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Abstract 
 

This paper presents a numerical investigation of the propagation of acoustic waves generated by a 

linear acoustic source using the lattice Boltzmann method (LBM). The main objective of this study is 

to compute the sound pressure and acoustic force produced by a rectangular sound source located at 

the center of the west wall of a rectangular cavity, filled with water. The sound source is discretized 

into a set of point sources emitting waves according to the acoustic point source method. The 

interference between the generated cylindrical waves creates an acoustic beam in the cavity. An 

analytical study is carried out to validate these numerical results. The error between the numerical and 

analytical calculations of the wave propagation is also discussed to confirm the validity of the 

numerical approach. In a second step, the acoustic streaming is calculated by introducing the acoustic 

force into the LBM code. A characteristic flow structure with two recirculating cells is thus obtained.  

 

Keywords: Acoustic waves, Acoustic streaming, Lattice Boltzmann method, Acoustic force, 

Acoustic point source. 

 

1. Introduction  
 

Lattice Boltzmann method (LBM) is a numerical approach, which is derived from the kinetic theory of 

gases and cellular automata [1–3]. This approach is generally different from those traditionally used in 

numerical computations, as in computational fluid dynamics (CFD). Instead of relying on the Navier-

Stokes equations, the LBM is based on the Boltzmann statistical equation [4,5]. In recent years, 

numerical simulation of acoustic waves by the LB approach has become a well-known research topic 

in the literature. For example, several studies have been performed to investigate different types of 

waves using lattice Boltzmann tools, such as elastic waves [6,7], shock waves [8,9], aeroacoustic 

waves [10–12], and sound waves [13–15].  

One of the advantages of using the LBM in acoustics is that the sound waves can easily be generated 

using a simple boundary condition. For example, Haydock and Yeomans [16] have shown that the 

lattice Boltzmann method can be applied to model the acoustic streaming produced by a traveling 
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wave by adding a sine term to the bounce-back boundary condition. In the same way, Shan et al. [17] 

published a comprehensive paper on the use of the axisymmetric lattice Boltzmann method, with the 

Bouzidi–Firdaouss–Lallemand (BFL) boundary condition, to simulate the ultrasounds generated by a 

focused transducer [18]. Here, the sound waves are generated by using the point source method 

[15,19–21]. The main idea of this approach is to generate the waves by a harmonic function of the 

fluid density oscillating at the boundary around the equilibrium density. 

There are many applications of acoustic waves, especially ultrasound waves. For example, in 

medicine, the signals created can be used for diagnostic or therapeutic purposes [22,23]. In daily life, 

the waves can be used for cleaning [24]. In the industrial sector, the acoustic waves generated by a 

piezoelectric transducer can be used to purify photovoltaic silicon [25]. This purification is obtained 

through the flow created in the fluid by the propagation of the acoustic waves (acoustic streaming). 

This streaming is due to the natural attenuation in the fluid of the acoustic wave generated by the 

transducer vibration. Numerically, it is generally generated by introducing the force induced by the 

waves (acoustic force) in the numerical code. For CFD methods, the force is added to the Navier-

Stokes equations [26], whereas for LBM methods, there are several models for introducing such 

external force [27]. In any case, the calculation of the acoustic force is a key ingredient for all 

numerical methods to study acoustic streaming. 

There are two types of acoustic streaming: Eckart streaming [28] and Rayleigh streaming [29]. In the 

first case, the fluid motion is created within the fluid bulk by the Reynolds tensions resulting from the 

propagation of the attenuated acoustic wave, and, in the second case, the Reynolds tensions act in the 

acoustic boundary layers which develop along the solid walls. The lattice Boltzmann method has been 

used to study acoustic streaming for many years. For example, Stansell and Greated [30] numerically 

studied the acoustic streaming resulting from the interaction of acoustic waves with no-slip boundaries 

in a 2D pipe using the lattice gas automaton fluid modeling method. Haydock and Yeomans [31] used 

the LB approach to study the acoustic streaming phenomena induced by the interaction of a sound 

wave with a boundary. They also modeled the attenuation-driven acoustic streaming produced by an 

acoustic wave using the LB simulations [16]. Rafat et al. [32] used the lattice Boltzmann numerical 

simulations to study the acoustic streaming in standing wave tubes. 

Compared with these previous works, the focus of our study is different: we are interested in the 

streaming flow generated by an extended ultrasound source, in view of engineering applications. Our 

situation approximates those presented in reference [25]. In this work, the acoustic waves are 

generated experimentally by a circular piezoelectric transducer and are numerically taken into account 

in a CFD code by calculating the acoustic pressure field obtained as the added contributions of the 

discretized circular source into small elements (Rayleigh’s integral). In our 2D approximation, the 

circular ultrasound source is replaced by a rectangular source, which is placed at the center of the west 

wall of a rectangular cavity filled with water. Our idea is to calculate the acoustic force induced by the 

waves directly with the LB method and then to introduce this force in the LBM calculation to get the 

streaming. For that, different steps are necessary. The extended source has first to be discretized into a 

set of point sources, which are modeled with the acoustic point source method. Then, the travel of the 

waves, emitted by the point sources, across the cavity, is calculated by the LB method, allowing to get 

the pressure and velocity fields. The next step is to determine the acoustic force. Two different 

methods are tested and compared. The first method, which uses the plane wave approximation, is 

based on the calculation of the mean squared pressure, as mentioned in references [25,26]. The second 

method calculates the force as the mean spatial variation of the Reynolds stress, using the 
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mathematical formulation given in references [33,34]. Finally, once the acoustic forces are available, 

the streaming induced by such forces is calculated by the LB method. 

 

2.  D2Q9-MRT lattice Boltzmann method 
 

The multiple relaxation time lattice Boltzmann method (MRT) is more stable and precise than the 

simple relaxation model (SRT) to study the propagation of the acoustic waves [19]. For this reason, 

the D2Q9-MRT scheme is chosen to study the physical acoustic problem presented in this article. The 

evolution of the fluid using the MRT approach is described by the following lattice Boltzmann 

equation [4,35–38]: 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥𝑖, 𝑡) = −   [𝑓𝑖 − 𝑓𝑖
𝑒𝑞
] ,                                        (1) 

where 𝑓𝑖
 and 𝑓𝑖

𝑒𝑞
 represent the distribution functions and the equilibrium distribution functions, 

respectively. 𝛿𝑡 is the LBM time step (𝛿𝑡 = 1 in the lattice Boltzmann units),  is the collision matrix 

and 𝑐𝑖 denote the lattice velocities of the D2Q9 scheme (Fig. 1): 

 

𝑐𝑖 = {

            (0,0)                                                  𝑖 = 0
(1,0)c, (0,1)𝑐, (−1,0)c, (0, −1)c                        𝑖 = 1, . . ,4   
(1,1)c, (−1,1)𝑐, (−1,−1)c, (1, −1)c                𝑖 = 5, . . ,8   

                             (2)   

 

where 𝑐 is the LBM speed between two successive nodes of the lattice. Typically, it is equal to 1 in the 

LBM units. 

The equilibrium distribution function is defined as [4,39,40]: 

𝑓𝑖
𝑒𝑞
= 𝑤𝑖𝜌 [1 +

1

𝑐𝑠
2  (𝑐𝑖 . 𝑉⃗⃗ ) +

1

2𝑐𝑠
4  (𝑐𝑖. 𝑉⃗⃗ )

2
−

1

2𝑐𝑠
2 |𝑉⃗⃗ |

2
]                              (3) 

where 𝑤𝑖 are the discretization weights, 𝜌 is the fluid density, 𝑐𝑠 is the speed of sound (𝑐𝑠 = 1/√3 in 

LBM units) and 𝑉⃗⃗ is the macroscopic velocity vector (𝑉⃗⃗ = (𝑢⃗⃗, 𝑣⃗)). For the D2Q9 model, the weight 

coefficients are 𝑤0 = 4/9, 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 1/9 and 𝑤5 = 𝑤6 = 𝑤7 = 𝑤8 = 1/36 [4,41]. 

For the LBM-MRT model, the collision matrix is generally presented as follows [36]: 

  = 𝑀
−1 𝑆 𝑀,                                                                     (4) 

where 𝑆 , 𝑀  and  𝑀−1  are the relaxation matrix, the transformation matrix and its inverse matrix, 

respectively.              

Using the following linear transformations, 𝑚 = 𝑀𝑓  and𝑚 
𝑒𝑞 = 𝑀𝑓 

𝑒𝑞 , the Boltzmann equation 

becomes: 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥𝑖, 𝑡) = 𝑀
−1𝑆[ 𝑚𝑖

𝑒𝑞
−𝑚𝑖].                                  (5) 

 

For the MRT-D2Q9 scheme, the matrix 𝑀 is a (9 × 9) matrix. According to [4], it is given by:              



4 
 

𝑀 =

(

 
 
 
 
 

     1  
 −4  

 

 4
0
0
0
0
0
0

   1
−1
−2
   1
−2 
  0
  0
  1
  0

 

   1
−1
−2
   0
   0
   1
−2
−1
   0

 

   1
−1
−2
−1
   2
   0
   0
   1
   0

 

   1
−1
−2
   0
   0
−1
   2
−1
   0

   

1
2
1
1
1
1
1
0
1

  

   1
   2
   1
−1
−1

  

 1
 1
 0
−1

 

   1
   2
   1
−1
−1
−1
−1
   0
   1

 

    1
    2
    1
    1
    1
  −1

 
−1
   0
−1

  

)

 
 
 
 
 

                           (6) 

The matrix 𝑆 is a diagonal matrix. It defines the nine relaxation times 𝑠𝑖 of the associated physical 

quantities calculated by the D2Q9 model: 

𝑆 = diag(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8).                                                (7) 

The relaxation time values used in this work are those described in [4]: s1 = s2 = 1.4, s0 = s3 = s5 =

1, s4 = s6 = 1.2 and s7 = s8 = 1/(3ν + 0.5), where ν is the LBM kinematic viscosity. 

𝑚 is the vector of the nine moments given by the D2Q9 lattice. These moments correspond to the fluid 

density (𝜌), energy (𝑒), energy square (𝜀), momentum (𝑗 = (𝑗𝑥 ,  𝑗𝑦)), energy flux (𝑞𝑥, 𝑞𝑦), and the two 

moments linked to the diagonal (𝑝𝑥𝑥) and off-diagonal (𝑝𝑥𝑦) components of the stress tensor [4,38]: 

𝑚 = (𝜌, 𝑒, 𝜀, 𝑗𝑥 , 𝑞𝑥, 𝑗𝑦, 𝑞𝑦, 𝑝𝑥𝑥 , 𝑝𝑥𝑦)
𝑇
,                                        (8) 

 

where the superscript 𝑇 indicates that we consider the transposed matrix. 

𝑚 
𝑒𝑞 is the vector of the equilibrium moments [42]: 

𝑚0
𝑒𝑞
= 𝜌 

                           𝑚1
𝑒𝑞
= −2𝜌 +

3

𝜌
(𝑗𝑥
2 + 𝑗𝑦

2) 

                     𝑚2
𝑒𝑞
= 𝜌 −

3

𝜌
(𝑗𝑥
2 + 𝑗𝑦

2) 

𝑚3
𝑒𝑞
= 𝑗𝑥 

  𝑚4
𝑒𝑞
= −𝑗𝑥                                                                   (9) 

 𝑚5
𝑒𝑞
= 𝑗𝑦 

    𝑚6
𝑒𝑞
= −𝑗𝑦 

            𝑚7
𝑒𝑞
=

1

𝜌
(𝑗𝑥
2 − 𝑗𝑦

2) 

    𝑚8
𝑒𝑞
=

1

𝜌
𝑗𝑥𝑗𝑦 

After calculating the nine distribution functions by numerically solving the Boltzmann equation, the 

macroscopic quantities 𝜌, 𝑗𝑥 and 𝑗𝑦 can be determined by the following equations [4]: 

 

𝜌 = ∑ 𝑓𝑖
 8

𝑖=0 ,   𝑗𝑥 = 𝜌𝑢 = ∑ 𝑓𝑖
 8

𝑖=0 𝑐𝑖𝑥 and 𝑗𝑦 = 𝜌𝑣 = ∑ 𝑓𝑖
 8

𝑖=0 𝑐𝑖𝑦 ,                     (10) 

where 𝑐𝑖𝑥 and 𝑐𝑖𝑦 are the Boltzmann velocities along the 𝑥 and 𝑦 axes, respectively. 

To produce the acoustic streaming, the force induced by the propagation of the sound waves in water 

is introduced into the LBM code. The Shan and Chen model [43,44] and the model proposed by Luo  

[27] are the most popular models for implementing an external force in the LB method. The first 

model consists in modifying the amount of motion 𝑗(𝑥, 𝑦) in the following way: 
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𝑗(𝑥, 𝑦) = ∑𝑓𝑖 𝑐𝑖 +
𝛿𝑡 𝐹𝑎𝑐

2
                                                        (11) 

where 𝐹𝑎𝑐 is the acoustic force. 

For the second model, the external force is discretized and then directly added to the Boltzmann 

equation (Eq. (5)). The discretized force can be given as [45]: 

𝐹𝑖 = 𝑤𝑖𝑐𝑖 𝐹𝑎𝑐 𝑐𝑠
−2,                                                              (12) 

Then, Eq. (5) becomes [42]: 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥𝑖, 𝑡) = 𝑀
−1𝑆[𝑚𝑖

𝑒𝑞
−𝑚𝑖] + 𝛿𝑡 𝐹𝑖 .                           (13) 

The calculation of the acoustic force will be detailed in section 5 and its implementation in our LBM 

code is carried out according to the Luo model (Eq. (13)). 

3. Boundary conditions 
 

The boundary conditions used in this work are the bounce-back and characteristic boundary 

conditions.  

The bounce-back boundary conditions are applied to define the unknown distribution functions at the 

solid boundary. The main idea is to calculate the unknown 𝑓𝑖  from the known functions by the 

following equation [4,21]: 

 

𝑓𝑖
 (𝑥⃗𝐵, 𝑡) = 𝑓𝑖̅

 (𝑥⃗𝐵, 𝑡)                                                          (14) 

 

where 𝑓𝑖
 (𝑥⃗𝐵, 𝑡) is an unknown distribution function at the wall node (𝑥⃗𝐵) and 𝑓𝑖̅

 (𝑥⃗𝐵, 𝑡) is the known 

function at the opposite direction of 𝑓𝑖
 (𝑥⃗𝐵, 𝑡). 

The characteristic boundary conditions (CBC) are one of the most used conditions in the lattice 

Boltzmann method for absorbing the sound wave at boundaries [46]. The origin and implementation 

of these conditions are discussed in detail in the references [5,47,48]. Here, only the calculation of the 

CBCs at a vertical wall that is at a given position in 𝑥 (𝑥 −boundary) is proposed. 

The simplest way to implement the characteristic boundary conditions in the LBM code is to directly 

replace the distribution function 𝑓𝑖
  at the boundary with the equilibrium distribution function 𝑓𝑖

𝑒𝑞
: 

  

𝑓𝑖
 (𝑥⃗𝐵, 𝑡) = 𝑓𝑖

𝑒𝑞(𝑥⃗𝐵, 𝑡).                                                          (15)                                       

𝑓𝑖
𝑒𝑞

 is expressed as a function of the density (𝜌𝐷) and the velocities (𝑢𝐷, 𝑣𝐷) (Dirichlet values), which 

can be calculated at the 𝑥 −boundary by solving the following equation [5]: 

 𝜕𝑈⃗⃗⃗

𝜕𝑡
= −Px

−1𝐿𝑥
′ −  Y

𝜕𝑈⃗⃗⃗

𝜕𝑦
                                                                (16) 
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where 𝑈 ⃗⃗⃗⃗ is the fluid variable vector 𝑈 ⃗⃗⃗⃗ = (, 𝑢, 𝑣)𝑇 and  is a constant that is set to unity ( = 1) as in 

reference [5]. 

Y is a (3 × 3) matrix. It is expressed as: 

 

Y = (
𝑣 0 𝜌
0 𝑣 0

𝑐𝑠
2/𝜌 0 𝑣

),                                                           (17) 

Px
−1 is also a matrix, function of the speed of sound and density: 

 

Px
−1 =

(

 

1

2𝑐𝑠
2 0

1

2𝑐𝑠
2

−
1

2 𝑐𝑠
 0

1

2 𝑐𝑠
 

0 1 0 )

 .                                                     (18) 

 

𝐿𝑥
′  is a modified characteristic vector deduced from the characteristic vector 𝐿𝑥

  in such a way to 

attenuate the incoming waves at the boundary and then avoid reflection: 

 

𝐿𝑥,𝑖
′ = {

𝐿𝑥,𝑖 
     for outgoing waves

 
0         for incoming waves

                                              (19) 

 

Finally, the components of 𝐿𝑥 are:  

𝐿𝑥
 =

{
 
 

 
 𝐿𝑥,1

 = (𝑢 − 𝑐𝑠) [𝑐𝑠
2 𝜕

𝜕𝑥
− 𝑐𝑠

 
𝜕𝑢

𝜕𝑥
] 

𝐿𝑥,2
 = 𝑢

𝜕𝑣

𝜕𝑥
                                        

𝐿𝑥,3
 = (𝑢 + 𝑐𝑠) [𝑐𝑠

2 𝜕

𝜕𝑥
+ 𝑐𝑠

 
𝜕𝑢

𝜕𝑥
] 

                                         (20)   

The development of the matrix calculation expressed by Eq. (16) leads to the following three 

differential equations for the density and the velocities along the 𝑥 and 𝑦 axes:       

 𝜕

𝜕𝑡
= −(

𝐿𝑥,1
′

2𝑐𝑠
2 +

𝐿𝑥,3
′

2𝑐𝑠
2 + 𝑣

 𝜕

𝜕𝑦
+ 

 𝜕𝑣

𝜕𝑦
),                                               (21) 

 𝜕𝑢

𝜕𝑡
= −(−

𝐿𝑥,1
′

2𝑐𝑠
 +

𝐿𝑥,3
′

2𝑐𝑠
 + 𝑣

 𝜕𝑢

𝜕𝑦
),                                                   (22) 

 𝜕𝑣

𝜕𝑡
= −(𝐿𝑥,2

′ +
𝑐𝑠
2



 𝜕

𝜕𝑦
+ 𝑣

 𝜕𝑣

𝜕𝑦
).                                                     (23) 

The discretization of these three equations is done using the finite difference method. For example, for 

Eq. (21), the spatial derivative at the vertical walls is given using the one-sided second-order finite 

difference approximations [5]: 

        

𝜕

𝜕𝑦
=
+ 3(𝑦) + 4 (𝑦+𝛿𝑦) + (𝑦+2𝛿𝑦)

2𝛿𝑦
 .                                        (24) 

 

On the other hand, inside the computational domain, the second-order central difference 

approximation is used: 
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𝜕

𝜕𝑦
=
  (𝑦 + 𝛿𝑦)−  (𝑦 − 𝛿𝑦)

2𝛿𝑦
 ,                                                 (25) 

where 𝛿𝑦 is the space step along y (𝛿𝑦 = 1). 

To advance in time, the forward Euler method can be applied [5]. As an example, for , this leads to: 

(𝑡 + 𝛿𝑡) = (𝑡)+ 𝛿𝑡
𝜕

𝜕𝑡
 .                                                              (26) 

Solving numerically Eqs. (21-23) will then give 𝜌𝐷, 𝑢𝐷 and 𝑣𝐷 at the boundary. The values of these 

variables thus obtained are integrated into Eq. (3) to calculate the corresponding equilibrium 

distribution function. 

4. Lattice Boltzmann Units 
 

The conversion between the physical and LBM units is very important, especially when we want to 

deal with a real physical problem using the lattice Boltzmann method. The simplest way is to perform 

this conversion between the two sets of units by using reference physical quantities for length, time, 

and density. We will use the spacing of the nodes Δ𝑥 (m), the physical time step Δ𝑡 (s) and the mean 

density of the fluid 𝜌  (Kg/m3 ) [19,49]. With this choice, Δ𝑥𝑙𝑏𝑚 = 𝛿𝑥 = 1 , Δ𝑡𝑙𝑏𝑚 = 𝛿𝑡 = 1  and 

𝜌𝑙𝑏𝑚 = 1. The physical speed of sound (𝑐𝑝ℎ) and viscosity (𝑝ℎ) can also be linked to those of the 

LBM by the following equations: 

  𝑐𝑝ℎ =
∆𝑥

∆𝑡
𝑐𝑙𝑏𝑚,                                                               (27) 

𝑝ℎ =
∆𝑥2

∆𝑡
𝑙𝑏𝑚.                                                              (28) 

As the physical quantities in Eqs. (27) and (28) are known and that 𝑐𝑙𝑏𝑚 is typically chosen as 1/√3  

for the D2Q9 model (𝑐𝑙𝑏𝑚 = 𝑐𝑠), a possibility is to fix a value for 𝑙𝑏𝑚 and to use these two equations 

to obtain ∆𝑥 and ∆𝑡: 

 

∆𝑥 =
𝑝ℎ

𝑙𝑏𝑚
 
𝑐𝑙𝑏𝑚

𝑐𝑝ℎ
 ,                                                             (29) 

∆𝑡 =
𝑝ℎ

𝑙𝑏𝑚
 (
𝑐𝑙𝑏𝑚

𝑐𝑝ℎ
)
2

.                                                           (30) 

Another choice was done here. For the study of acoustic problems, an important physical quantity is 

the physical frequency of the wave (𝑓𝑝ℎ = 200 kHz in our work), from which the period of the wave 

(𝑇𝑝ℎ = 5 × 10
−6 s) and the wavelength (𝜆𝑝ℎ = 7.4 × 10

−3 m) can be deduced. To have a precise 

calculation of the waves in the cavity, we decided to have at least 20 ∆𝑥 in a wavelength, which led us 

to choose ∆𝑥 = 3.2 × 10−4 m and ∆𝑡 was deduced from Eq. (27) (∆𝑡 = 1.248 × 10−7 s). With this 

choice of ∆𝑥 and ∆𝑡, the LBM period and wavelength can be obtained as 𝑇𝑙𝑏𝑚 = 𝑇𝑝ℎ/Δ𝑡 = 40.064 

and 𝜆𝑙𝑏𝑚 = 𝜆𝑝ℎ/∆𝑥 = 23.125, respectively. Note that with the choices made here, the LBM viscosity 

is not an adjustable parameter and must be obtained from Eq. (28). 

The purpose of this work is to study the propagation of sound waves in water. Some of the physical 

and LBM parameters used in our simulations are given in Table 1. 
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5. Results and Discussion 
 

The sound waves are generated by a rectangular acoustic source located at the center of the west wall 

of a rectangular cavity of height 𝐻 = 10 cm and length 𝐿 = 15 cm filled with water (see Fig. 2). The 

size of the acoustic source is 3.33 cm (i.e. H/3). The waves are emitted by the source with a physical 

frequency (𝑓𝑝ℎ) of 200 kHz and will travel towards the east wall of the cavity. To avoid the reflection 

of the sound waves at this boundary, the characteristic boundary conditions presented in section 3 are 

used. For the other walls, the usual bounce-back boundary conditions are applied. 

With the choice of ∆𝑥 = 3.2 × 10−4 m and ∆𝑡 = 1.248 × 10−7 s presented in section 4, the numbers 

of nodes along the length and height of the cavity are 469 (from 0 to 𝑁𝑥 = 468) and 313 (from 0 to 

𝑁𝑦 =  312), respectively, which also gives 105 (from 0 to 𝑁𝑠 = 104) nodes along the acoustic source. 

Note also that the number of wavelengths contained in the length will then be about 20, and 1000 time 

iterations will correspond to about 25 wave periods. 

 

Numerically, the acoustic source is discretized into a set of point sources, and each source is modeled 

by the following linear density equation [15,19,39]: 

 

𝜌 = 
0
+ 𝜌′                                                                  (31)     

 

where 
0
 is the equilibrium density, which is equal to 1 in the LBM units, and 𝜌′ is the off-equilibrium 

density. For the case of circular waves, the acoustic density 𝜌′ can take the following form: 

𝜌′ = 𝐴 𝑠𝑖𝑛 (
2𝜋

𝑇
𝑡)                                                            (32) 

 

where 𝐴, 𝑡, and T are the amplitude of the point acoustic source, the time, and the harmonic period, 

respectively. In the LBM units, 𝑡 represents the number of iterations in the LBM code. The amplitude 

value of the sound source must be sufficiently low to avoid the non-linear effects in the propagation of 

the acoustic waves [19]. In this study, the amplitude generally used (𝐴 = 0.01) is that mentioned in 

references [15,21]. 

5.1. Test cases 

To validate our LBM code, we first studied the acoustic wave emitted by a point source located at the 

center of a square cavity (10 cm × 10 cm) filled with water. The characteristics of this test case are 

similar to those described before for the rectangular cavity. In particular, a wave absorbing boundary 

condition is applied at the east wall. We also choose 𝑓𝑝ℎ = 200 kHz, so that 𝜆𝑝ℎ = 7.4 × 10
−3 m. ∆𝑥 

and ∆t are chosen as mentioned before so that 313 nodes must be taken along each axis 𝑥 and 𝑦 and a 

wavelength will correspond to about 23 nodes. The results are illustrated in Fig. 3. For a small number 

of iterations equal to 200 (Fig. 3a), the waves propagate as circles in the cavity without still reaching 

the walls. When the iterations become more important (400 for example), the waves are absorbed by 

the east wall and reflected by the other walls of the cavity. The interference between the reflected 

waves and those emitted by the source is then well observed (Fig. 3b).  

Another test case is performed, which also corresponds to a wave emitted by a point source at the 

center of a square cavity. The configuration proposed by Salomons et al. [15], however, has different 

characteristics. The cavity is filled with air and has bounce-back boundary conditions applied on all its 

walls, and the calculations were performed with a LBM period and a viscosity of 40 and 0.06, 
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respectively. The results obtained with our LBM code for an iteration number equal to 1600 are 

favorably compared with those found by Salomons et al. [15] (see Fig. 4). 

5.2. Wave propagation 

After these different test cases, we now consider the physical problem depicted in Fig. 2. The sound 

waves are here generated by a rectangular acoustic source placed on the west wall of the cavity. The 

discretization of this rectangular source gives 105-point sources placed on the corresponding 105 

nodes of the LBM lattice. Fig. 5 shows the numerical results calculated by the D2Q9-LBM scheme. 

These results are obtained after 1400 iterations, which, for a LBM period of about 40, correspond to 

35 wave periods. The generated waves propagate throughout the enclosure in the form of plane waves. 

These plane waves are directed towards the east wall of the cavity where they are absorbed. The 

corresponding acoustic beam is rather intense close to the source, in the zone at mid-height in front of 

the source. The global shape of the waves is cylindrical in the far-field (for example beyond mid-

length), but closer to the source in the near-field the shape becomes flat in the zone in front of the 

source, with stronger curvatures above and below this zone. 

Salomons et al. [15] have shown that high values of the fluid viscosity can cause strong sound 

dissipation. For negligible thermal effects (which is a good approximation for water [25]), the 

dissipation is given by the following equation: 

𝛼 =
1

2
 2  (

4

3
 + 𝐵) 𝑐𝑠

−3                                                    (33) 

where α is the spatial attenuation coefficient and 𝐵 is the bulk viscosity, generally taken proportional 

to the viscosity (for water, 𝐵 = 3) [25,50].  

As shown before, the LBM viscosity () for water can be easily determined using Eq. (28). For the 

conditions used in this work, the value of the LBM viscosity is about 1.21 × 10−6. This value was 

used in Figs. 3 and 5. Let us note that this viscosity is very low so that it will not cause a strong 

attenuation. It should be interesting to study the effect of the viscosity on the propagation of the sound 

waves and for that to compute new cases with stronger viscosity ( = 0.01 and 0.06), and to see how 

the waves are thus dissipated. The results are shown in Fig. 6, which depicts the longitudinal profiles 

of the density obtained for the different values of the LBM viscosity. It should be first noted that, due 

to the diffraction effect, there is a decrease of the wave amplitude, visible in the far-field, even with no 

viscosity effect. The result obtained for  = 1.21 × 10−6 can be considered as typically representing 

this effect due to diffraction. When the viscosity is increased up to 0.01, an extra-dissipation due to 

viscosity is effective and can be observed on the density profile, but it still remains weak. It is only 

with the higher value of the viscosity ( = 0.06) that the dissipation becomes important, giving a quite 

strongly attenuated density profile. 

Here, we can mention one of the advantages of the MRT model compared to the SRT model. For the 

SRT scheme, the viscosity chosen in the LBM calculations must be greater than 0.01 to avoid 

instability effects [15], whereas, for the MRT model, there is no constraint on the viscosity, and 

viscosity values far below 0.01 can thus be used. 

 

Our numerical results can be validated using the analytical solution of the equation of cylindrical 

waves. For a single sound point source, this analytical solution is given by the real part of the 

following expression [15,19,21]: 
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𝜌′
 (𝑟, 𝑡) = 𝐵𝐻0

(2)(𝑘𝑟)𝑒𝑗𝜔𝑡,                                                (34) 

where 𝐻0
(2)

 is the Hankel function of order zero and second kind, 𝑟 is the distance to the sound source, 

𝑘 is the wavenumber and 𝐵 is a constant. This expression using a real value of 𝑘 does not take into 

account the spatial sound attenuation effect. The mathematical expressions of the Henkel function and 

the constant 𝐵 are discussed in reference [19]. 

In the case of a rectangular sound source, the sum of the density fields given by each point source 

must be made: 

𝜌𝑠(𝑟, 𝑡) = ∑  
𝑖
(𝑟, 𝑡)

𝑁𝑠
𝑖=1 ,                                                   (35) 

 

where 𝑁𝑠 is the number of acoustic sources (𝑁𝑠 = 104 in our case). 

The analytical result thus obtained is illustrated in Fig. 7, which gives the density field in the cavity at 

a time corresponding to 1400 time steps, to compare with the numerical result shown in Fig. 5. As the 

analytical result does not involve sound attenuation, the comparison makes sense only with the 

numerical result obtained for small viscosity (as  = 1.21 × 10−6 in Fig. 5). There is a good global 

agreement between the analytical and numerical results. Note however that, due to the reflection of the 

waves on the north and south walls in the numerical computations, interference occurs and modifies 

the shape of the waves close to these walls compared to the analytical results. To show more clearly 

the agreement, the analytical and numerical density profiles along the 𝑥-axis obtained from the results 

presented in Fig. 7 and Fig. 5, respectively, are plotted in Fig. 8. These profiles are very similar, 

although a small difference between them can be noted. This difference can be highlighted by 

calculating the absolute error 𝐸𝑎, which is determined as the difference between the numerical (𝜌𝑁𝑢𝑚) 

and analytical (𝜌𝐴𝑛𝑙) densities obtained at each LBM node point [21]: 

 

𝐸𝑎 =  |𝜌𝐴𝑛𝑙 − 𝜌𝑁𝑢𝑚|.                                                             (36) 

 

Fig. 9 presents the absolute error variation along the 𝑥-axis. It oscillates between 0 and about 4 ×

10−4 along this axis, except in the vicinity of the sound source where it takes a larger amplitude. The 

maximum error found along the 𝑥-axis (8 × 10−4) can be already considered as very small, indicating 

that the numerical results are very close to those calculated analytically. The mean absolute error (𝐸𝑚) 

along the 𝑥-axis can also be calculated: 

𝐸𝑚 =
1

𝑁
∑ 𝐸𝑎𝑖
𝑁
𝑖=0 ,                                                                 (37) 

 

where 𝑁  is the number of points along the 𝑥 -axis. We obtain 𝐸𝑚 = 1.78 × 10−4 . These good 

comparisons with the analytical calculations indicate the validity and accuracy of our numerical 

approach. 

 

5.3. Acoustic force 

It is now interesting to evaluate the acoustic force induced by the attenuated wave as it is responsible 

for the development of acoustic streaming. The acoustic force can be determined from the acoustic 

pressure field generated by the transducer. In the particular case of progressive sinusoidal plane waves, 

the force can take the following form [25,26]:  
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         𝐹𝑎𝑐 =
 𝑝𝑎𝑐

2

 𝑐𝑠
2  ,                                                                    (38) 

where 𝑐𝑠
 , , , and 𝑝𝑎𝑐

  are the speed of the sound, the acoustic attenuation coefficient, the fluid 

density, and the acoustic pressure amplitude, respectively. The attenuation coefficient has been given 

in Eq. (33). The acoustic pressure is obtained from the off-equilibrium density 𝜌′ as 𝑝′ = 𝜌′𝑐𝑠
2, i.e. 

𝑝′ = (𝜌 − 𝜌0)𝑐𝑠
2. Its amplitude can be determined from its rms-value. Indeed, for a pressure wave 

expressed as 𝑝′ = 𝑝𝑎𝑐
  𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥), the amplitude 𝑝𝑎𝑐

  is:        

                                             

𝑝𝑎𝑐
 = √2 〈𝑝′2〉 .                                                                     (39) 

To calculate the average of the squared acoustic pressure 〈𝑝′
2〉, the generated acoustic waves must be 

well established throughout the cavity. In our situation, the waves reach the east wall after 800 

iterations (𝑡 = 800 Δ𝑡), indicating that the mean value has to be calculated on a time interval chosen at 

least beyond that time.  

The acoustic force can also be calculated as the spatial variation of the Reynolds stress, as presented in 

the references [26,33,34]: 

 𝐹𝑎𝑐,𝑖 = − ∇. (〈𝑢𝑎𝑐,𝑖 𝑢⃗⃗𝑎𝑐〉),    for 𝑖 = 1 and 2                                    (40)   

where 𝑢⃗⃗𝑎𝑐  is the acoustic velocity. The derivatives that are needed in that case are calculated using the 

finite differences approximation. At the boundaries, a one-sided second-order approximation is used, 

whereas, for points outside the edges, a second-order central scheme is applied [5]. 

The acoustic forces have been calculated using Eq. (38) or Eq. (40). The time averages that are 

needed, either for 𝑝𝑎𝑐 in Eq. (38) or for 𝑢⃗⃗𝑎𝑐 in Eq. (40), have been performed between the iterations 

1000 and 1400, i.e. on a time interval of about 10 periods. Different tests have been carried out 

corresponding to different values of the LBM viscosity , i.e. also different values of the acoustic 

attenuation coefficient 𝛼. From these tests, we have found that the two forces have similar intensities 

and spatial variations when the LBM viscosity is quite high. For example, the force fields obtained for 

 = 0.06 with Eq. (38) and Eq. (40) are presented in Figs. 10 and 11, respectively. From these figures, 

we can see that the force is more important closer to the source where the waves have larger intensities 

and weakens away from the source under the effect of sound diffraction and acoustic attenuation. Note 

that differences between the two forces appear in the spatial variations in the near field, very close to 

the source. Due to the spatial derivatives involved, the force field obtained from Eq. (40) is also less 

smooth. The good agreement between the two acoustic force formulas, however, can be shown on 

transverse profiles taken at different positions along the 𝑥-axis, i.e. the sound propagation direction. 

These profiles, taken at 𝑥 = 𝐿/3, 𝐿/2, and 2𝐿/3, are shown in Fig. 12. We can see that in this case, 

where  = 0.06, there is a rather good match between the profiles obtained by either Eq. (38) or Eq. 

(40). 

As mentioned before, the LBM viscosity corresponding to the physical case of wave propagation in 

water is  = 1.21 × 10−6. For this small value of , however, the two expressions of the force are not 

equivalent. We have first to remember that the source of the streaming, and then also of the acoustic 

force, is the sound attenuation, quantified by the acoustic attenuation coefficient 𝛼. This coefficient is 

explicitly present in the force expression given by Eq. (38), which will then give the right force 

amplitude and level of streaming, even if the very low dissipation effect is not perfectly taken into 

account in the calculation of the wave propagation. In contrast, the attenuation effect is only implicitly 
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taken into account in Eq. (40) through the attenuation of the wave, more precisely the attenuation of 

the acoustic velocities. If strong attenuation is effective (as for  = 0.06), this attenuation effect will 

strongly affect the calculated acoustic velocities and the use of Eq. (40) for the force calculation can be 

appropriate. For low attenuation, however, the effect on the acoustic velocities is so weak that it is 

difficult to precisely take it into account in a numerical simulation and the use of Eq. (40) becomes 

inappropriate. This is the case for the very low acoustic attenuation (𝛼 = 3.35 × 10−7) effective in 

water at 𝑓 = 200 kHz ( = 1.21 × 10−6), for which only Eq. (38) can be used with confidence. 

5.4. Streaming  

Our final objective is now to use the LB method to calculate the streaming induced by the wave in the 

cavity filled with water, using the acoustic force field calculated from the wave propagation, as shown 

just above. Let us first recall that Fig. 6 shows that the wave propagation results obtained with the 

viscosities of 0.01 and 1.21 × 10−6 are very close. Then, a viscosity of 0.01 can be approximately 

used instead of 1.21 × 10−6 to calculate wave propagation. Nevertheless, the real acoustic attenuation 

in water (𝛼 = 3.35 × 10−7) has then to be used in Eq. (38) to get the real acoustic force and real 

streaming in water. The force thus obtained in water is, however, very low, and, used in Eq. (12), it is 

not able to generate a flow in the LB simulations, this flow being far too weak. To have a force able to 

produce acoustic streaming with our LB simulations, we changed the attenuation coefficient used in 

Eq. (38) to  = 2.77 × 10−3, which is the value obtained for a viscosity  = 0.01 at 𝑓 = 200 kHz. 

Such LB simulations will then give the streaming in a more viscous flow than water. To get streaming 

in water, a possibility would have been to increase the wave frequency 𝑓 (by a factor of 10 to 𝑓 = 2 

MHz, for example), as the attenuation coefficient is proportional to 𝑓2. Many more discretization 

points, however, would have been necessary for the LB simulations to take into account such high-

frequency waves, and this is beyond our numerical possibilities. 

The force field calculated with  = 0.01 and 𝐴 = 0.01 is shown in Fig. 13. In contrast to the results 

presented in Fig. 10, the force does not weaken too quickly away from the source because the 

attenuation corresponding to  = 0.01 is small compared to that associated with  = 0.06. The global 

intensity of the force, however, is proportional to  (Eq. (38)) and is expected to be smaller for  =

0.01 than for  = 0.06. To still assess the reliability of our code, the force field obtained for  = 0.01 

with the analytical solution and the use of Eq. (38) is given in Fig. 14. We see a very good agreement 

in terms of intensity and structure with the force field obtained numerically in Fig. 13. 

The flow generated by streaming with the force field shown in Fig. 13 has then been simulated by the 

LB method, using now the bounce-back boundary condition at the east wall. This streaming flow is 

shown in Figs. 15, 16, and 17. Fig. 15 shows the distribution of the 𝑥-component of the velocity in the 

cavity. Since the east wall is impermeable, the flow induced by the attenuated wave in the central part 

of the cavity, ahead of the transducer, is blocked by this wall and must return along the north and 

south horizontal walls, giving two recirculation cells in the cavity. As shown by the transverse profile 

of the horizontal 𝑢 velocity taken at 𝑥 = 𝐿/2 in Fig. 16, the velocity is maximum in the central part of 

the cavity along the horizontal centerline and weaker in the returning zones along each horizontal wall. 

The global structure of the flow induced by acoustic streaming is shown with the velocity vector plot 

in Fig. 17. We see that the two recirculation cells are perfectly symmetric with respect to the 

horizontal centerline of the cavity and that they are mainly intense in the first half of the cavity. 

With the viscosity  = 0.01, the streaming obtained is still weak and the main flow does not reach the 

east wall where very low velocities are found. In order to have stronger streaming, the acoustic force 

can be further increased. For a fixed frequency (200 kHz), we can still increase the acoustic 
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attenuation coefficient or increase the amplitude of the wave. We now choose to keep  = 0.01 and to 

increase the amplitude value from 0.01 to 0.1. Note that the value of the amplitude has to remain low 

(clearly below 1, i.e. corresponding to 𝜌′ ≪ 
0
) to avoid the effect of non-linearity in the acoustic 

model described in Eq. (31). Figs. 18 and 19 show that, for this new amplitude, the flow in the cavity, 

still symmetric with respect to the horizontal centerline, becomes more intense, with the recirculation 

cells almost occupying the whole cavity. 

6. Conclusions   
 

The objective of this work was to simulate waves propagation and acoustic streaming in water by the 

lattice Boltzmann method (LB method). The numerical study presented here has first shown that the 

LB method can be used to simulate the acoustic waves generated in water by a rectangular acoustic 

source at 𝑓 = 200 kHz. The proposed numerical model presents a good accuracy, confirmed by the 

comparison with the analytical calculation. This validation is carried out using the mathematical 

expression of the density given by the wave equation solution for the case of cylindrical waves emitted 

by point sources. Another characteristic of the problem, which is important for the calculation of 

acoustic streaming, is the acoustic force field generated by the attenuated wave propagation. This force 

field can be calculated with two formulas: in the first formula based on the mean squared pressure, the 

acoustic attenuation coefficient is explicitly used, whereas, in the second formula based on the spatial 

variation of the Reynolds stress, the attenuation is only implicitly effective through the spatial 

evolution of the acoustic velocities. Our study shows that both formulas can be used for situations with 

strong attenuation coefficients, but that only the first formula explicitly containing the attenuation 

coefficient can be used for situations with low attenuation coefficient, as the physical situation in the 

water we want to consider here. This is due to the fact that such a low attenuation effect is difficultly 

taken into account with precision in the numerical simulations of wave propagation. Finally, the force 

field given by the first formula has been used to simulate the acoustic streaming. Due to the 

impermeable condition imposed at the east end wall, the main streaming flow induced in the central 

part of the cavity ahead of the transducer has to return on both sides along the horizontal walls. A 

characteristic flow structure with two recirculating cells is thus obtained. This flow is symmetric with 

respect to the horizontal centerline and increases in intensity when the vibration amplitude is 

increased. 
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Table 1 

LBM and physical parameters for the propagation of acoustic waves in water. 

Material 𝑐𝑝ℎ(m/s) 𝑐𝑙𝑏𝑚(D2Q9) 𝑝ℎ(𝑚2/s) 𝑙𝑏𝑚 
𝑝ℎ

(kg/𝑚3) 
𝑙𝑏𝑚

 

Water (200C) 1480 1/√3 1× 10−6 1.21 × 10−6 1× 103 1 
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Figure 1. The D2Q9 lattice. 

 
Figure 2.  The physical problem studied. 

 
Figure 3. Sound waves propagation in a square cavity at 200 (a) and 400 (b) iterations. A wave 

absorbing condition is applied at the east wall. 
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Figure 4. Sound waves propagation in a square cavity: (a) results of the reference [15];  (b) our results. 

 
Figure 5. Density field showing sound waves propagation in the rectangular cavity after 1400 

iterations for a LBM viscosity 𝜈 = 1.21 × 10−6. 

 

 



21 
 

 
Figure 6. Longitudinal profiles of the fluid density along the 𝑥-axis after 1400 iterations and at the 

position H/2 for different values of the LBM viscosity. 

 
Figure 7. Density field calculated analytically using Eqs. (34) and (35) at 𝑡 = 1400 Δ𝑡. 
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Figure 8. Numerical and analytical longitudinal profiles of the density along the 𝑥-axis at 𝑡 = 1400 Δ𝑡 

and at position 𝐻/2. 

 
Figure 9. Absolute error variation along the 𝑥-axis between the numerical and analytical density 

profiles presented in Fig. 8. 
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Figure 10.  Acoustic force field calculated from Eq. (38) for  = 0.06. 

 
Figure 11. Acoustic force field calculated from Eq. (40) for  = 0.06. 
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Figure 12. Transverse profiles of the acoustic force calculated by the two different formulas (Eq. (38) 

or Eq. (40)) at three different positions along the 𝑥-axis for  = 0.06. 

 
Figure 13.  Acoustic force calculated numerically from Eq. (38) for  = 0.01 ( = 2.77 × 10−3). 
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Figure 14.  Acoustic force calculated analytically from Eq. (38) for  = 0.01 ( = 2.77 × 10−3). 

 
Figure 15. Distribution of the 𝑥-component of the velocity for the flow obtained by streaming using 

the acoustic force described in Eq. (38) with  = 0.01 and A = 0.01. 
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Figure 16. Transverse profile of the 𝑢 velocity at position 𝐿/2 for the streaming obtained with  =

0.01 and A = 0.01. 

 
Figure 17. Acoustic streaming produced by the acoustic force described in Eq. (38) using  =

0.01  and A =  0.01. 
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Figure 18. Distribution of the 𝑥-component of the velocity for the flow obtained by streaming using 

the acoustic force described in Eq. (38) with  = 0.01 and 𝐴 = 0.1. 

 
Figure 19. Acoustic streaming produced by the acoustic force described in Eq. (38) using  =

0.01  and 𝐴 =  0.1. 

 

 

 

 


