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Abstract

The price of electricity on the European market is very volatile. This is due both to its mode of production by different
sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by
the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development
of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to
accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously
unused predictive features such as price histories of neighboring countries. We show that these features significantly
improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an
analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how

models make their prediction and to build user confidence in models.
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1. Introduction

The problem of Electricity Price Forecasting (EPF)
is becoming more and more challenging to solve. The
applications made possible by a price forecasting model
are crucial for achieving the energy transition. They allow
owners of renewable energy production means to make
profit on the market by anticipating price movements and
promote smart applications such as self-consumption [3] or
car batteries optimization [51].

At the same time, there are numerous factors that
need to be taken into account to understand electricity
prices. For example, energy transition policies increase the
proportion of renewable energy in total production [65]
and introduce new market regulations such as taxation
of carbon dioxide emissions. Moreover, cross countries
interconnections are multiplying and some markets such
as the EPEX SPOT! set prices for all European countries,
bringing the forecasting task to the scale of the continent.

Additionally, the pricing algorithms [60] used to balance
generation and consumption can lead to price spikes, both
negative and positive. These spikes can result in huge losses
for unwary business owners and are difficult to handle by
traditional forecasting models. Particularly, the current
period is marked by repeated lockdowns that cause severe
changes in the European market. The economic recovery
following the COVID pandemic [56, 73] also causes prices
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to reach up to five times the usual season price, with an
increased volatility, as shown in Figure 1.

Hourly fall Day-Ahead prices for several years

300

Price € /MWh
Y
S
<)

100

Vo i

week 44

week 40 week 42

Time

week 43

Figure 1: Hourly Day-Ahead prices of October for the years 2018 to
2021. The prices for this period in 2021 is displayed in red and show
abnormally high prices and increased volatility.

Meanwhile, Machine Learning (ML) models are increas-
ingly effective in solving difficult problems [39, 84] and can
represent complex situations [46, 77]. However, they are
sometimes hard to reproduce, if the described methodology
and parameters are not thoroughly reported. ML models
are also known to lack explainability, be difficult to inter-
pret and are often thought of as black box models. Data
analysts generally decide whether to use them or not based
on a single metric evaluated solely on one dataset.

Overall, the interest of researchers and business owners
in EPF is growing [41, 79]. Each EPF publication proposes
innovative and efficient methods, but the abundance of
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considered markets, forecasting tasks, time periods, models
and methodologies make it difficult to compare the litera-
ture [41]. Also, it can be tricky to reproduce the results of a
given article because details are often omitted and a simple
lack of seeds can prevent the reproducibility of stochastic
processes. Another limitation is the lack of benchmarks for
model comparison, which is a gap to be filled in regards to
state-of-the-art research papers for other ML applications
[6, 66]. Finally, the users of these models need explanations
to know on which phenomena the model is based to make
its predictions. This makes it possible to follow or not a
surprising prediction in a very volatile market like that of
electricity. We believe that explaining the output made
by any EPF model is very important as it would help to
understand what is actually captured by one model and
not by another. This also helps to know which features
are important in the prediction. Explainable artificial in-
telligence (xAl) is attracting widespread interest due to
the remarkable performance of blackbox models and their
need of explanations [28, 53, 12, 19]. Although xAI has
been used a lot in real applications [33], it has not yet meet
the EPF problem. This article aims to provide answers to
these needs. We detail below our contributions which we
hope will help EPF field of research to grow richer.

1.1. Contributions

Following the guidelines introduced in a recent publica-
tion [41], we apply a rigorous, transparent and reproducible
methodology for using ML models for EPF. We evaluate
our ML models over three different areas of Europe on
two separated test periods. We detail every step of our
methodology with care and provide readers with the scripts
we designed and used to make replicating our results effort-
less?. We show that the ML models are capable of correctly
forecasting recent electricity prices.

We also provide EPF users with information on how the
market works in addition to a reliable forecasting model.
This consists in using explainable Machine Learning meth-
ods to link ML models results to real business applications
by conducting a feature analysis based on Shap values [47].
Using these tools, we show the importance of using external
features such as Swiss and gas prices in the EPF problem.

1.2. Paper Structure

Section 2 presents related work on EPF. We state the
problem that interests us and conduct a brief literature
review on predictive methods used in EPF and introduce
explainable artificial intelligence (xAI) main methods. We
present the technical requirements on ML models, as well
as their evaluation in Section 3. We also give details about
Shap Values, the explainability approach used to anal-
yse blackbox ML models. We detail the specificity of our

2see repository https://wuw.dropbox.com/sh/2n7qje9dmhixh35/
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datasets in Section 4. Due to feature availability, we differ-
entiate the features used in the two time periods considered
in our experiments. Section 5 reports our results. We first
analyse the quality of the models using metrics assessing
the adequacy of the predictions with true values. Then,
we give to the readers the results of the explanations of
the predictions, by showing the importance of the features
for the model and their temporal changes in regards to
exogenous events that strongly influence the volatility of
the price of electricity. Finally, we conclude the paper and
give directions to future work in Section 6.

2. Electricity Price Forecasting

Electricity markets are subject to several constraints in-
duced by the inherent nature of this energy which requires
consumption and production to be permanently matched
on a continental scale. To tackle this problem, markets
use pricing algorithms. For European exchanges, the EU-
PHEMIA [60] algorithm maximizes social welfare by solving
a mixed-integer quadratic programming optimization prob-
lem. Social welfare is defined as the sum of consumer
surplus, supplier surplus and cross-border trade congestion
rents. EUPHEMIA ensures the highest price for producers,
the lowest price for suppliers and a constant energy balance
by setting Day-Ahead prices, i.e. 24-hour prices for the
next day. Fach market participant can submit orders until
midnight for the following day. EUPHEMIA calculates the
prices for each country and each hour so that they are
advantageous for everyone. In doing so, it also computes
cross-border flows. The Peak-Load period is defined by the
EPEX exchange as the period of the day between 8:00 a.m.
and 8:00 p.m., characterized by high demand. This period
is used by production plant owners to issue specific orders
for the entire period.

The day-ahead market forecasting problem consists of
predicting, before noon, the 24-hour hourly prices for the
next day. Due to the abundance of markets, business
applications, and real-world forecasting methods, the EPF
literature contains many innovative contributions to this
problem. Several markets such as the Australian [67] and
New York [50] markets are investigated, but the most
studied markets are the European markets. Among them,
the Spanish [17, 62, 52], the French [71], the German [72]
and the Dutch [31] markets are the most studied. Note that
some authors also evaluate the same models in multiple
markets [43, 42, 78, 29]. Others like [86, 43] focus on market
integration by including prices from neighboring areas in
their prediction model.

Traditionally, auto-regressive methods were used for
EPF [75, 13, 17, 18, 20, 80]. But, over the past decade,
the use of machine learning models for EPF has increased.
Many models have been studied, such as Support Vector
Machines (SVM) [67, 72, 13, 82], Random Forests (RF)
[50, 52], Artificial Neural Networks (ANN) [62, 59, 54, 37],
Recurrent Neural Networks (RNN) [4] or Convolutional
Neural Networks (CNN) [38]. The authors use these models
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to predict prices directly, but sometimes they use a more so-
phisticated prediction framework. For example, [85, 68, 40]
predict aggregate curves (output from EUPHEMIA) and re-
trieves prices by interpolation. In doing so, they model
the order books of market participants and mimic the
real pricing mechanism. In addition, all papers published
for the forecasting challenge Gefcom 2014 [7, 35, 26, 32]
produce probabilistic forecasts by performing quantile re-
gression and evaluate them using the pinball loss function.
Finally, [21] focuses on data augmentation and generates
its datasets using autoencoders. Readers can refer to the
surveys in [79, 57, 55] for a more comprehensive review
of auto-regression and machine learning methods used for
EPF. Additionally, [41] introduces several key steps to
guide EPF research. Since the authors share their datasets,
models, and methodology, we were convinced to follow the
proposed guidelines to some extent. As part of our work,
we therefore use the EPFTOOLBOX? which provides two
models — LEAR (auto-regressive) and DNN — that we use
for comparison purposes.

Unquestionably, machine learning models for EPF have
become more and more accurate. On the other hand, they
have become more opaque, functioning as black boxes,
which limits their benefit for stakeholders [44]. Thus, ex-
plainable artificial intelligence (xAl) is an important and
timely challenge in machine learning. As a consequence,
the research field of xAI has grown rapidly [28, 53, 12, 19].
In practice, the most widely used explanation methods are
SHAP [49] and LIME [64] which are model-agnostic. LIME
use local surrogate models to explain model output. SHAP
is based on the game theoretically optimal Shapley values
[69]. It explains the prediction of an instance by computing
the contribution of each feature to its associated prediction.
It has been showed that LIME is related to SHAP [49].
Surprisingly, xAI has not been considered for EPF yet.
This paper is the first attempt to combine both accurate
model and explainable decision for the EPF problem.

3. Machine Learning for EPF

Machine Learning (ML) is a branch of computer science
proposing forecasting models by implementing efficient
learning from data algorithms. This field has received a
lot of attention in the past decades due to the abundance
of available data and the growing computing power of
machines. In the field of forecasting, ML models have been
able to solve very complex problems in image processing
(39, 74, 30] but also in multivariate Time Series regression
[6, 66, 84, 8, 58, 34]. As we believe that the capabilities
of ML models have not yet been fully unraveled in the
field of EPF, we focus on these approaches. In particular
we consider four different models exposed below. We also
present the metrics and tests used to compare them and
the way we preprocess data. We also explain how we

3https://github.com/jeslago/epftoolbox

fix hyper-parameter values and present the recalibration
strategy used to adapt models to recent changes in the data.
Finally, we describe the SHAP method that we employ in
our analysis to assess the importance of features in the
prediction process.

3.1. Machine Learning Models

Support Vector Regressor. Support Vector Machines [36,
58] are a category of models with a good mathematical
background based on an optimization problem. With the
use of kernels [63, 14], they can be applied on complex data
structures and model non-linearity. Originally designed
to solve univariate forecasting problems, we adapt them
to the multivariate case in two ways: 1) The ChainSVR
method that uses the first forecast to predict the second
one, the second forecast to predict the third one, and so on;
2) The MultiSVR that uses one model per time series in Y,
S0 n, in total. We use the method SVR as implemented in
scikit-learn [61].

Random Forest Regressor. Random Forest Regressor mod-
els (RFR) are widely used ML models both in the field
of EPF [50, 52, 42] and in forecasting tasks in general
[6, 66]. They consist of a combination of a several Deci-
sion Tree Regressor (DTR) that are trained using different
subsets of the data. The Bagging [11] method used in this
paper outputs the average of their predictions. We use
scikit-learn’s implementation [61] of RFR.

Deep Neural Networks. The model capabilities and tremen-
dous range of application made Deep Neural Networks
(DNN) the center of interest of numerous researchers in
EPF [41, 42, 43, 54] but also in forecasting tasks in general
[81, 2, 15]. The DNNs we use have ¢ + 2 layers stacked se-
quentially. The number of neurons of the first and the last
layer are respectively n. and n,, the second dimensions of
X and Y respectively, the other layers having (ni,--- ,ny)
neurons. These hyper-parameters (¢,nq,--- ,ny) are set
with a grid search. The model is trained using a gradient
descent algorithm of the forecast errors back to the network
weights.

Convolutional Neural Network. Convolutional Neural Net-
works (CNN) are a variant of Deep Neural Networks which
became popular for their image processing capabilities
[45, 39, 74, 5]. They are now also used for multivariate
time series regression tasks [46, 83, 10, 84] and in particular,
for EPF [42, 38, 16]. The eponymous convolutional layers
combined with pooling layers are the particularity of CNNs.
By applying numerous filters on the data, convolutional lay-
ers extract complex patterns that are then generalized by
a pooling operation to provide complex feature representa-
tions of the input. We use the keras* implementation with
tensorflow [1] backend to implement our Neural Networks
models (DNNs and CNNs).

4https://keras.io
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In order to ensure the consistency of the results obtained
with those of [41] (DNN models) and to compare ML
models with auto-regressive ones (LEAR models), we also
reproduce their results for four LEAR models and four
DNN models. The LEAR models are denoted LEARss,
LEAR84, LEAR1092 and LEAR1456, in reference to their
respective calibration window size. The DNN models are
denoted DNN;, DNN5, DNN3, DNNy.

3.2. Ewvaluation metrics and test

Let Ydh be the price for a day d and an hour h of a given
country, and let }A/dh be the values predicted by a model.
The comparison of these values is used to evaluate and test
the quality of a model, but also to learn it, through the
loss function used to adjust the parameters of the model.

Metrics. The most commonly used metric to evaluate the
quality of a model in the field of EPF is the Mean Absolute
Error (MAE):
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It allows business owners to quickly estimate how they could
use a forecasting model to generate profit. However, since
electricity prices can range from -500 to 3000 €/MWh
in the European markets, it is useful to use a relative
error measure. While the Mean Absolute Percentage Error
(MAPE) is usually used for this purpose, we prefer employ
the Symmetric Mean Absolute Percentage Error (SMAPE).
Indeed, prices close to 0 that are incorrectly predicted lead
to a unnecessary high MAPE, which is not the case with
SMAPE values:
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We also consider a new metric called the Daily Average
Error (DAE). It consists in computing the MAE between
the average predicted price for a day and the real average
price. This metric is very usefull for trading-related activi-
ties, when one speculates on the average price for a given
day.

DAE(Y,Y) = Z
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Next, to enable cross-dataset comparison, we use the
Relative Mean Absolute Error. The idea is to compare the
MAE of a model with the MAE of a naive forecaster. As
naive forecaster, we use the following strategy:

on ] Ylyifdisaweek day
d,naive Ydh_7 otherwise
MAE(Y,Y
RMAE( Ynaw?) = ( : )

MAE(K Ynaive)

Diebold €& Mariano Test. We use the Diebold & Mariano
[24, 23] test to perform more robust model comparison.
Instead of averaging a loss g across the entire dataset, it
computes the loss difference d between two model predic-
tions Y7 and Y5. A one sided z-test is then performed to
asses if the second model forecasts are significantly better
than the first ones :

d(Ya YhYQ) = g(Y - Yl) - (Y - }}2)
HO : E(d(y Yl,YQ)) >0
Hy : B(d(Y,Y1,Y2)) <0

If the obtained p-value is lower than a fixed threshold of
0.05, then Hj is rejected and we can conclude that the first
model is better than the second one.

We use the absolute loss g(Y,Y) = MAE(Y,Y) in our
experiments as it better reflects business applications.

Loss. We use the LogCosH loss function for training Neural
Networks models (DNNs and CNNs). It combines the
benefits of both MAE and Mean Squared Error by being

approximately equivalent to (ng) when Y — Y is small,
and to |[Y — Y| — log(2) when differences are large. Due to
the presence of spikes in electricity prices, it is useful not
to put too much weight on outliers:

erY 4 erY

LogCosH(Y,Y) = log( 5

)

3.3. Data preprocessing

Data scaling is critical during ML model training. Most
algorithms require that both the input (X) and output (V")
data are pre-processed. To this aim, we design simple data
pipelines to process the features and target variables of
our datasets. We distinguish the scaler used to process the
input data X from the transformer used for processing the
predicted values Y. We consider these two functions as
hyper-parameters with four different possibilities for each
of them: (1) the standard scaler that standardizes data so
it has a 0 mean and 1 variance, (2) the median scaler, a
outlier-robust version of standard scaler using the median
and median average deviation, and (3) their combination



with the arcsinh function [76] or not:

SS(X) = 2t 1)

2
0%

X — mediang
MSX) = ——3rapz 2)

aresinh(X, f) =log (f(X) +VIX)? 1),  (3)
with f either SS or MS.

3.4. Hyper-parameters Search

Despite their high modeling power, ML models suffer
from a critical issue that is hyper-parameter optimization.
Hyper-parameters must be configured before training the
model on the data. They need to be tuned for optimal
results. This is done by testing numerous combinations of
hyper-parameters and selecting the optimal one. As this
part is very time consuming, we use a Randomized Grid
Search [9] that samples 4000 hyper-parameter combinations
for each models in a pre-defined search space. Details
of the search spaces for each model are available on our
repository®.

3.5. Recalibration

Another drawback of ML models is their implicit as-
sumption that the future will be similar to the past. How-
ever, as seen in Figure 1, electricity prices can be very
volatile and sudden unpredictable changes can drasticly
modify the prices, such as the Covid lockdown [56] or the
European energy gaz crisis of fall 2021 [70]. Those changes
are critical, for example, [43]’s model gets confusing results
while forecasting Belgian prices due a sudden change in the
generation patterns. To leverage such problems, [50] uses
an online Random Forest method to keep the forecasting
model up to date, [21] generate more current data using
autoencoders and [41] uses model recalibration. Recali-
bration consists in retraining the model with most recent
data, that is to say using Xi,---,X;_1 and Y7,--- ,Y; 1
to train the model before forecasting a new sample X,
(X1,Y1), -, (X;—1,Y;_1) being in the test set. However,
computational costs are induced by this method as the
models have to be re-trained from scratch for each new
sample to predict. Each evaluation step requires as many
model trainings as there are samples in the test set. The
search of optimal hyper-parameters, that is based on the
evaluation of numerous combinations, becomes too costly.
We decided to evaluate the performance of a combination
on the basic forecasts, without recalibration.

3.6. Shapley and SHAP Values

While the features all together contribute to the pre-
diction process, it is difficult to measure the importance
of each of them in the decision. Indeed, there are many

5see repository https://www.dropbox.com/sh/2n7qje9dmhixh35/

correlations between the variables, and properly measuring
the impact of each variable requires taking the interactions
into account. Shapley values were defined within the frame-
work of game theory in order to fairly distribute a gain
among several players in a cooperative game. Fair means
that the contribution of the players is taken into account
in obtaining the gain. This means that a player is not only
paid for what he is able to gain when he is alone, but also
for his contribution to the group when interacting with
other players. To calculate the Shapley value associated
with the feature i, ¢;, it is necessary to calculate for each
coalition Z in which i does not appear, the difference in
gain f(Z U {i}) — f(Z). This makes it possible to compare
the gain obtained from the coalition with and without 7, in
order to measure its impact when it collaborates with the
set Z of features. If this difference is positive, it means that
feature ¢ contributes positively to this coalition. Conversely,
if the difference is negative, it means that ¢ penalizes the
group. Finally, if the difference is zero, this indicates that
1 does not contribute anything to this group. The gain to
be distributed is here the difference between the forecast
and the average of the forecasts.

To specify more formally Shapley values, it is necessary
to define a mapping h,(Z) that maps the input vector
to the same vector where features that are not in Z are
missing. We also define f,(Z) = E[f(x) | xz] the expected
value of f conditioned on a subset Z of the input features.
The Shapley values are a weighted average of all possible
differences between the coalitions of features including and
not including ¢:

pi(x)= >

ZCP\{i}

[ZIME = 12] = 1)
]!

(f2(Z U{i}) = f2(2))

where F' is the set of all input features.

The calculation of a Shapley coefficient poses two diffi-
culties: estimating the conditional expectations and dealing
with the combinatorial explosion of the number of coalitions
to go through, when the number n. of features increases.
The number of coalitions to be covered is exponential, in
2", [49] introduces the concept of Shapley kernel to ap-
proximate Shapley values and makes it possible the use of
this approach on real-world dataset such as EPF ones. We
use python’s SHAPS package to compute the SHAP values
of our models, using a total of 2500 subsets per forecasts.

The method SHAP (SHapley Additive exPlanations)
uses the Shapley values to compute an additive explanatory
model g that is a linear combination of Shapley values:

g(a') = ¢o + > _ i}
i=1

with ¢ the average output of the model, ¢; the explained
effect of feature ¢ and z’ a binary encoding of instance x.
This explanatory model is constrained to be roughly equal
to f in the vicinity of z.

AADffdnjmJXRQEdvxbcBECgma?dl=0

Shttps://shap.readthedocs.io/en/latest/index.html
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4. Datasets

Many multivariate time series forecasting research ar-
ticles [6, 66] recommend to evaluate models on several
datasets as the behavior of a same algorithm can be very dif-
ferent depending on unknown characteristics of the dataset.
The relative performances of several models can even vary
and considering a large number of datasets makes it possible
to have a more robust evaluation of the model performances.
To assess the specific qualities of a model, it is therefore
relevant to consider datasets from different countries. In-
deed, the energy mixes are very different from one country
to another and have a strong influence on the dynamics of
the prices of electricity.

To build predictive models of electricity prices, we ex-
tend the classically considered datasets [41], called hereafter
SOTA, by adding new attributes as predictive features and
considering more recent data. These datasets and their
specificity are presented below.

4.1. SOTA datasets

We consider three datasets from [41]. These datasets
contain electricity prices for 6 years for three geographical
areas: France (FR), Germany (DE), and Belgium (BE).
Each dataset includes next day prices and has two addi-
tional exogenous features given in Table 1.

[ Dataset || Exogenous input 1 | Exogenous input 2 |

FR Consumption forecast Production forecast

BE S::tnch consumption fore- French production forecast

DE Amprion consumption | Amprion, TenneT, 50
forecast Hertz renewable forecasts

Table 1: Exogenous inputs of EPFTOOLBOX dataset. Each dataset is
composed of the Day-Ahead prices for the specified country and 2
exogenous features.

Electricity price datasets are a multivariate time series
made of daily data. Those datasets can be reconfigured into
a (X,Y) couple suitable to learn machine learning models.
The predictive data is represented by a two dimensional
matrix X € R™*"e whose rows represent days and columns
are n. predictive time-dependent values. The values to be
predicted correspond to another matrix Y € R™4*"e  whose
rows also stand for the days and columns are the n, day-
ahead prices to be predicted: Y; = (Yd1+1, e ’Ydﬁ)l)' To
model the time series aspect of the features, X includes
the prices of the current day, those of the day before, two
days before and the previous week (1, 2, 3 and 7 days
lag). Exogenous features are included for the day, the day
before and the previous week. In addition to these 240
characteristics, the day of the week is also encoded as an
integer and added to the matrix X. Indeed, electricity
prices are non-stationary time series and exhibit seasonal
trends captured by this additional feature. All features
(prices and exogenous) are provided with hourly granularity.

Thus, the predictive matrix X is as follows:

Xa=Ya-1,Y4-2,Yq-3,Yq_7,Elq, Elq_1,El4 7,
E2d7 E‘2d,17 E2d,7, DayOfWeek) with Ne = 241.

In order to forecast 24-hour prices for the next day, the
datasets are reshaped so that for one day d, Y; contains
all 24 prices for the next day: Yg = (Y7, ,,...,Y7}).

4.2. Enriched datasets

For the enriched datasets considered in this study, we
focus on three European countries: France, Germany and
Belgium. These countries are at the same time geographi-
cally close, but have features that make them unique. For
example, the French generation fleet is 75% composed of
nuclear power plants [65] which are to some extent con-
trollable, unlike wind turbines which constitute 45% of the
German generation system. As a result, prices in Germany
tend to be more volatile and sometimes reach negative
values. In addition, French consumption is mainly heat-
sensitive due to the massive use of electric heaters leading
to higher prices in the winter period. Belgium, for its
part, has a much lower level of consumption and can be
used to transport energy from France to Germany or the
Netherlands.

From these data we build four datasets, three (FR, DE,
BE) comprising the data of each country taken individually,
and a fourth (Multi-Output) merging together the data of
the three countries. With this dataset, we seek to forecast
the prices of the three countries at the same time. Due to
the pricing algorithm, all European prices are set at the
same time and we want to model this phenomenon.

Electricity day-ahead price is fixed by EUPHEMIA through
the coupling of different markets where energy transactions
can involve sellers and buyers from different countries, only
limited by the constraints of the electricity network. All
bilateral interconnections make it possible to transport less
expensive production assets from one country to another
with an important demand. Thus, the price within a coun-
try is highly dependent on exogenous factors in surrounding
countries. This is why we have included production and
consumption forecasts from neighboring countries in our
datasets. Similarly, we used Dutch, Spanish and Swiss
prices. Swiss prices are attractive as they are available
every day at 11.15 am and can be used in a forecasting
model before the European market closes at noon.

Another aspect that can strongly influence the predic-
tion are the dates, especially the days of the week that
involve differentiated human activity and therefore impact
energy consumption and production. But, as shown by
[25], the seasonality of the electricity market is not only
dependent on the day of the week. We therefore propose to
incorporate various date dummy variables into our enriched
dataset. We decided to include weekday, week number, day
of month and month number as predictive functions. To
better integrate these cyclic data into our ML models, we



Features FR DE BE

L | NS L | D
French Prices Target | Target v v v v
German Prices v v Target | Target v v
Belgian Prices v v v v Target | Target
Dutch Prices v v v v v v
Spanish Prices v v
Swiss Prices v v v v
French Consumption Forecast v v v v v v
German Consumption Forecast v v v v v v
Belgian Consumption Forecast v v v
French Production Forecast v v v v v v
German Renewable Energy Forecast v v v v v v
Belgian Renewable Energy Forecast v v v
French Gas Prices v v v
Date Dummies v v v v v v

Table 2: Composition of the datasets for each country and the two time periods.

apply a circular encoding transformation f of a cyclic fea-
ture that encodes the original feature of the domain value
C (with cardinality «) into two numeric values:

f:C—R?

£ (sin(%;Tx),cos(%:Tx))

Finally, we also integrate gas prices. Indeed, to max-
imize social welfare, the EUPHEMIA algorithm favors the
power plant with the lowest marginal cost. Accordingly,
there is an order of merit for the technology of production
plants. Gas-fired power plants are one of the cheapest ways
of generating electricity among other coal or oil-fired ther-
mal power plants. However, its marginal cost is a function
of gas prices. Therefore, depending on the country’s energy
mix, gas prices are an important feature of electricity prices.
We therefore decided to include the EGSI gas index” in our
dataset. As this index is available every day at 6pm, after
the market closure, it has to be included for predicting
prices 2 days after.

As previously, to model the time series aspect of these
features, X contains the country’s prices for the previous
day, those of two days before, three days before and the
previous week (1, 2, 3 and 7 days lag). Other features (see
table 2) are included for the day before, the previous week,
and if possible the current day. Indeed, production and
consumption forecasts as well as Swiss prices are available
for the day to be forecast before noon. Then, with the
exception of gas prices and date dummies, all features are
included for the 24 hours of the day. The datasets therefore
have n, = 24 x nlf xnyg+8+1 columns, with n; the number
of features as described in Table 2 and nlf the number of
shift days for a given feature f.

4.3. Train/Test splits
In [41], the authors provide open-access benchmark
datasets for the 6-year period between 2011 and 2016. A

"https:/ /www.boursorama.com/cours/1rPGTT/

good practice in the field of machine learning is to evaluate
models over the same time period to allow comparison of
results. We therefore start our analysis by evaluating our
models on the same data (see dataset description T3 in
Table 3).

It is also important to extend our study to the current
period, whose peculiarities are a source of evaluation of the
robustness and adaptability of the models in a context of
high variability. Therefore, we consider a second dataset
with 3 years from 2016 to 2019 for training and two test
years from 2020 to 2021 (see dataset description T5 in Ta-
ble 3). Recent electricity prices present a more difficult
challenge for prediction because the lock down related to
Covid-19 has caused massive changes in the European mar-
ket. Furthermore, 2021 is marked by a limited energy crisis.
In addition, since 2015, the ENTSOE transparency plat-
form® has brought together and published data from almost
all European TSOs in free access. This results in much
more available data. The features of our datasets therefore
vary depending on the period considered as described in
Table 2.

‘ Period ‘ Train start ‘ Validation start ‘ Test start ‘ Test end ‘

T 2011-01-16 2014-01-07 2015-01-04 | 2016-12-31
T 2016-01-01 2019-01-01 2020-01-01 | 2021-12-31

Table 3: Time period of data used for training (learning of model
parameters), validation (determining hyperparameter values), and
testing (evaluating models) for EPFTOOLBOX datasets. As we use the
first seven days of the dataset as the input features, the train dataset
starts seven days after the first data sample.

5. Evaluation of the models on the different datasets

The objective of this section is to evaluate the different
models of machine learning. First, we measure the impact
of considering the additional features on the accuracy of

8https://transparency.entsoe.eu
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predictions. We also evaluate the interest of simultaneously
predicting the price of electricity in several countries. Then,
we propose to study the models from an XAI point of view,
to identify on which variables the predictions are based.

5.1. How well do the models performs?

We present the performance measures of the different
models in Table 4. We both compare the models to each
other, but also evaluate the impact of adding features on
the predictions. To do a fair comparison with [41], we
consider the T; time period that was used in this paper.
For a better interpretability of the multi-country models,
we display the metrics for each of the forecasts of the three
countries.

First, we can observe that using additional features to
predict prices always increases performance. Each model
gets better metric values with the use of the new features
with up to 15% gain. We support this finding by high-
lighting the p-values of Diebold & Mariano tests between
models trained on SOTA datasets and their counterparts
trained on enriched datasets in Table 5 (A). We can observe
that this difference is statistically significant for the vast
majority of countries and models (values in bold). These
tables also reveal that Belgian prices are more difficult
to predict than other country prices in the single-country
framework. The RMAE in Table 4 indicates that the best
model for that country only achieves a fraction of 0.7 of
the error of a naive forecaster. The other datasets have an
RMAE lower than 0.6, or even 0.45 on German dataset.
We believe this is due to the fact that Belgian consumption
and production forecasts are not available for this period.
This is discussed in more detail in Section 5.2. Another
conclusion from these experiments is that Random Forest
models do not predict prices accurately. Their metric val-
ues are always significantly higher than those of the other
models on all datasets. The enriched datasets still increase
performances but they do not necessarily outperform other
models based on SOTA datasets. It also appears that CNN
models are not state-of-the-art forecasting models for EPF.
Even though they obtain reasonable metric values on the
enriched datasets, they never significantly outperform the
DNN or SVR models and this for all datasets. We believe
that the data provided to CNN models is not suitable for
convolutions. CNN models are tailored for exctracting
meaningfull patterns among raw features, such as basic
geometric shapes on an image. We feed it with data such
as production or generation forecasts which is a high-level
representation of meteorological data. Moreover, we re-
shape our data as 32 x 24, which is a very small amount
of data compared to SOTA CNN models. For example,
the AlexNet model introduced in [39] works on images of
224 x 224 pixels. Finally, still considering Table 4 and the
p-values in Table 5 (B) and (C), we see that the interest of
jointly predicting the prices of several countries is mixed.
The multi-country forecast model reduces forecast quality
by up to 5%. This reduction is significant on 4 of the 5
models in France and Germany (column C). However, it

significantly increases the performance of 3 out of 5 models
in Belgium (column B). Merging the three datasets did
not add any crucial and previously unknown information
to the French and German datasets. On the other hand,
it allows the model to use Swiss prices to predict Belgian
prices. We believe this explains the significant increase in
Belgium’s performance.

We now study the robustness of these observations by
considering the time period T>. We present the metric
values obtained for this period in Table 6. We can make
the following observations. First, the best absolute metrics
(MAE & DAE) increased by almost a factor of two over the
T, period. This is not surprising as price levels also shift
from 38€44/MWh on average in 2015 to 109€11/MWh in
2021 in France. However, the RMAE decreased from 0.55
to 0.46 for the French MultiSVR, from 0.44 to 0.42 for the
German DNN and from 0.67 to 0.57 for the Belgian Mul-
tiSVR, which shows that the models are performing better
against the baseline than for the previous period. Our ML
models successfully integrated sudden changes in electric-
ity markets. Second, it appears that the Belgian dataset
experiences the most significant performance increase. The
availability of Belgian consumption and production fore-
casts made this data set easier to predict than for the
previous period. However, it is still the most difficult coun-
try to predict because we do not use Swiss prices, as this
country does not border Belgium. Third, the differences
in performance between the models are greater over this
period. We clearly identify that the SVR models are better
on the French and Belgian datasets while the DNN is the
best model on the German dataset. The DM test pvalues in
Figure 2 confirm that this difference is significant. On this
figure, colored squares at coordinates (7, j) indicates that
the forecasts of model i are significantly more accurate than
forecasts of model j. We clearly identify green columns for
the SVR models in France and Belgium, indicating that
the MultiSVR and ChainSVR significantly outperform the
other models. For these countries, the DNN model outper-
forms the RF and CNN models. Finally, the CNN model
is significantly less efficient than all the other models. For
Germany, only the DNN significantly outperforms all other
models, while the RF model is significantly outperformed
by all other models.

5.2. Forecast Explanations

We have seen that the performance of the models is
generally of good quality. Some of these models even have
equivalent performance and it is difficult to decide between
them. Moreover, to increase the confidence in the predic-
tions given by models, it is necessary to be able to explain
them and to identify the most important characteristics in
the decision-making process. This allows us to better appre-
ciate their quality and better understand the phenomena
involved in price prediction.

We have seen that adding features dramatically im-
proves model performance for the vast majority of datasets
and models. A legitimate question is then to ask which



SOTA Datasets

Enriched Datasets

Multi-output Models

LEAR I DNN [ CNN [DNN [ RF ] SVR CNN | DNN RF SVR CNN | DNN | RF SVR

‘ ‘ Metric ‘ 56 ‘ 84 ‘ 1092 ‘ 1456 ‘ 1 2 3 4 ‘ ‘ Chain ‘ Multi Chain | Multi Chain | Multi
smape || 13.32 | 13.41 | 13.57 | 14.59 | 12.00 | 11.65 | 11.75 | 11.51 | 12.05 | 11.57 | 13.42 | 11.23 | 11.26 || 10.80 | 11.12 | 11.81 | 10.43 | 10.56 | 11.07 | 10.95 | 12.44 | 10.66 | 10.67

FR mae 4.63 | 4.58 | 4.35 | 448 | 434 | 415 | 417 | 412 | 427 | 415 | 4.73 4.03 4.06 3.79 3.89 411 | 3.65 3.67 | 3.92 | 385 | 4.30 3.71 3.71
dae 3.37 | 3.34 | 3.25 | 3.38 | 3.35 | 3.13 | 3.09 | 3.09 | 3.14 | 3.05 | 3.46 3.02 3.02 2.67 2.71 2.90 2.57 2.56 | 2.81 | 2.78 | 2.99 2.61 2.57

rmae 0.69 | 0.68 | 0.65 | 0.67 | 0.65 | 0.62 | 0.62 | 0.61 | 0.64 | 0.62 | 0.71 0.60 0.61 0.57 0.58 0.61 | 0.54 0.55 | 0.59 | 0.57 | 0.64 0.55 0.55
smape || 15.25 | 15.16 | 17.31 | 17.94 | 14.27 | 14.49 | 14.25 | 14.20 | 16.26 | 14.47 | 17.43 | 14.48 | 14.53 || 14.24 | 13.56 | 15.83 | 13.84 | 14.40 | 14.42 | 13.96 | 16.45 | 14.22 | 14.29

DE | mae 3.64 | 3.59 | 3.61 3.72 | 3.27 | 3.34 | 3.22 | 3.23 | 3.63 | 327 | 4.11 3.27 3.28 3.19 | 3.12 | 3.72 3.15 3.25 329 | 324 | 411 3.26 3.28
dae 2.54 2.53 2.65 2.74 2.32 2.46 2.29 2.33 2.58 2.27 2.79 2.38 2.38 2.16 2.12 2.37 2.22 2.31 2.26 2.22 2.71 2.33 2.34

rmae 0.50 | 0.49 | 0.50 | 0.51 | 045 | 046 | 044 | 044 | 0.50 | 0.45 | 0.57 0.45 0.45 044 | 043 | 0.51 | 0.43 045 | 045 | 045 | 0.57 0.45 0.45
smape || 17.02 | 17.32 | 17.20 | 17.75 | 15.77 | 14.79 | 15.77 | 15.17 | 15.20 | 14.59 | 15.37 | 14.50 | 14.46 14.12 | 14.82 | 15.22 | 14.35 | 14.28 13.8 | 13.60 | 15.50 | 13.50 | 13.47

BE | mae 728 | 7.32 | 6.68 | 6.73 | 6.84 | 6.37 | 6.76 | 6.50 | 6.43 | 6.25 | 6.55 6.41 6.25 6.14 6.33 6.50 6.11 6.14 | 6.01 | 587 | 6.66 | 5.88 5.90
dae 518 | 520 | 4.84 | 491 | 5.15 | 4.67 | 5.00 | 475 | 4.62 | 4.50 | 4.79 4.77 4.62 4.51 4.69 4.85 4.58 454 | 4.28 | 420 | 498 | 4.35 4.29

rmae 082 | 0.83 | 0.76 | 0.76 | 0.78 | 0.72 | 0.77 | 0.74 | 0.73 | 0.71 | 0.74 0.73 0.71 0.70 0.72 0.74 0.69 0.70 | 0.68 | 0.67 | 0.75 | 0.67 | 0.67

Table 4: Performance metrics over the period T7. The multi-output models’ metrics are reported country by country.

Best performance

metrics are always obtained on enriched datasets and for Belgium on the multi-output models.

A B C
Country Model H, : H, H :
- MSOTA > Menriched | Menriched > Mmulti | Mmulti > Menriched
CNN 0
DNN 0 0.176 0.824
FR RF 0 1 0
ChainSVR 0 0.989 0.011
MultiSVR 0 0.975 0.025
CNN 0 1 0
DNN 0.001 0.999 0.001
DE RF 0 1 0
ChainSVR 0.003 1 0
MultiSVR 0.219 0.949 0.501
CNN 0 1 0
DNN 0.919 0 1
BE RF 0.117 0.845 0.155
ChainSVR 0.998 0 1
MultiSVR 0.991 0 1

Table 5: P-values of the Diebold & Mariano tests for the T} period.
(A) the test compares models trained on SOTA datasets with the
same trained on enriched datasets. The null hypothesis states the
enriched dataset has lower metric values than SOTA dataset models.
With a threshold a = 5%, models in bold are significantly better
when trained on the enriched datasets. (B) compares the single
country forecasting models with the multi-country ones. The null
hypothesis states the multi-country forecasting models are better
than single-country ones on enriched datasets (values in bold). (C)
The null hypothesis states the single-country forecasting models are
better than multi-country ones on enriched datasets (values in bold).

features contribute the most to the prediction? Different
techniques exist to explain the decision process of a model
[64, 27]. In the following, we consider the SHAP value
approach [48], a method that assigns each feature a value
that reflects its importance in the prediction process. ®%°
designates a SHAP value and denote the contribution of
a column c¢ to the output o on day d. Note that a column
¢ = (f,1, h) refers to the hour h of a feature f with [ days
lag. We also divide the contribution of each column ¢ so
that e, 8%

We first focus on explainig the performances gaps be-
tween models. Results for period T5 on the German dataset
are presented on Figures 3, 4, 5. Each subplot corresponds
to a feature f. On the x-axis are all possible lags in hours
for this feature, while the outputs are shown on the y-axis.
For a feature f, we display (i)?‘,l,h at coordinates ((I, h), 0),

the average SHAP values over all days d n—ld > q)?;) h We

also report the average contribution for each feature ®¢ as

Enriched Datasets

CNN | DNN RF SVR
| Country | Metric | Chain [ Multi
smape || 19.75 | 15.97 | 17.33 | 14.23 | 14.23
FR mae 10.40 | 7.96 9.41 6.86 6.61
’ dae 7.65 5.70 7.06 5.10 4.74
rmae 0.73 0.56 0.66 0.48 0.46
smape || 20.36 | 18.79 | 22.35 | 18.80 | 19.45
DE mae 8.66 7.66 | 10.77 | 8.44 8.85
dae 6.53 5.13 .77 6.25 6.62
rmae 0.47 0.42 0.58 0.46 0.48
smape || 24.85 | 21.65 | 21.60 | 18.93 | 19.17
BE mae 14.18 | 11.86 | 12.30 | 9.35 9.51
dae 10.09 | 9.37 9.68 6.67 6.78
rmae 0.88 0.73 0.76 0.58 0.59

Table 6: Performance metrics over period T5.

a percentage of the total contribution in Table 7:
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The average contribution for each day lag ®; is shown in
Table 8:
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Lastly, we study the evolution of feature contribution along
time. Particularly, we study the effects of the three Covid
lockdowns in France on the daily mean unit contribution
that we defined as

ny,Mh No
5d_ 1 1 d,o
E Lh
— fil,
PRy T h=1""° o=1

Figure 6 displays these measures.

Figure 3 presents the feature contribution of the Ran-
dom Forest model for the German dataset. We can observe
that most of the feature contributions are close to 0 or are
used uniformly to predict all hourly prices over 24, forming
a vertical line of red squares (@ $.1n ishighVo=1:n,). We
relate this observation to the way RF models are trained:
the Multi-Ouptut Decision Tree algorithm chooses a divi-

sion that satisfies the split criterion for all target variables.
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Featurcs
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FR price | DE price | BE price | NL price | 1S price | CH price Foreign

Features

CNN
DNN
RF
SVR Chain
SVR Multi

711
7.10
1.33
4.10
4.10

6.65
5.13
1.00
9.81
9.06

7.59
4.28
1.58
2.86
2.68

5.13
5.15
1.33
4.23
4.06

5.45
5.61
113
4.18

4.55

FR

22.18
7.55
2.19
6.22
6.90

19.38
15.49
15.49
17.46
17.16

5.09
5.60
1.21
6.16

5.69

3.45
3.82
2.30
4.47
4.36

4.59
4.78
1.03
6.90
6.16

3.37
5.63
1.06
5.62

5.65

8.13
28.39
70.09
26.56
27.98

33.14
27.71
17.82
31.37
30.32

64.97
70.80
81.92
67.21
68.03

1.89
1.49
0.26
1.42
1.65

CNN
DNN
RF
SVR Chain
SVR Multi

4.39
4.11
0.91
3.15
2.69

711
4.98
0.87
5.09
517

6.44
5.08
1.85
3.92
4.01

18.13
18.10
11.17
13.83
15.82

6.03
4.78
2.54
4.70
3.74

DE

6.23
6.89
177
6.20
6.10

5.06
3.88
3.53
4.87
4.12

22.64
20.95
32.84
25.13
25.33

3.90
3.67
1.44
5.44
4.57

8.24
9.27
2.76
10.05
10.68

47.21
44.13
45.86
42.87
45.16

2.37
1.63
0.35
1.09
1.10

CNN
DNN
RF
SVR Chain
SVR Multi

3.82
707
2.14
7.79
7.66

4.84
6.55
3.35
4.12
4.08

5.55
6.88
2.75
6.20

5.76

6.48
7.82
2.66
7.05
7.00

5.90

7.07
11.70
547

5.62

BE

23.46
11.37
4.94

10.04
10.43

10.93
10.96
33.21
16.22
15.72

7.83
8.82
2.01
6.79
6.56

20.35
20.00
30.47
22.80
23.55

8.31
10.78
5.44
10.07
10.33

19.71
38.44
47.11
38.31
39.59

2.53
1.99
1.33
3.46
3.30

Table 7: Summary of average contributions by feature category over time period T5. The contributions are summed for all targets, all times
and all offsets for each category. The last two columns display the weight of the characteristics of foreign countries in the total contribution.

DM test results for T,
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Figure 2: P-values of the Diebold & Mariano tests computed on the
recalibrated forecasts on period T>. Colored squares in (¢, j) indicates
that the forecasts of model ¢ are significantly more accurate than
forecasts of model j. Green columns indicate that the corresponding
models are significantly better than every other. Black lines indicate
that the model on the y-axis’ forecasts are significantly worse than
every other.

Therefore, at least on the higher nodes, the same char-
acteristics are used to determine all the target features
and their contributions is thus high. Moreover, we see in
Table 7 that the RF models do not use all the information
of the different features with the same importance: most of
the contributions are made by the Swiss prices and by the
country-specific prices (for French and German datasets).
Finally, from Table 8, we observe that they barely use the
feature with a two, three or seven day lag. We believe
that these three facts explain why RF models perform
significantly worse than any other model on every data set.

MultiSVR contributions, shown in Figure 4, display
diagonals of red squares that occur when (i)(},l,h is high
Vo = h. This means that a column ¢ = (f,1, h) contributes
to target variable o only if o = h. This is most visible
for the German generation forecast for the day to predict.
Indeed, the generation forecast in Germany is a volatile
feature (half of it comes from wind generation) that market
players usually take into account for making their order
books and helps estimating the prices. Patterns are hard
to identify in the foreign features with lag days such as
French consumption or generation forecasts, even though
the contributions for these features are not null. We can
observe partial diagonals in German, Dutch or Swiss price
features. Due to market coupling, prices at a given hour
from neighboring countries are sometimes identical, hence
they constitute an important feature for prediction. Lastly,
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\ | Model | D [ D-1 [D2]D-3] D-7 |
CNN  [20.27 [ 37.59 | 4.05 [ 4.21 | 33.88

DNN | 46.71 | 29.83 | 241 | 2.32 | 18.73

FR RF 73.81 | 21.05 | 0.30 | 0.34 | 4.49
ChainSVR | 42.34 | 31.42 | 2.72 | 2.63 | 20.89
MultiSVR | 44.87 | 30.74 | 2.85 | 2.12 | 19.42
CNN | 38.65 | 33.48 | 3.89 [ 3.06 | 20.93

DNN | 43.53 | 30.01 | 3.50 | 2.92 | 20.04

DE RF 54.12 | 40.13 | 0.49 | 0.39 | 4.87
ChainSVR | 36.28 | 37.52 | 2.92 | 2.92 | 20.36
MultiSVR, | 38.62 | 37.12 | 2.55 | 2.48 | 19.24
CNN 19.89 [ 40.91 | 421 | 5.18 | 29.80

DNN | 2839 | 39.72 | 3.99 | 3.89 | 24.01

BE RF 21.55 | 64.20 | 1.25 | 1.31 | 11.69
ChainSVR | 29.55 | 43.65 | 3.90 | 3.27 | 19.63
MultiSVR, | 29.61 | 43.72 | 3.93 | 3.30 | 19.44

Table 8: Summary of average contributions per lag across all datasets
for the first period T>. Contributions are summed for all targets, all
times and features for each lag.

we observe strong contributions from evening prices with a
1-day lag, such as German, French and Dutch prices. The
previous evening’s prices are closest in time to the prices
we aim to predict and are therefore an interesting feature
well captured by the model.

The DNN model contributions in Figure 5 display cen-
tered group of red squares: high (i)?,l,h for h =8 am to 8
pm and target variables o = 8 am to 8 pm. For instance,
the German consumption forecasts from 8 am to 8 pm
highly contributes to the German prices forecasts from 8
am to 8 pm. Peak-load specific orders can be issued by
market players during those hours, and this is most used
by power plant owners to allow them to either turn their
plant on or shutting it down during those 12 hour. We also
identify diagonal patterns for several features such as the
Generation forecasts or German and Dutch prices. The
patterns observed on this model give a finer representation
of its use of input features, and attest of its capacity to
integrate complex phenomenons. It also helps explaining
the performance gap between all models. Similar figures
for the CNN, ChainSVR and for other countries can be
found in our repository.

We observe from Table 7 that both SVR and DNN
models use foreign features for more than half of their
total contribution (right-hand side columns). German re-
newable forecasts account for almost one fifth of the total
contribution for predicting the German prices. This is the
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Figure 3: Average feature contribution of the RF model for the German dataset. Each subplot displays the contributions of a single feature on
all target variables. The target variables are on the y-axis while the lag days and hours are represented on the x-axis. A red square on subplot
f at the coordinates ((I,h),0) means that the contribution of feature f with I lag days at hour h is high on average for the output o. We
observe numerous contributions close to 0, meaning that some features are omitted.

highest contribution after Swiss and German prices and it
is almost twice the contribution of the French generation
forecast for predicting French prices (or Belgian generation
forecast for predicting the Belgian prices) that reach 10%
at maximum. We explain this observation by the difference
in energy mix between these countries. Nuclear electric-
ity is produced according to the pricing algorithm, while
renewable energies are generated independently and deter-
mine market prices. As a result, models have to put more
weigth to those features. We also observe that the French
consumption forecast contributes to predict French prices
more than the German consumption forecast for German
prices (and Belgian consumption forecast for the Belgian
prices). It reflects the thermosensibility of the French con-
sumption, making it more volatile and more determinant
for setting the prices. Our studied models consider that
this feature is more decisive in setting prices and gives it
more weight. In addition, it is clear form Table 7 that
Swiss prices accounts for an important part of the feature
contribution for all datasets that contain them. They are
not part of the EUPHEMIA algorithm and can therefore be
used by market participants to create their order books.
Owners of power plants can use these prices to plan their
production. Thanks to cross-border energy flows, market
players can also exchange energy from and to this country
using its price as a reference. Swiss prices thus constitute
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a good overview of the price level that will be reached by
its neighboring countries. Finally, from Table 8, we can
conclude that features with two or three day lag contribute
very little to the decision. They never contribute more
than 5% of the total contribution. However, features with
one or seven days lag are an important part of the model
decision process. Different seasonalities can be observed in
electricity prices. Among them, the weekly seasonality is
one of the most important: due to weekends, the prices of
the week before are generally more similar than the prices
of the previous 2 or 3 days. In addition, prices are fixed
daily by the EUPHEMIA algorithm, that uses as input the
order books specific to the corresponding day. Thus, the
data of the previous days, although similar to the current
data, are not decisive in settling the prices. Contribution
weights assigned to features with two and three day lags
confirm that our models are also mostly based on current
data.

Lastly, we focus on the daily average unit contribution
of the features and their evolution along time period T%.
Figure 6 displays these values for the best performing model
for the French country: the MultiSVR. Grey rectangles
delimit the periods of confinement, and we have displayed
the SMAPE model in red. First, we observe the evolution
of SMAPE during the three lockdowns. The model hardly
adapts to the first lockdown (March 17, 2020 - May 11,
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2020) and the highest error is reached in the middle of it.
The second lockdown (November 2020) shows no significant
increase in errors overall. The third confinement (April
2021) corresponds to a decrease in SMAPE. We explain this
evolution by two factors: 1) The first confinement was more
brutal for the French market. Because industry has come
to a standstill, prices and consumption have fallen. This
is not the case for the other two lockdowns. 2) The first
lockdown was a completely new situation for the model,
which was not the case for the following. This also explains
why the SMAPE drops after the first lockdown: the model
has integrated several data samples from the confinement
period and is able to adapt. Thus, the next two confine-
ments are more easily dealt with. Next, we focus on the
period following the first lockdown. On the market, this pe-
riod was characterized by a slow French industry recovery
and warm temperatures with consumption still below the
standards. We see the Swiss and gas price contributions
falling at the benefit of French production forecasts and
date indicators. The model correctly balances the trade-off
between French production forecasts and gas prices. Indeed,
during this period, the French nuclear production fleet was
enough to cover the consumption and no gas-fired plant
was required. As a result, the SMAPE on this period is low.
The third lockdown (May - December 2021) is opposite to
the previous one. High volatility in gas prices, due in part
to the economic recovery in China, is driving volatility in
electricity prices, as shown in Figure 1. In this context,
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let’s look at the relationship between the contributions
of Swiss and gas prices. These two features are most of
the time the two most important characteristics and their
movements are generally opposite: when one decreases, the
other increases. Periods when the gas price contribution
increases and the Swiss price contribution decreases are
marked by a SMAPE spike. The model captures the im-
portance of the gas price as shown by the strong increase
in the contribution, but this price is so volatile that using
gas price from two days ago results in a high error. A good
way to avoid error spikes over this period would be to find
a more reliable value than the EGSI index to estimate the
price of gas two days before. Using the last value traded on
the gas market could be an alternative. Lastly, we notice
little variation in contribution among the other features.
The French consumption forecast contributed more from
January to March 2020 and from November 2020 to April
2021. During these winter periods, the model gave more
weight to the consumption forecasts to reduce price tem-
perature sensitivity. This is not the case during the winter
of 2021. Very low French nuclear production, due to the
maintenance of the power stations, obliges the gas park to
ensure the balance between consumption and production.
The proportion of gas-generated electricity in the total mix
was so high that small variations in consumption did not
affect prices. Indeed, all gas-fired power plants have the
same marginal cost: the price of gas.



Contributions on the test set for the DNN

German Prices

, German Consumption Forecast ,
rY T T rY

German Generation Forecast
T

[ 'y il R
‘ STV TR T T T G ¥e
g 14] ! yle LBR | 1" yle
i | I
7 lag days Iagday‘s 7 lag days 1lag day 0 Iag«‘:lay 7 lag days 1lag day 0 Iag«‘:lay
Fre French Consumption Forecast French Generation Forecast .
v T ¥
il *‘
v T v
! I Ylb ?” yla
7 lag days 7 lag days 1lag day 0 lag day 7 lag days 1 lag day 0 lag day
Bel Belgian Consumption Forecast Belgian Generation Forecast
: v s v
i
! - - ‘l": o
i L yle l+r yle
i 1 i
7 lag days 1 lag day 7 lag days 1lag day lag day 7 lag days 1 lag day lag day
Swiss Prices , Dutch Prices ¥ ¥
: g
¥e i = v v®
1 ~ 3
yie T a ¥ A ¥
i 1] 0

7 lag days 1lag day 0lag day

7 lag days

b T T
0.0 0.1 0.

2
Mean SHAP values accross the test set

lag day » |
0T el et
.n\?ha'\f%:\%?!‘éo

s oﬁ\ovgﬁg,x&‘

0.3 0.4

=)
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their feature contributions.

6. Synthesis, Discussion and Future Work

In this section, we summarize our conclusions and ob-
servations from the results of our experiments. First, we
see that including new features in the predictive dataset
dramatically increases model performance. Among these
added features, the most discriminating are the features
without lag days: production and consumption forecasts,
and Swiss prices. We believe that the Belgian dataset is
more difficult to grasp as it lacks the forecasts for the period
T1 and the Swiss prices for the period T5. We also observe
that the feature contributions depend on the considered
dataset. These differences reflect the specificities of the
FEuropean market such as the temperature sensitivity of
consumption in France, or the intermittency of production
in Germany.

Second, we report significant inequalities in the perfor-
mance of ML models. RF and CNN are not suitable for
the EPF paradigm we are studying. These models incor-
rectly incorporate input features and therefore we cannot
identify significant patterns in their contribution analysis.
In contrast, DNN and SVR extract meaningful information
from features and display diagonal and peak load patterns
in their contributions. As a result, these models are better
over the three considered countries and the two time peri-
ods. Further analysis of the contribution revealed that they
are able to react to significant market changes by updating
the weight of discriminating features such as gas price when
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necessary. Although this adaptation is not instantaneous
and a short period of performance deterioration is observed,
the models produce accurate predictions in new situations.
For example, performance has increased during the second
semester of 2021 for the French market even though prices
are more volatile.

Due to the high computation times and the difficulty of
acquiring new data, several experiments were left for future
work. The integration of new EPF features such as coal,
oil or carbon prices, or the use of more data from foreign
countries such as Spain, Italy, Austria or Denmark could
be considered as future work. Given the importance of
Swiss and gas prices in the total contribution, it will also be
interesting to include other prices without lag days available
before the close of the EPEX market, such as EXAA prices
or UK prices. Moreover, the available transfer capacities
are essential to understand the cross-border energy flows
that are necessary to explain the price differences between
countries. Their inclusion in our datasets should increase
the accuracy of the multi-country forecasting framework.

Finally, many other ML models could be tested, such
as Gaussian processes, nearest neighbors or multi-kernel
SVR. Regarding the significant contribution made by data
with one or seven days lag, we believe that time series ML
models such as recurrent neural networks, convolutional
kernel random transformation models [22] or Dynamic
Time warp models would challenge the benchmark state of
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the art. Additionally, we observed a slight degradation in
performance while forecasting multiple countries at once.
Managing European network topology using Graph Neural
Network looks promising and will be our next challenge.

Acknowledgments. This research has received funding from
the ANRT (French National Association for Research and
Technology).

CRediT authorship contribution statement. Léonard Tschora:
Conceptualization, methodology, implementation, valida-
tion, investigation of the results, writing of the original
draft. Erwan Pierre: Investigation, resources, data cura-
tion, writing, funding acquisition. Marc Plantevit: Con-
ceptualization, investigation, supervision, writing, funding
acquisition. Céline Robardet: Conceptualization, investi-
gation, supervision, writing, funding acquisition.

Declaration of competing interest. The authors declare
that they have no known competing financial interests or
personal relationships that could have appeared to influence
the work reported in this paper.

Bibliography

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z.,
CITRO, C., CORRADO, G. S., Davis, A., DEAN, J., DEVIN, M.,
GHEMAWAT, S., GOODFELLOW, I., HARP, A., IRVING, G., ISARD,
M., Jia, Y., Jozerowicz, R., KAISER, L., KUDLUR, M., LEV-
ENBERG, J., MANE, D., MONGA, R., MOORE, S., MURRAY, D.,
OLAH, C., SCHUSTER, M., SHLENS, J., STEINER, B., SUTSKEVER,
I., Tatwar, K., TUCKER, P., VANHOUCKE, V., VASUDEVAN,
V., ViEcas, F., VINvyaLs, O., WARDEN, P., WATTENBERG, M.,
WICKE, M., YU, Y., AND ZHENG, X. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] ABioDUN, O. I., JANTAN, A., OMOLARA, A. E., DaDA, K. V.,
MOHAMED, N. A., AND ARSHAD, H. State-of-the-art in artificial
neural network applications: A survey. Heliyon 4, 11 (2018),
e00938.

AMABILE, L., BRESCH-PIETRI, D., EL. HAJJE, G., LABBE, S.,
AND PETIT, N. Optimizing the self-consumption of residential
photovoltaic energy and quantification of the impact of produc-
tion forecast uncertainties. Advances in Applied Energy 2 (2021),
100020.

ANBAZHAGAN, S., AND KUMARAPPAN, N. Day-ahead deregu-
lated electricity market price forecasting using recurrent neural
network. IEEE Systems Journal 7, 4 (2013), 866-872.
BADRINARAYANAN, V., HANDA, A.; AND CIPOLLA, R. Segnet:
A deep convolutional encoder-decoder architecture for robust
semantic pixel-wise labelling, 2015.

BAGNALL, A., BOSTROM, A., LARGE, J., AND LINES, J. The great
time series classification bake off: An experimental evaluation
of recently proposed algorithms. extended version, 2016.
BarTA, G., NAGY, G. B. G., Kazi, S., aAND HENK, T. Gef-
com 2014—p-robabilistic electricity price forecasting. In Intelli-
gent Decision Technologies (Cham, 2015), R. Neves-Silva, L. C.
Jain, and R. J. Howlett, Eds., Springer International Publishing,
pp. 67-76.

BATAL, 1., SAccHI, L., BELLAZZI, R., AND HAUSKRECHT, M. Mul-
tivariate time series classification with temporal abstractions.
International journal of artificial intelligence tools : architec-
tures, languages, algorithms 22 (01 2009), 344-349.
BERGSTRA, J., AND BENcIO, Y. Random search for hyper-
parameter optimization. Journal of machine learning research
18, 2 (2012).

BOROVYKH, A., BOHTE, S., AND OOSTERLEE, C. W. Conditional
time series forecasting with convolutional neural networks. Tech.
rep., Universita di Bologna and Centrum Wiskunde and Delft
University of Technology, 2018. https://arxiv.org/abs/1703.
04691.

BREIMAN, L. Bagging predictors. Machine Learning 24, 2 (1996),
123-140.

BURKART, N., AND HUBER, M. F. A survey on the explainability
of supervised machine learning. J. Artif. Intell. Res. 70 (2021),
245-317.

CHE, J., AND WANG, J. Short-term electricity prices forecasting
based on support vector regression and auto-regressive integrated

(5]

(6]

[9]

[10]

[11]

[12]

[13]

14


https://arxiv.org/abs/1703.04691
https://arxiv.org/abs/1703.04691

29]

30]

(31]

32]

moving average modeling. Energy Conversion and Management
51 (10 2010), 1911-1917.

CHE, J., AND WANG, J. Short-term load forecasting using
a kernel-based support vector regression combination model.
Applied Energy 132 (2014), 602-609.

CHEN, Y., AND ZHANG, D. Theory-guided deep-learning for
electrical load forecasting (tgdlf) via ensemble long short-term
memory. Advances in Applied Energy 1 (2021), 100004.
CHENG, H.-Y., Kvo, P.-H., SHEN, Y., AND HUANG, C.-J. Deep
convolutional neural network model for short-term electricity
price forecasting, 2020.

CONEJO, A., PrAazAs, M., EspINOLA, R., AND MOLINA, A. Day-
ahead electricity price forecasting using the wavelet transform
and arima models. Power Systems, IEEE Transactions on 20
(06 2005), 1035 — 1042.

CONTRERAS, J., EspiNoLA, R., NoGALES, F., AND CONEJO,
A. Arima models to predict next-day electricity prices.
Power FEngineering Review, IEEE 22 (10 2002), 57 —
57. http://halweb.uc3m.es/esp/Personal/personas/fjnm/
esp/papers/ARIMAprices.pdf.

CovVERT, I., LUNDBERG, S. M., AND LEE, S. Explaining by
removing: A unified framework for model explanation. J. Mach.
Learn. Res. 22 (2021), 209:1-209:90.

CRESPO CUARESMA, J., HLOuskoOvA, J., KOSSMEIER, S., AND
OBERSTEINER, M. Forecasting electricity spot-prices using
linear univariate time-series models. Applied Energy 77 (01
2004), 87-106. https://www.researchgate.net/publication/
223459864 _Forecasting_Electricity_Spot-Prices_Using_
Linear_Univariate_Time-Series_Models/citation/download.
DEMIR, S., MINCEV, K., KOk, K., AND PATERAKIS, N. G. Data
augmentation for time series regression: Applying transforma-
tions, autoencoders and adversarial networks to electricity price
forecasting. Applied Energy 304 (2021), 117695.

DEMPSTER, A., PETITJEAN, F., AND WEBB, G. I. ROCKET:
exceptionally fast and accurate time series classification using
random convolutional kernels. CoRR abs/1910.13051 (2019).
DieBoLD, F. Comparing predictive accuracy, twenty years later:
A personal perspective on the use and abuse of diebold-mariano
tests. Journal of Business and Economic Statistics 33 (09 2012).
DieBoOLD, F., AND MARIANO, R. Comparing predictive accuracy.
Journal of Business and Economic Statistics 20 (02 1992), 134—
44.

FIGUEROA, M. G., AND CARTEA, A. Pricing in electricity markets:
A mean reverting jump diffusion model with seasonality. Applied
Mathematical Finance 12, 4 (2015), 313 — 335.

GAILLARD, P., GOUDE, Y., AND NEDELLEC, R. Additive models
and robust aggregation for gefcom2014 probabilistic electric
load and electricity price forecasting. International Journal of
Forecasting 32, 3 (2016), 1038-1050.

GUIDOTTI, R., MONREALE, A., RUGGIERI, S., PEDRESCHI, D.,
TurINI, F., AND GIANNOTTI, F. Local rule-based explanations
of black box decision systems. CoRR abs/1805.10820 (2018).
GuipoTTI, R., MONREALE, A., RUGGIERI, S., TURINI, F., GI-
ANNOTTI, F., AND PEDREscHI, D. A survey of methods for
explaining black box models. ACM Comput. Surv. 51, 5 (2019),
93:1-93:42.

GUNDUZ, S., UGURLU, U., AND OKSUZ, I. Transfer learning for
electricity price forecasting, 2020.

He, K., ZHANG, X., REN, S., AND SUN, J. Deep residual networks
for image recogition. Tech. rep., Microsoft, 2015. https://arxiv.
org/abs/1512.03385.

HEUWDEN, T. V. D., LAGO, J., PALENSKY, P., AND ABRAHAM,
E. Electricity price forecasting in european day ahead markets:
A greedy consideration of market integration. IEEE Access 9
(2021), 119954-119966.

Hong, T., PINsON, P., FAN, S., ZAREIPOUR, H., TROCCOLI, A.,
AND HYNDMAN, R. J. Probabilistic energy forecasting: Global
energy forecasting competition 2014 and beyond. International
Journal of Forecasting 32, 3 (2016), 896 — 913.

IsLam, M. R., AEMED, M. U., BARUA, S., AND BEGUM, S. A
systematic review of explainable artificial intelligence in terms

15

[35]

[36]

[39]

[40]

[41]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

of different application domains and tasks. Applied Sciences 12,
3 (2022), 1353.

IsMAIL FAwAz, H., FORESTIER, G., WEBER, J., IDOUMGHAR, L.,
AND MULLER, P.-A. Deep learning for time series classification:
a review. Data Mining and Knowledge Discovery 33, 4 (Mar
2019), 917-963.

JuBAN, R., OHLSsSON, H., MaasouMmy, M., POIRIER, L., AND
KOLTER, J. Z. A multiple quantile regression approach to the
wind, solar, and price tracks of gefcom2014. International Jour-
nal of Forecasting 32, 3 (2016), 1094 — 1102.

KAMPOURAKI, A., MANIS, G., AND Nikou, C. Heartbeat time
series classification with support vector machines. IEEE Trans-
actions on Information Technology in Biomedicine 13, 4 (July
2009), 512-518.

KELES, D., SCELLE, J., PARASCHIV, F., AND FICHTNER, W. Ex-
tended forecast methods for day-ahead electricity prices applying
artificial neural networks. Applied Energy SCI (01 2016), 218-.
KHAN, Z., FAREED, S., ANWAR, M., NAEEM, A., GuL, H., ARIF,
A., AND JAVAID, N. Short term electricity price forecasting
through convolutional neural network (cnn). In BOOK (02
2020).

KRIZHEVSKY, A., SUTSKEVER, L., AND HINTO, G. E. Imagenet
classification with deep convolutional neural networks. Tech.
rep., University of Toronto, 2012.

Kurakov, S. X-model: further development and possible modi-
fications, 2019.

LAco, J., MARcJASz, G., DE SCHUTTER, B., AND WERON, R.
Forecasting day-ahead electricity prices: A review of state-of-the-
art algorithms, best practices and an open-access benchmark.
Applied Energy 293 (2021), 116983.

LAco, J., RIDDER, F. D.; AND SCHUTTER, B. D. Forecasting
day-ahead electricity prices deep learning approaches and
empirical comparison of traditional algorithms. Tech. rep., Delft
University of Technology and VITO-Energyville, 2018. https://
www.researchgate.net/publication/324525629_Forecasting_
spot_electricity_prices_Deep_learning_approaches_and_
empirical_comparison_of_traditional_algorithms.

LAco, J., RIDDER, F. D., VRANCX, P., AND SCHUTTER, B. D.
Forecasting day-ahead electricity prices in europe the importance
of considering market integration. Tech. rep., Delft University of
Technology and VITO-Energyville and Vrije Universiteit Brussel,
2017. https://arxiv.org/abs/1708.07061.

LANGER, M., OSTER, D., SPEITH, T., HERMANNS, H., KASTNER,
L., ScuMIDT, E., SESING, A., AND BAUM, K. What do we want
from explainable artificial intelligence (xai)?—a stakeholder per-
spective on xai and a conceptual model guiding interdisciplinary
xal research. Artificial Intelligence 296 (2021), 103473.
LECUN, Y., AND BENGIO, Y. Convolutional Networks for Images,
Speech, and Time Series. MIT Press, Cambridge, MA, USA,
1998, p. 255-258.

L1, Y., Yu, R., SHAHABI, C., AND Liu, Y. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting, 2018.
LUNDBERG, S., AND LEE, S. A unified approach to interpreting
model predictions. CoRR abs/1705.07874 (2017).

LUNDBERG, S. M., ERION, G. G., CHEN, H., DEGRAVE, A. J.,
PRUTKIN, J. M., NAIR, B., KA1z, R., HIMMELFARB, J., BANSAL,
N., AND LEE, S. From local explanations to global understanding
with explainable Al for trees. Nat. Mach. Intell. 2, 1 (2020),
56-67.

LUNDBERG, S. M., AND LEE, S. A unified approach to interpret-
ing model predictions. In NEURIPS (2017), pp. 4765-4774.
MEe1, J., HE, D., HARLEY, R., HABETLER, T., AND QU, G. A
random forest method for real-time price forecasting in new
york electricity market. In 2014 IEEE PES General Meeting/
Conference & Exposition (2014), IEEE, pp. 1-5.

Mel, J., Zvo, Y., LEg, C. H., WANG, X., AND KIRTLEY, J. L.
Stochastic optimization of multi-energy system operation consid-
ering hydrogen-based vehicle applications. Advances in Applied
Energy 2 (2021), 100031.

MIRALLES, A. R., DORRONSORO, J. R., AND Diaz, J. Day-
ahead price forecasting for the spanish electricity market. Tech.


http://halweb.uc3m.es/esp/Personal/personas/fjnm/esp/papers/ARIMAprices.pdf
http://halweb.uc3m.es/esp/Personal/personas/fjnm/esp/papers/ARIMAprices.pdf
https://www.researchgate.net/publication/223459864_Forecasting_Electricity_Spot-Prices_Using_Linear_Univariate_Time-Series_Models/citation/download
https://www.researchgate.net/publication/223459864_Forecasting_Electricity_Spot-Prices_Using_Linear_Univariate_Time-Series_Models/citation/download
https://www.researchgate.net/publication/223459864_Forecasting_Electricity_Spot-Prices_Using_Linear_Univariate_Time-Series_Models/citation/download
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.researchgate.net/publication/324525629_Forecasting_spot_electricity_prices_Deep_learning_approaches_and_empirical_comparison_of_traditional_algorithms
https://www.researchgate.net/publication/324525629_Forecasting_spot_electricity_prices_Deep_learning_approaches_and_empirical_comparison_of_traditional_algorithms
https://www.researchgate.net/publication/324525629_Forecasting_spot_electricity_prices_Deep_learning_approaches_and_empirical_comparison_of_traditional_algorithms
https://www.researchgate.net/publication/324525629_Forecasting_spot_electricity_prices_Deep_learning_approaches_and_empirical_comparison_of_traditional_algorithms
https://arxiv.org/abs/1708.07061

(68]
(69]

[70]

73]

rep., Instituto de Ingenieria del Conocimiento and Universidad
Autonoma de Madrid, 2019. https://www.ijimai.org/journal/
node/2300.

MOLNAR, C. Interpretable machine learning. Lulu. com, 2020.
MosBaH, H., AND EL-HAwWARY, M. Hourly electricity price
forecasting for the next month using multilayer neural network.
Canadian Journal of Electrical and Computer Engineering 39
(09 2015).

NAaN, F., BORDIGNON, S., BUNN, D., AND LisI, F. The forecasting
accuracy of electricity price formation models. International
Journal of Energy and Statistics 2 (03 2014), 1-26.
NARAJEWSKI, M., AND ZIEL, F. Changes in electricity demand
pattern in europe due to covid-19 shutdowns, 2020.
NOWOTARSKI, J., Raviv, E., TRUCK, S., AND WERON, R. An
empirical comparison of alternative schemes for combining elec-
tricity spot price forecasts. Energy Economics 46 (2014), 395 —
412.

ORSENIGO, C., AND VERCELLIS, C. Combining discrete svm and
fixed cardinality warping distances for multivariate time series
classification. Pattern Recognition 43 (11 2010), 3787-3794.
PaNAPAKIDIS, I. P., AND DAGOUMAS, A. S. Day-ahead electricity
price forecasting via the application of artificial neural network
based models. Applied Energy 172 (2016), 132 — 151.

PCR. Euphemia public description. Tech. rep., Price Coupling
of Region, 2016.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V.,
THIRION, B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P.,
WEIss, R., DUBOURG, V., VANDERPLAS, J., PAssos, A., COUR-
NAPEAU, D., BRUCHER, M., PERROT, M., AND DUCHESNAY, E.
Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12 (2011), 2825-2830.

PiNo, R., PARRENO, J., GOMEZ, A., AND PRIORE, P. Forecasting
next-day price of electricity in the spanish energy market using
artificial neural networks. Engineering Applications of Artificial
Intelligence 21, 1 (2008), 53 — 62.

RAKOTOMAMONJY, A., BACH, F., CANU, S., AND GRANDVALET,
Y. SimpleMKL. Journal of Machine Learning Research 9 (2008),
2491-2521.

RIBEIRO, M. T., SINGH, S., AND GUESTRIN, C. "why should I
trust you?": Explaining the predictions of any classifier. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016 (2016), B. Krishnapuram, M. Shah,
A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, Eds.,
ACM, pp. 1135-1144.

RTE. Bilan Electrique 2019. Tech. rep., RTE, 2020.

Ruiz, A. P., FLynN, M., LARGE, J., MIDDLEHURST, M., AND
BAGNALL, A. The great multivariate time series classification
bake off: a review and experimental evaluation of recent algo-
rithmic advances. Data Mining and Knowledge Discovery 35
(March 2021), 4017449.

SANsOM, D., Downs, T., AND SAHA, T. Evaluation of support
vector machine based forecasting tool in electricity price fore-
casting for australian national electricity market participants.
Journal of electrical and electronics engineering, Australia 22
(01 2003).

SCHNURCH, S., AND WAGNER, A. Machine learning on epex order
books insights and forecasts, 2019.

SHAPLEY, L. S. 17. A wvalue for n-person games. Princeton
University Press, 1953.

SHEPPARD, D. Gas shortages: what is driving europe’s energy
crisis? Financial Times, 10 2021. https://www.ft.com/content/
72d0ec90-29e3-4e95-9280-6a4ad6b481a3.

SHI, W., WANG, Y., CHEN, Y., AND MA, J. An effective two-
stage electricity price forecasting scheme. Electric Power Systems
Research 199 (2021), 107416.

SHIRI, A., AFSHAR, M., RAHIMI-KIAN, A., AND MAHAM, B.
Electricity price forecasting using support vector machines by
considering oil and natural gas price impacts. In mybook (08
2015), pp. 1-5.

SUVARNA, M., KATRAGADDA, A., SUN, Z., CHOH, Y. B., CHEN,

16

[78]

[79]

[80]

[85]

[86]

Q., PS, P., AND WANG, X. A machine learning framework
to quantify and assess the impact of covid-19 on the power
sector: An indian context. Advances in Applied Energy 5 (2022),
100078.

SzeGeEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI, A.
Inception-v4, inception-resnet and the impact of residual con-
nections on learning. Tech. rep., Google, 2016. https://arxiv.
org/abs/1602.07261.

TAN, Z., ZHANG, J., WANG, J., AND XU, J. Day-ahead electricity
price forecasting using wavelet transform combined with arima
and garch models. Applied Energy 87, 11 (2010), 3606 — 3610.
UNIEJEWSKI, B., WERON, R., AND ZIEL, F. Variance stabilizing
transformations for electricity spot price forecasting. IEEE
Transactions on Power Systems 33, 2 (2018), 2219-2229.
VLAHOGIANNI, E. 1., KARLAFTIS, M. G., AND GouLIiAs, J. C.
Short-term traffic forecasting: Where we are and where we’re
going. Transportation Research Part C: Emerging Technolo-
gies 43 (2014), 3—-19. Special Issue on Short-term Traffic Flow
Forecasting.

Wang, D., Luo, H., GRUNDER, O., LiN, Y., AND Guo, H.
Multi-step ahead electricity price forecasting using a hybrid
model based on two-layer decomposition technique and bp neural
network optimized by firefly algorithm. Applied Energy 190
(2017), 390-407.

WERON, R. Electricity price forecasting: A review of the state-
of-the-art with a look into the future. International Journal of
Forecasting 30 (10 2014).

WERON, R., AND MISIOREK, A. Forecasting spot electricity
prices with time series models. Proceedings of the European
Electricity Market EEM-05 Conference (05 2005).

ZHANG, G. P., AND QI1, M. Neural network forecasting for
seasonal and trend time series. Furopean journal of operational
research 160, 2 (2005), 501-514.

ZHAO, J., DonG, Z., Xu, Z., AND WoNG, K. A statistical
approach for interval forecasting of the electricity price. Power
Systems, IEEE Transactions on 23 (06 2008), 267 — 276.
ZHENG, Y., Liu, Q., CHEN, E., GE, Y., AND ZHAO, J. Time series
classification using multi-channels deep convolutional neural
networks. WAIM 2014. LNCS 8485 (01 2014), 298-310.
ZHENG, Y., Liu, Q., CHEN, E., GE, Y., AND ZHAO, J. L.
Exploiting multi-channels deep convolutional neural networks for
multivariate time series classification. Tech. rep., University of
Science and Technology of China Hefei and University of North
Carolina Charlotte and City University of Hong Kong, 2015.
https://wuw.researchgate.net/publication/282893689_
Exploiting _multi-channels_deep_convolutional_neural_
networks_for_multivariate_time_series_classification.
Z1EL, F., AND STEINERT, R. Electricity price forecasting using
sale and purchase curves the x-model. Energy Economics 59
(Sep 2016), 435-454.

Z1eL, F.; STEINERT, R., AND HUSMANN, S. Forecasting day
ahead electricity spot prices: The impact of the exaa to other
european electricity markets. Energy Economics 51 (Sep 2015),
430-444.


https://www.ijimai.org/journal/node/2300
https://www.ijimai.org/journal/node/2300
https://www.ft.com/content/72d0ec90-29e3-4e95-9280-6a4ad6b481a3
https://www.ft.com/content/72d0ec90-29e3-4e95-9280-6a4ad6b481a3
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://www.researchgate.net/publication/282893689_Exploiting_multi-channels_deep_convolutional_neural_networks_for_multivariate_time_series_classification
https://www.researchgate.net/publication/282893689_Exploiting_multi-channels_deep_convolutional_neural_networks_for_multivariate_time_series_classification
https://www.researchgate.net/publication/282893689_Exploiting_multi-channels_deep_convolutional_neural_networks_for_multivariate_time_series_classification

	Introduction
	Contributions
	Paper Structure

	Electricity Price Forecasting
	Machine Learning for EPF
	Machine Learning Models
	Evaluation metrics and test
	Data preprocessing
	Hyper-parameters Search
	Recalibration
	Shapley and SHAP Values 

	Datasets
	SOTA datasets
	Enriched datasets
	Train/Test splits

	Evaluation of the models on the different datasets
	How well do the models performs?
	Forecast Explanations

	Synthesis, Discussion and Future Work
	Bibliography

