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AN UPPER BOUND ON TOPOLOGICAL ENTROPY OF THE

BUNIMOVICH STADIUM BILLIARD MAP

JERNEJ ČINČ AND SERGE TROUBETZKOY

Abstract. We show that the topological entropy of the billiard map in a
Bunimovich stadium is at most log(3.49066).

1. Introduction

The Bunimovich stadium is a planar domain whose boundary consists of two
semicircles joined by parallel segments as in Figure 1. In this article we study
the billiard in a Bunimovich stadium, this is the free motion of a point particle
in the interior of the stadium with elastic collisions when the particle reaches the
boundary. Billiards in stadia were first studied by Bunimovich in [6, 7] where he
showed that the billiard has hyperbolic behavior and showed the ergodicity, K-
mixing and Bernoulli property of the billiard map and flow with respect to the
natural invariant measure (see also [14],[15]).

In this article we will study the topological entropy of the billiard map in a
Bunimovich stadium. The topological entropy of a topological dynamical system
is a real nonnegative number that is a measure of the complexity of the system.
Roughly, it measures the exponential growth rate of the number of distinguishable
orbits as time advances. We will discuss its exact definition in our setting in the
next section.

The study of topological entropy of billiards was initiated in [13]. In this article
it was claimed with a one sentence proof that the topological entropy of the billiard
map of stadia is at most log(4). A detailed proof using this strategy was given later
by Bäker and Chernov, but they were able to show only a weaker estimate, that
the topological entropy is at most log(6) [2]. Our main result will be a better upper
bound on the topological entropy.

Recently, Misiurewicz and Zhang [18] have shown that as the side length tends to

infinity the topological entropy of stadia is at least log(1+
√

2) by studying the map
restricted to a subspace of the phase space which is compact and invariant under
the billiard map. Another lower bound of the topological entropy can be derived
from the variational principle1 and the results of Chernov on the asymptotics of
the metric entropy when the stadium degenerates to a circle, an infinite stadium,
a segment, a point, or the plane in certain controlled ways [12].

Topological entropy of hyperbolic billiards has also been studied in several other
articles [3],[8],[11],[21].
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1The variational principle holds for the Pesin-Pitskel’ definition of entropy [20], see Section 5

for applicability to our situation.
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2. Definitions and statement of the results

We consider the Bunimovich stadium billiard table Bl, with the radius of the
semicircles 1, and the lengths of straight segments l > 0. The phase space of this
billiard map will be denoted by Ml. It consists of points s in the boundary of Bl

and unit vectors pointing into the interior of Bl. We represent the unit vector by
measuring its angle θ with respect to the inner pointing normal vector, thus

Ml := {(s, θ) : s ∈ ∂Bl, θ ∈ (−π/2, π/2)}.
The billiard map Fl is the first return map of the billiard flow Φ to the set Ml.

Note that Fl is continuous, but Ml is not compact since we do not include vectors
tangent to the boundary of Bl.

We remark that the map Fl does not extend to a continuous map of the closure of
Ml. Thus all of the usual definitions of the topological entropy due to Adler, Kon-
heim and McAndrew [1], Bowen [4, 5] and Dinaburg [17] can not be applied. There
are several definitions of topological entropy which are possible. The definition we
take, is a very natural one: we take a natural coding of the billiard, and then con-
sider the entropy of the shift map on the closure of the set of all possible codes. This
definition gives an upper bound of another natural definition of topological entropy
on non-compact spaces, the Pesin-Pitskel’ [20] topological entropy (this approach
is closely related to that of Bowen given in [5], however Bowen’s definition is not
equivalent to the of Pesin-Pitskel’, see [20][IV p.308]). In particular, similar results
for Sinai billiards (also known as Lorentz gas) were recently obtained by Baladi
and Demers [3]. For a more detailed discussion of possible definitions of topological
entropy in our setting and their relationship to our definition see Section 5.
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Figure 1. Labeling the sides of the stadium and a period 4 orbit.

We now give a precise definition of the topological entropy we consider. We
label the four smooth components of the boundary by the alphabet {L, T,R,B},
the meeting points of the components have double labels (see Figure 1). Slightly
abusing notation we will say that s ∈ Y where Y ∈ {L, T,R,B} and mean that s is
a point in ∂Bl with the label Y . It is easy to see that the corresponding partition is
not a generator, for example the period 4 orbit with code LLRR shown in Figure 4
has the same code traced forward and backwards.

We consider two copies of L, denoted by L̄ and
¯
L, (similarly R̄ and

¯
R for R) and

let c̄ : Ml → A := {L̄,
¯
L, T,B, R̄,

¯
R} be the (multi-valued) coding map defined by

c̄(s, θ) = s if s ∈ {T,B}, c̄(s, θ) = s̄ if θ ≥ 0 and c̄(s, θ) =
¯
s if θ ≤ 0 for s ∈ {L,R}.

We consider the cover of the phase space into 6 elements given by this coding. The
interiors of each element of the cover are disjoint, thus with the traditional misuse
of terminology we will call this cover a partition.

We code the orbit of a point by the sequence of partition elements it hits, i.e.,

c(s, θ) := (ωk)k∈Z where ωk = c̄(F k
l (s, θ)).

For i ≤ j let

M̃l
i,j := {(s, θ) ∈Ml : Fn

l (s, θ) is in the interior of a partition element ∀i ≤ n ≤ j}.
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Notice that since c̄ is multi-valued, the map c is multi-valued in particular on ∂M i,j
l .

However, for any point in the set M̃l
i,j the letter ωk is unique for i ≤ k ≤ j, and

thus for any point in the set

M̃l := ∩i≤jM̃l
i,j

the infinite coding is unique.
Let Σ̃ be the set of bi-infinite codes of points from M̃l, and let Σ be the closure

of Σ̃ in the product topology, and let L(n) be the set of words of length n appearing

in Σ̃ (and thus in Σ as well). We let p(n) denote the complexity of Σ̃ ; i.e.,

p(n) := #{(ω0, . . . , ωn−1) ∈ L(n)}.
The quantity log p(n) is sub-additive, thus the growth rate

lim
n→∞

log p(n)

n

is well defined and is called the topological entropy of the shift map restricted to the
set Σ.

The 6 element partition is a generating partition in the sense that for each ω ∈
Σ \ {(TB)∞} there is a unique (s, θ) ∈Ml whose orbit has code ω (see [2] and the
Appendix for a justification of this claim) thus it is natural to call this quantity the
topological entropy of the billiard map Fl, i.e.,

htop(Fl) := lim
n→∞

log p(n)

n
.

In this definition of the topological entropy we first miss a set by restricting
to the interiors of partition elements, and then we add some points by taking the
closure of Σ̃. The sequences in Σ\Σ̃ are all the codes of points which hit boundaries
of partition elements obtained by using one sided continuity extension in the spatial
coordinate. Although the entropy of Σ equals the entropy of Σ̃, we do not know
anything about the Pesin-Pitsel’ entropy of the invariant set Ml \M̃l since the open
(clopen) covers of Σ do not necessarily arise from an open cover of Ml. In particular
we do not know if this entropy is smaller than the estimate from Theorem 1.

Our work was originally inspired by [18] where it was shown that

lim
l→∞

htop(Fl) ≥ log(1 +
√

2) > log(2.4142).

In fact in [18] the authors identify a certain compact subset of the phase space,
such that if we restrict Fl to this set then we get equality in the above limit.

Another inspiration is [2]; the above mentioned fact about the six element par-
tition being a generating partitions immediately implies

htop(Fl) ≤ log(6).

In the current paper we improve the upper bound on htop(Fl). Let a :=
2W ( 1

e )

1+W ( 1
e )

where W ( 1
e ) is the unique solution to the equation 1 = wew+1, see [16] and the

beginning of the proof of Lemma 8 for more information on the LambertW function.
The main result of our article is the following theorem

Theorem 1. For any l > 0 we have htop(Fl) < log

(
2

(
2

a
− 1

)a)
< log(3.49066).

We prove Theorem 1 by studying possible word complexity of the 6 elements
language associated to the Bunimovich billiard. In Section 3 we use Cassaigne’s
formula from [9] and prove that htop(Fl) is bounded from above by the limit of
logarithmic growth rate of the number of distinct saddle connections of increasing
lengths. Cassaigne’s formula is very useful in studying low complexity systems,
for example polygonal billiards [10]. To the best of our knowledge this is the first
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application of this formula to positive entropy systems. In Section 4 we give upper
bounds for the number of different possible saddle connections using analytical
tools, which yields our estimate for htop(Fl).

3. Saddle connections

We consider the 6 element partition A defined in the previous section. We will
use the word corner to refer to the four points where the semi-circles meet the
line segments as well as the two centers of the semi-circles. More formally, in the
case of the centers of the semi-circles, by starting at a corner we mean that we
start perpendicularly to a semi-circle and thus the flow passes through the corner
when leaving the half-disk defined by the semi-circle. Recall that the four smooth
components of the boundary of Bl are denoted by the alphabet {L, T,R,B}, see
Figure 1. The corners separate partition elements, this is clear for the four points,
while for the centers of the semicircles we remark that the forward and backward
orbit of any point L̄ ∩

¯
L = {(s, θ) : s ∈ L, θ = 0} passes through the center of the

left semi-circle (a similar statement holds for points in R̄ ∩
¯
R).

In analogy to polygonal billiards a saddle connection is an orbit segment which
connects two corners of Bl (possibly the same) and does not visit any corner in
between. To avoid technical complications, we do not consider the diameters of
the semi-circles as saddle connections. The length of a saddle connection is the
number of links in this trajectory. Except for saddle connections of length one we
will represent a saddle connection by the first point of collision after leaving the
starting corner, thus the code of the orbit segment of length n− 1 codes the saddle
connection. Analogously, the empty word codes the saddle connections with length
one. Let N(n) denote the number of distinct saddle connections of length at most
n and N(n) denote the number of distinct saddle connections of length exactly n.
Our main result is based on the following result.

Proposition 2. p(n) ≤ 30
∑n−1

j=0 N(j) for all n ≥ 1.

Thus

htop(Fl) = lim
n→∞

log p(n)

n
≤ lim

n→∞

log
(
30
∑n−1

j=0 N(j)
)

n
= lim

n→∞

log
(∑n−1

j=0 N(j)
)

n
,

which yields

Corollary 3.

htop(Fl) ≤ lim
n→∞

log
(∑n−1

j=0 N(j)
)

n
.

To prove the proposition we need some techniques that were developed by Cas-
saigne in [9] and applied to polygonal billiards in [10]. Remember that L(n) is the
set of blocks of length n in the subshift Σ (so p(n) = #L(n)). For n ≥ 1, we define
s(n) := p(n+ 1)− p(n). For u ∈ L(n) let

m`(u) := #{a ∈ A : au ∈ L(n+ 1)},
mr(u) := #{b ∈ A : ub ∈ L(n+ 1)},
mb(u) := #{(a, b) ∈ A2 : aub ∈ L(n+ 2)}.

We remark that all three of these quantities are larger than or equal to one. A word
u ∈ L(n) is called left special if m`(u) > 1, right special if mr(u) > 1 and bispecial
if it is left and right special. Let

BL(n) := {u ∈ L(n) : u is bispecial}.
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In a more general setting in [9] (see [10] for an English version) it was shown
that for all k ≥ 1 we have

s(k + 1)− s(k) =
∑

v∈BL(k)

(
mb(v)−m`(v)−mr(v) + 1

)
.

Consider the set of strongly bispecial words

BLs(n) := {u ∈ L(n) : u is bispecial and mb(v)−m`(v)−mr(v) + 1 > 0}.
Clearly for all k ≥ 1 we have

s(k + 1)− s(k) =
∑

v∈BLs(k)

(
mb(v)−m`(v)−mr(v) + 1

)
.

Proof of Proposition 2. Note that(
mb(v)−m`(v)−mr(v) + 1

)
≤ max

0≤x,y≤6
(xy − x− y + 1) = 25,

thus summing over 1 ≤ k ≤ j − 1 yields

s(j) ≤ s(1) + 25

j−1∑
k=1

#BLs(k).

In our case #BLs(1) = p(1) = 6 and p(2) = 30 since among the 36 possible
words, the 6 words that can not be realized are TT,BB, L̄

¯
L,

¯
LL̄, R̄

¯
R,

¯
RR̄. Thus

s(1) = p(2)− p(1) = 30− 6 = 24 = 4#BLs(1), and thus we can estimate

s(j) ≤ 29

j−1∑
k=1

#BLs(k).

Remember that s(j) = p(j + 1)− p(j), thus summing over 1 ≤ j ≤ n− 1 yields

p(n) ≤ p(1) + 29

n−1∑
j=1

j−1∑
k=1

#BLs(k).

Again we can adjust the constant to absorb the term p(1) yielding the estimate

p(n) ≤ 30

n−1∑
j=1

j−1∑
k=1

#BLs(k).

To finish the proof of Proposition 2 we need part a) from the following result.

Proposition 4. a) For each k ≥ 1 there is an injection C : BLs(k − 1)→ N(k).
b) For any v ∈ BL(k) and any pair of corners (s, s′) there is at most one saddle
connection with code v starting at the corner s and ending at the corner s′.

Once a) is proven, this yields

p(n) ≤ 30

n−1∑
j=1

j−1∑
k=1

#N(k + 1) ≤ 30

n−1∑
j=0

N(j).

which completes the proof of Proposition 2. �

Before proving Proposition 4 we need to introduce some more terminology. Let
Γ′ be the set of points from Ml perpendicular to the semicircles, i.e. Γ′ ⊂Ml is the
set of points for which s ∈ L,R and θ = 0. Let Γ be the union of Γ′ with the set
of points where Fl fails to be C2, and analogously Γ− is the union of Γ′ with the
set of points where F−1

l fails to be C2. We call Γ and Γ− the singularity sets for Fl

and F−1
l respectively.
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Figure 2. The singularity sets of Fl (dotted) and F−1
l (dashed).

The singularity sets are monotone curves but for clarity they are
drawn as linear segments. The two segments which are both dotted
and dashed are in both singularity sets.

The singularity sets Γ,Γ− consist of a finite number of C1-smooth compact
curves in Ml (see Figure 3), which are increasing, decreasing, horizontal, or vertical.
Define the singularity set for the map Fn

l for n ≥ 1 by Γn :=
⋃n

i=1 F
−i+1
l (Γ) and

the singularity set of the map F−nl for n ≥ 1 by Γ−n :=
⋃n

i=1 F
i+1
l (Γ−).

Remember that the set M̃l defined in Section 2 is the set of points in Ml having
a well defined code, and M̃l is the set of points whose orbit does not hit a corner.

For (s, θ) ∈ M̃l let ck(s, θ) := (c̄(F i
l (s, θ))k−1

i=0 denote the block of length k con-
taining c(s, θ). For v ∈ L(k) we define the set

ω(v) := {(s, θ) ∈ M̃l : v = ck(s, θ)}

and call ω(v) a k-cell.

Proof of Proposition 4. a) For k = 1 we note that the empty word is bispecial and it
corresponds to 22 saddle connections, one for each pair of distinct corners excluding
diameters and sides, and thus a) holds for k = 1.

Now suppose k ≥ 2 and fix v ∈ BLs(k − 1). The proof of Lemma 2.5 in [2]
shows that the set ω(v) is a simply connected closed set whose boundary consists
of a finite collection of piecewise smooth curves with angles less than π at vertices.
These curves belong to the union of the singular sets of F i

l for 0 ≤ i ≤ k − 2. For
each 0 ≤ i ≤ k − 2 the map F i

l is continuous on ω(v).
Consider the “partition”

⋃
avb∈L(k+1) Fl(ω(avb)) of the set ω(v), this is a parti-

tion in the sense that the interiors of the partition elements are pairwise disjoint.
This partition is produced by cutting ω(v) by the singular sets of F k−1

l and F−1
l .

By assumption v is bispecial, so the branches of the singular set of F k−1
l cut

ω(v) into mr(v) ≥ 2 pieces and the branches of the singular set of F−1
l cut ω(v)

into m`(v) ≥ 2 pieces. Suppose first that these singularities do not intersect, then
the union of these singular sets cut ω(v) into mr(v) +m`(v)−1 pieces and thus the
word v is weakly bispecial, i.e., v ∈ BL(n) \ BLs(n) and as mentioned above does
not contribute to the sum, see Figure 3 left.

Figure 3. Examples of ω(v) which are weakly and strongly bis-
pecial with m`(v) = mr(v) = 2.
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Consider a point x of intersection of these two singular sets. As mentioned above
the angle formed is less than π, i.e., the intersection must be transverse. If this
intersection is on the boundary of a cell, then the orbit of x has at least three
singular collisions, as so by definition x does not represent a saddle connection. So
suppose x is in the interior of a cell ω(v). We have the preimage of x is a corner,

and its forward image by F k−1
l is also a corner, and all intermediate collisions are

non-singular, thus it corresponds to a saddle connection of length k − 1. Thus for
k ≥ 2 we have verified part a).

We turn to the verification of part b). Label the corners of Bl by the alphabet
A′ := {1, 2, 3, 4, 5, 6}. The code of a saddle connection is the sequence from A ∪A′
a point hits along with the starting and ending corners; thus a saddle connection
of length n will have a code of length n + 1. To finish the proof we need to show
that there is a bijection between saddle connections and their codes.

We will give a brief sketch describing the bijection between the set of codes and
possible trajectories of the billiard map. A smooth curve from the phase space
Ml equipped with a continuous family of unit normal vectors is called a wave
front. Suppose by way of contradiction that two trajectories start at the same
corner s′ and end at the corner s′′ (possibly s′′ = s′) and have the same code.
For concreteness the starting points are (s′, θ1) and (s′, θ2). We consider the set
G := {(s′, θ) : θ1 ≤ θ ≤ θ2} and for each t ≥ 0 the corresponding wave front
Gt = Φt(G). A wave front is said to focus at time t > 0 when the projection of
the wave front Gt to the billiard table intersects itself. By way of contradiction we
thus assumed the wave front Gt refocuses at a corner; we will show that this is in
fact impossible. We refer to Subsection 8.4. in [14] for a more complete description
of what follows.

Focusing occurs in Bunimovich billiards after the wave front reflects from one
of the two semi-circles. Suppose that an infinitesimal wave front Gt collides with
∂Ml at some point in a semi-circle; denote the post-collisional curvature of the
projection of Gt to the billiard table by G+

t . The curvature of a wave front does not
change at the instance of a collision with a flat boundary. Now suppose that the
projection of Gt to the billiard table experiences collisions with semi-circles at times
t and t + τ , with possibly some flat collisions in between. Using (3.35) from [14]
the wave front expands from a collision to another collision, if |1 + τG+

t | > 1. For
this to hold, it is enough to check that G+

t < −2/τ (see (8.2) from [14]). A focusing
wave front with curvature G+

t < 0 passes through a focusing point and defocuses
at the time t∗ = t − 1/G+

t or in other words G+
t = 1

t−t∗ (see Section 3.8 in [14]).

Thus G+
t < −2/τ is equivalent to t∗ < t+ τ/2. The last inequality indeed says that

the wave front must defocus before it reaches the midpoint between the consecutive
collisions. By Theorem 8.9. from [14] it holds that the families of unstable cones
remain unstable under the iteration of the map. This implies that all wave fronts
are in the unstable cones which gives a contradiction. Therefore, we indeed have
unique coding of trajectories of the billiard map. �

4. Proof of Theorem 1

To count the number of saddle connections we unfold the stadium (see Figure
4). Consider an integer j ≥ 1. We say (n1,m1, n2,m2, . . . nk,mk) is a signed
composition of j if ni ∈ Z, mi ∈ N with mi ≥ 1 for all i such that

∑
|ni|+

∑
mi = j.

Let Q(j) denote the number of signed compositions of j. Recall that N(n) denotes
the number of distinct saddle connections of length at most n.
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TBTBTB

RRRRR

LLLLL

. . . . . .

Figure 4. Unfolding the stadium. Remember that centers of
semi-circles are also corners. There are eight saddle connections
with signed composition 2, 1, 2, two of them having code TBR̄TB
are drawn in red, there are two more saddle connections with this
code, the other four have code TBL̄TB. If we reverse the arrows
we obtain the saddle connection with signed composition −2, 1,−2.
In blue we show a saddle connection with code TBTB

¯
LBTBT and

signed composition 4, 1,−4. If we reverse the arrows the blue sad-
dle connection has the same code and signed composition.

Lemma 5. For each n and l > 0 we have

N(n) ≤ 36

n−1∑
j=0

Q(j).

Proof. Fix a corner of Bl and consider the saddle connections of length at most
n starting at this corner. We consider the associated signed composition in the
following way: the non-negative integer |ni| counts the consecutive hits in the flat
sides of Bl and mi counts the consecutive hits in a semicircle. The sign of ni tells
us which way we are moving in the unfolding, left or right, when changing from
one semicircle to the other. In this way each saddle connection yields a signed
composition.

Fix j ≥ 1 and a signed composition of j. As we showed in part b) from Propo-
sition 4, for each pair of corners there is at most one saddle connection with this
signed composition. Thus, since there are 6 corners, there are at most 36 codes of
saddle connections which correspond to a given signed composition. �

Let (n1,m1, n2,m2, . . . nk,mk) be a signed composition of j with 2k terms. De-
note by Q(j, k) the number of such possible compositions of j ∈ N with 2k terms.
Let

ri := |ni|+mi, then ~rk(j) := (r1, . . . , rk)

is a composition of j with k terms. In what follows we will first estimate Q(j, k)
and then Q(j).

Fix a composition ~rk(j). Each ni ∈ {−ri + 1, . . . ,−1, 0, 1, . . . ri − 1} yields a
different signed composition, there are

f(~rk(j)) :=

k∏
i=1

(2ri − 1)

preimages of ~rk(j) in total, i.e.,

Q(j, k) =
∑
`≥1

`×#{~rk(j) : f(~rk(j)) = `}.
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We start by estimating the number of terms in this sum, i.e., the largest possible
value of `. If s = q1 + . . .+ qk, then the arithmetic-geometric mean inequality

k
√
q1 · · · qk ≤

q1 + . . .+ qk
k

yields

q1 · · · qk ≤
( s
k

)k
.

Notice that the equality is obtained if and only if all the q1 = q2 = · · · = qk, and
thus qi = s/k. Setting qi = 2ri − 1 and s = 2j − k yields

f(~rk(j)) ≤
(

2j

k
− 1

)k

with equality if and only if ri =
2j

k
− 1.

Thus

Q(j, k) ≤
(

2j

k
− 1

)k∑
`≥1

#
{
~rk(j) : f(~rk(j)) = `

}
=

(
2j

k
− 1

)k

×#
{
~rk(j)

}
=

(
2j

k
− 1

)k (
j

k

)
.

Fix j ≥ 1 and let gj be the function defined by

k ∈ {1, . . . , j} 7→
(

2j

k
− 1

)k (
j

k

)
.

Lemma 6. The function k ∈ {1, . . . , j} 7→
(
j
k

)
is increasing for 1 ≤ k ≤ j+1

2 and

decreasing for j+1
2 ≤ k ≤ j.

Proof. The inequalities 1 ≤ k − 1 < k ≤ j + 1

2
imply that

j − k + 1

k
≥ 1 and thus(

j

k

)
=

(
j

k − 1

)
j − k + 1

k
≥
(

j

k − 1

)
and thus the function is increasing for 1 ≤ k ≤ j+1

2 .

The decreasing statement holds since
(
j
k

)
=
(

j
j−k
)
. �

For each 1 ≤ j let

hj(x) =

(
2j

x
− 1

)x

= ex ln( 2j
x −1).

Lemma 7. For each j ≥ 2 there exists a unique xj > 1 such that hj is increasing
for x ∈ [1, xj ] and decreasing for x ∈ [xj , j].

Proof. Throughout the proof the functions under consideration are restricted to
the domain [1, j]. We begin by calculating the derivative of hj ,

h′j(x) = hj(x)

(
−2j

2j − x
+ ln

(
2j

x
− 1

))
.
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Let kj(x) :=
−2j

2j − x
+ ln

(
2j

x
− 1

)
, then the signs of h′j and kj are the same since

hj is positive. We study the sign of kj by taking its derivative:

k′j(x) = − 2j

(2j − x)
2 −

2j

x (−x+ 2j)
=

−4j2

x(2j − x)2
< 0

for x ∈ [1, j].

For j ≥ 2 we have kj(1) = −2j
2j−1 + ln (2j − 1) > 0. Furthermore, kj(j) = −2 < 0;

thus there is a unique xj ∈ (1, j) which is the solution of the equation kj(x) = 0 such
that sgn(h′j(x)) = sgn(kj(x)) > 0 for x ∈ (1, xj) and sgn(h′j(x)) = sgn(kj(x)) < 0
for x ∈ (xj , j) and thus hj(x) is maximized when x = xj . �

To prove the next lemma we will use the Lambert W function; see [16] for an
introduction to this notion. The Lambert W function is a multivalued function
which for a given complex number z gives all the complex numbers w which satisfy
the equation wew = z. If z is a positive real number then there is a single real
solution w of this equation which we denote W (z).

Lemma 8. There exists a constant a such that xj = a · j for each j ≥ 2.

Proof. The equation kj(xj) = 0 is equivalent to 2j−x
x = e1e(

x
2j−x ). Substituting

w = x
2j−x yields 1/w = e1ew or equivalently 1

e = wew. Since 1
e is positive there is

a single solution to this equation w = W ( 1
e ), and thus xj =

2W ( 1
e )

1+W ( 1
e )
· j =: a · j. �

Lemma 9. The constant a verifies a ∈ (0.43562, 0.43563). The maximum value of

hj is at most
(

2
a − 1

)aj
< 1.74533j.

Proof. Notice that kj(0.43562j) ≈ 0.00001 > 0 and kj(0.43563j) ≈ −0.00002 < 0.
Remembering from Lemma 7 that kj is decreasing yields 0.43562 < a < 0.43563.

The maximum value of hj is hj(xj) = hj(a · j) =

(
2

a
− 1

)aj

. If 0 < a1 <

a then
2

a
− 1 <

2

a1
− 1. If furthermore a < min(a2, 1) then 2

a − 1 > 1 and

thus

(
2

a
− 1

)a

<

(
2

a1
− 1

)a2

. Combining this with our previous estimate yields(
2
a − 1

)a
<
(

2
0.43562 − 1

)0.43563
< 1.74533. �

Combining Lemma 6 and Lemma 9 yields:

Corollary 10. For j ≥ 2 the maximum value of function gj is bounded from above

by

(
2

a
− 1

)a(
j

b j2c

)
< 1.74533j

(
j

b j2c

)
.

To prove the next result we consider the gamma function Γ(z), we will use the
Legendre duplication formula

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z)

as well as Gautschi’s inequality

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s

which holds for any positive real x and s ∈ (0, 1).
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Lemma 11. For any even j ≥ 2 we have(
j

b j2c

)
≤
√

2

j
· 2j√

π

while for odd j > 2 we have (
j

b j2c

)
≤
√

2

j + 1
· 2j√

π
.

Proof. If j = 2n is even then

(
j

b j2c

)
=

(
2n

n

)
=

Γ(2n+ 1)

Γ(n+ 1)2
. Using the duplication

formula with z = n+ 1
2 yields

Γ(2n+ 1)

Γ(n+ 1)2
=

Γ(2z)

Γ(z + 1
2 )2

=
Γ(z)

Γ(z + 1
2 )
· 22z−1

√
π

=
Γ( j+1

2 )

Γ( j
2 + 1)

· 2j√
π
.

Next we apply Gautschi’s inequality with s = 1
2 and x = j

2 ; it yields

Γ( j+1
2 )

Γ( j
2 + 1)

· 2j√
π
<

√
2

j
· 2j√

π
.

Now suppose that j = 2n+ 1 is odd, then(
j

b j2c

)
=

(
2n+ 1

n

)
=

Γ(2n+ 2)

Γ(n+ 1)Γ(n+ 2)
.

Using the duplication formula with z = n+ 1 yields

Γ(2n+ 2)

Γ(n+ 1)Γ(n+ 2)
=

Γ(2z)

Γ(z)Γ(z + 1)
=

Γ(z + 1
2 )

Γ(z + 1)
· 22z−1

√
π

=
Γ( j

2 + 1)

Γ( j+1
2 + 1)

· 2j√
π
.

Again we apply Gautschi’s inequality, here with x = j+1
2 and s = 1

2 which yields

Γ( j
2 + 1)

Γ( j+1
2 + 1)

· 2j√
π
<

√
2

j + 1
· 2j√

π

�

Now we are ready to prove the main theorem of the paper.

Proof of Theorem 1. From Corollary 10 and Lemma 11 it follows that

Q(j, k) ≤
((

2

a
− 1

)a)j (
j

b j2c

)
≤
((

2

a
− 1

)a)j
2j√
jπ/2

=

(
2
(

2
a − 1

)a)j√
jπ/2

.

Therefore,

Q(j) ≤ jmax
k

(Q(j, k)) ≤
(
2
(

2
a − 1

)a)j √
j√

π/2
.

Thus we obtain

N(n) ≤ 36

n−1∑
j=1

Q(j) ≤ 36

n−1∑
j=1

(
2
(

2
a − 1

)a)j √
j√

π/2
≤
(

2

(
2

a
− 1

)a)n

C
√
n− 1,

where C is a positive constant. Recall that p(n) denotes the complexity of Σ̃.
Therefore using Proposition 2,

p(n) ≤ 30

n−1∑
j=0

(
2

(
2

a
− 1

)a)j

C
√
j − 1 ≤

(
2

(
2

a
− 1

)a)n

C ′
√
n− 1
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where C ′ is another positive constant. From the definition of topological entropy
we obtain

htop(Fl) ≤ log

(
2

(
2

a
− 1

)a)
≤ log(3.49066).

�

5. Other possible definitions of topological entropy

Another very natural definition of topological entropy was given by Pesin and
Pitskel’ in [20] and the closely related capacity topological entropy was defined
by Pesin in [19][Page 75]. Applying these definitions to the map Fl restricted to

M̃l yields two quantities, the Pesin-Pitskel’ topological entropy hM̃l
(Fl) and the

capacity topological entropy ChM̃l
(Fl). Formally, in [19] the capacity topological

entropy is defined in a slightly more restrictive setting than in [20], but it can be
defined in the setting of [20] and the relationship hM̃l

(Fl) ≤ ChM̃l
(Fl) from [19] still

holds. But our definition of htop(Fl) coincides with Pesin’s definition of ChM̃l
(Fl).

Thus we have the following corollary

Corollary 12. For any l > 0 the Pesin-Pitskel’ topological entropy hM̃l
(Fl) is

bounded from above by log
(
2
(

2
a − 1

)a)
< log(3.49066).

Appendix

In [2] the authors state in Theorem 3.5 that a certain 16 element partition is
generating. Just after the statement of the theorem they remark that it implies
that the six element partition we consider in this article is a generating partition
as well.

For convenience we give a formal proof of this remark. Consider the four ele-
ment partition B := {L, T,B,R}. The sixteen element partition C consists of the
connected components of the partition C′ := B ∨ F−1

l (B). The partition C′ has
14 elements since the codes TT and BB can not be realized. There are exactly
two elements of C′ which are not connected, corresponding to the pairs LL and
RR. Each of them has two connected components, we call the splitting into the
two connected components LL,LL, resp. RR,RR which yields the partition C. The
component LL (RR) consists of x ∈Ml such that x and Fl(x) are on the left (right)
semi-circle of ∂Bl and x = (s, θ) with θ ≤ 0. Similarly, the component LL (RR)
consist of such points where θ ≥ 0.

We consider the space of all codes Σ̃6 resp. Σ̃16 of orbits which stay in the
interiors of the partition elements with the six letter, resp. 16 letter alphabet, and
their closures Σ6 resp. Σ16. Note that Σ̃6 resp. Σ6 is referred to Σ̃ resp. Σ in the
rest of this article. Theorem 3.5 of [2] states that the partition C is a generating
partition in the following sense: there is a continuous surjection

π : Σ̃16 \ ((TB)∞ ∪ (BT )∞)→ M̃l \ M̂l

such that
Fl ◦ π = π ◦ σ

where σ is the shift map and M̂l := {x ∈Ml : c(s, θ) = (BT )∞ or (TB)∞}.
Actually C is a generating partition in a stronger sense; namely there is a con-

tinuous surjection

π : Σ16 \ ((TB)∞ ∪ (BT )∞)→Ml \ M̂l

such that Fl ◦ π = π ◦ σ. The proof of this stronger statement is identical to the
proof of Theorem 3.5 of [2], and it is important to note that in Equation (10) of
their proof the authors show that the intersection of closed cells is a single point.
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We define φ : Σ6 → Σ16 by regrouping consecutive symbols and erasing the
overbar or underbar except for the four cases LL,LL,RR,RR.

For example in Figure 1 we consider the lower point on L pointing up, we have

φ(. . . ,
¯
L,

¯
L,

¯
R,

¯
R, . . . ) = . . . , LL, LR,RR,RL, . . .

while if we consider the upper point on L pointing down, we have

φ(. . . , L̄, L̄, R̄, R̄, . . . ) = . . . , LL, LR,RR,RL, . . . .

The map φ is continuous, surjective, and commutes with the shift map, thus

π ◦ φ : Σ6 \ ((TB)∞ ∪ (BT )∞)→Ml \ M̂l

is a continuous surjection and such that Fl ◦ π ◦ φ = π ◦ φ ◦ σ, i.e., the six element
partition is generating as well.

Acknowledgements and statements

We thank Peter Bálint, Lyonia Bunimovich, Micha l Misiurewicz and Yasha Pesin
for useful discussions and helpful remarks. We also thank the referees for detailed
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