} for
different spin-j.

In the specific case of j = 1, the EW inequalities can be simplified using the identities:∑
a∈{x,y,z}(N̂a,+1 + N̂a,−1) = 3N −

∑
a∈{x,y,z} N̂a,0 =

∑N
i=1[Ŝ(i)]2 = j(j + 1)N = 2N . Together

with the bound βj=1 = 3/2, we obtain Eqs. (6), (7) from respectively Eqs. (52) and (53).

Derivation of Tr[C]. To derive these EWs from our central inequality, Eq. (4), one has to compute
Tr[C], which reads:

Tr[C] = 1
N(N − 1)

∑
i 6=j

∑
a∈{x,y,z}

〈
Ŝa(i)Ŝa(j) + n̂a,0(i)n̂a,0(j)

〉
(54)

= 1
N(N − 1)

∑
a∈{x,y,z}

〈
[Ĵa]2 + [N̂a,0]2 −

N∑
i=1

[[Ŝa(i)]2 + n̂a,0(i)]
〉

(55)

= 1
N(N − 1)

(
〈Ĵ2 + N̂0(N̂0 − 1)〉 − j(j + 1)N

)
(56)

where Ĵ = (Ĵx, Ĵy, Ĵz) is the collective spin, N̂0 = (N̂x,0, N̂y,0, N̂z,0) and 1 = (1, 1, 1). We used that∑
a[Ŝa(i)]2 = j(j+1), and that [n̂a,0(i)]2 = n̂a,0(i). The two EW are obtained by choosing two different

projectors in Eq. (4). Recall that, since correlations in different orientations are not observed, P has
a block-diagonal form (Px, Py, Pz).
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Derivation of Eq. (52). For Eq. (52) (tailored in particular to a spin-j many-body singlet), the

optimal projection P is Px = Py = Pz =
(

1 0
0 0

)
:= Pj in the local basis described before, leading to

Tr[NP (C −m⊗m)] = 1
N − 1

(
〈Ĵ2〉 − j(j + 1)N

)
− 1
N
〈Ĵ〉2 . (57)

Inserting this expression, together with Eq. (56), into our central inequality (4), we obtain the an-
nounced result Eq. (52).

Derivation of Eq. (53). For Eq. (53) (tailored in particular to the Dicke states J2 = Nj(Nj + 1),
Jz = 0), the optimal projector is Px = Py = 0, Pz = Pj , from which we find:

Tr[NP (C −m⊗m)] = 1
N − 1〈(Ĵz)

2 − Q̂z〉 −
1
N
〈Ĵz〉2 . (58)

Inserting this expression, together with Eq. (56), into our central inequality (4), we obtain the an-
nounced result Eq. (53).

G Derivation of spin-2 EW, inequality (11) and generalization to arbitrary integer
spins
In this appendix we show how to derive the entanglement witness presented in Eq. (11), and
violated by the pair condensate, but not by the triplet condensate. In the present case, we
use as local observables the projectors onto all magnetic sublevels, except the s = 0 sublevel:
{n̂a,+2(i), n̂a,+1(i), n̂a,−1(i), n̂a,−2(i)}a∈{x,y,z}. This choice leads to the Tr(C) term:

Tr(C) = 1
N(N − 1)

∑
a∈{x,y,z}

∑
s 6=0
〈[N̂a,s]2 − N̂a,s〉 (59)

1
N(N − 1)

∑
a∈{x,y,z}

∑
s 6=0
〈[N̂a,s]2〉 − (N − 〈N̂a,0〉

 (60)

= 1
N(N − 1)

∑
a∈{x,y,z}

∑
s 6=0
〈[N̂a,s]2〉+ 〈N̂a,0〉

− 3
N − 1 (61)

The method reveals the optimal projector Px = Py = Pz = 1
2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

. This yields the
terms:

Tr[NPC] = 1
2(N − 1)

 ∑
a∈{x,y,z}

〈
[N̂a,+2 − N̂a,−2]2 + [N̂a,+1 − N̂a,−1]2 + N̂a,0

〉
− 3N

 (62)

Tr[NP (m⊗m)] = 1
2N

∑
a∈{x,y,z}

(
〈N̂a,+2 − N̂a,−2〉2 + 〈N̂a,+1 − N̂a,−1〉2

)
. (63)

We introduce the notation σ̂a,s = N̂a,s− N̂a,−s, the population imbalance between opposed levels along
direction a. Together with the notation 1 = (1, 1, 1), we can rewrite these equations as:

2(N − 1)Tr(C) = 2
N

∑
s 6=0
〈[N̂s]2〉+ 2

N
〈N̂0 · 1〉 − 6 (64)
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2N(N − 1)Tr[PC] = 〈[σ̂1]2 + [σ̂2]2〉+ 〈N̂0 · 1〉 − 3N (65)

2N(N − 1)Tr[P (m⊗m)] = N − 1
N

[〈σ̂1〉2 + 〈σ̂2〉2]. (66)

Together with the bound β = 3/2 found numerically, we find:

2(N − 1) [NTr[P (C −m⊗m)]− Tr(C) + β] =〈[σ̂1]2 + [σ̂2]2〉 − N − 1
N

[〈σ̂1〉2 + 〈σ̂2〉2]

+
(

1− 2
N

)
〈N̂0 · 1〉 −

2
N

∑
s 6=0
〈[N̂s]2〉+ 3 , (67)

namely, Eq. (11).

Generalization to arbitrary even-level systems. A possible generalization to arbitrary integer
spin is obtained by taking the projector to

∑j
s=1(n̂a,s − n̂a,−s) for a ∈ {x, y, z}. The corresponding

bound β for local measurements {{n̂a,s}js=−j 6=0}a∈{x,y,z} obtained numerically is summarized in the
following table for several spin-j.

spin j 1 2 3 4 5
β for {n̂ \ n̂0} 1.25 1.5 1.5 1.3369 1.2926

Table 2: Numerical separable bound β for the basis of local measurements {{n̂a,s}j
s=−j 6=0}a∈{x,y,z} for different

spin-j.

Notice that for j = 1, we recover Eq. (6).

H Practical implementation of the algorithm
In this appendix, we review step by step the implementation of the presented algorithm in order to
reveal quantum entanglement from experimental data. The procedure consists of two parts. (i) First,
we infer the required mean values from some hypothetical experiment. Then (ii), we apply our central
result Ineq. (4) to (hopefully) detect entanglement. Note that our approach is system-agnostic, in the
sense that it does not depend on features of the system not captured by the correlations considered.
However, for the sake of concreteness, we will illustrate the implementation of the method with a
concrete example. Consistently with the applications presented in the main text, we will consider a
BEC of spin-1 atoms.

H.1 Setting up the scenario
The first step is to specify the partitioning of the considered quantum system to define entangled states.
Specifically, here we consider an ensemble of N three-level atoms; and we define a state as entangled
if it cannot be decomposed as a mixture of product states over single-atom wave-functions.
The next step is to specify the single-atom observables {{ôk(i)}Kk=1}Ni=1. Entanglement will be detected
from correlations among them, so it must contain at least a pair of non-commuting observables. Fur-
thermore, we consider the same set of local measurements for each atom. This simplification will allow
us to infer the correlations in a scalable way from moments of collective operators, which is also the
natural way in which measurements are performed in many cold-atom experiments. Concretely, in the
present paper we consider two classes of local operators: (i) spin observables; and (ii) projectors to Zee-
man sublevels. Here we work with {{n̂a,+1(i), n̂a,−1(i)}Ka={x,y,z}}

N
i=1, where n̂a,s(i) is the projector to

the hyperfine level s along direction a for atom i as defined in the main text and {x, y, z} an orthonor-
mal basis of R3. Using a certain data to be specified in the next subsection, this setting leads to the
witness Ineq. (6) of the main text, which we originally derived from a different set of local observables,
namely for a combination of spin and populations to the zero state {{ŝa(i), n̂a,0(i)}Ka={x,y,z}}

N
i=1.
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H.2 Inferring the necessary statistics from the experiment
According to the discussion of the main text, we need to compute the following expectation values:

{
ma = 1

N
(〈N̂a,+1〉, 〈N̂a,−1〉), Ca = 1

N(N − 1)

(
〈N̂a,+1(N̂a,+1 − 1)〉 〈N̂a,+1N̂a,−1〉
〈N̂a,−1N̂a,+1〉 〈N̂a,−1(N̂a,−1 − 1)〉

)}
a∈{x,y,z}

,

(68)
where N̂a,s =

∑N
i=1 n̂a,s(i), that is, the population on hyperfine level s along direction a.

In our numerical illustration, we can consider N = 100 atoms in the ground state of the Hamiltonian
of Eq. (5) for c = q = 1. We compute the expectation values of Eq. (68) following the procedure
detailed in Appendix D, which yields:

mx = my = (0.499, 0.499),mz = (0.002, 0.002) , Cx = Cy =
(

0.248 0.251
0.251 0.248

)
, Cz =

(
0.000 0.000
0.000 0.000

)
.

(69)
One can prepare such state on an unpolarized spin-1 BEC adiabatically by ramping down the

magnetic field to ∼ √q from q/c� 1. Then, one needs to perform a collective Stern-Gerlach splitting
along three orthogonal spatial directions, as achieved e.g. in ref. [10]. The statistics of (68) can readily
be inferred by counting the number of atoms on each magnetic sublevel via fluorescence imaging [10].

H.3 Detecting quantum entanglement
Now we obtain the matrices {Ca −ma ⊗ma := C̃a}a∈{x,y,z}, which are central to our method. With
the values in Eq. (69), we have:

C̃x = C̃y =
(
−0.139 0.140
0.140 −0.139

)
, C̃z =

(
0.000 0.002
0.002 0.000

)
. (70)

Next, we diagonalize the C̃-matrices to compute the quantityW =
∑
a∈{x,y,z}(

∑
λ<0 λ(C̃a)−Tr(Ca)),

where λ(C̃a) are the eigenvalues of C̃a. In this example, it yields W = −1.550. Comparing this value
with the bound β for the above set of local measurements, β = 1.25 (see Table 2 in Appendix G),
we have W + β = −0.300 < 0. Therefore, according to the main inequality Eq. (4) entangle-
ment is detected. That is, there is no separable state compatible with the statistics contained in
{Ca,ma}a∈{x,y,,z}.

For the present case Eq. (69), the projectors to the negative spectrum are:

Px = Py = Pz = 1
2

(
1 −1
−1 1

)
. (71)

Remarkably, we find the same optimal projectors regardless the value of the quadratic Zeeman
strength q. Finally, from the set of local measurements, the projectors {Px, Py, Pz} and β one can
derive the entanglement for all N in terms of collective spin and population to the zero Zeeman
sublevel as done e.g. in Appendix F. Once the entanglement witness Eq. (6) is derived, its violation
can be verified equivalently from the expectation values 〈Ĵ2〉, 〈Ĵ〉, 〈N̂2

0〉.

Accepted in Quantum 2022-12-21, click title to verify. Published under CC-BY 4.0. 19


	1 Introduction
	2 Applications to a spin-1 BEC
	3 Applications to a spin-2 BEC
	4 Conclusions
	 Acknowledgments
	 References
	A Derivation of the main entanglement witness inequality
	B Recovering the generalized spin-squeezing inequalities of ref. vitaglianoetal2014.
	C The spinor Bose gas model
	D Computation of the quantum data 
	E Computation of the physically feasible region of a set of average values
	F Derivation of the entanglement witness inequalities (6), (7) and their generalization to arbitrary integer spins Eqs. (9), (10)
	G Derivation of spin-2 EW, inequality (11) and generalization to arbitrary integer spins
	H Practical implementation of the algorithm
	H.1 Setting up the scenario
	H.2 Inferring the necessary statistics from the experiment
	H.3 Detecting quantum entanglement


