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Abstract
We consider an SIR model with vaccination strategy on a sparse configuration model
random graph. We show the convergence of the system when the number of nodes
grows and characterize the scaling limits. Then, we prove the existence of optimal
controls for the limiting equations formulated in the framework of game theory, both
in the centralized and decentralized setting. We show how the characteristics of the
graph (degree distribution) influence the vaccination efficiency for optimal strategies,
and we compute the limiting final size of the epidemic depending on the degree
distribution of the graph and the parameters of infection, recovery and vaccination.
We also present several simulations for two types of vaccination, showing how the
optimal controls allow to decrease the number of infections and underlining the crucial
role of the network characteristics in the propagation of the disease and the vaccination
program.
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1 Introduction

While epidemic dynamics have been studied extensively in the context of mean-field
models where each individual potentially interacts with every other individual, there
has beenmore recently a research effort to include the effect of local interactions using
sparse random graphs, see [30,35,40]. The non-homogeneity in the inter-individual
interactions can be reflected in the model by defining a degree-distribution describ-
ing the statistics of the interactions, see also the complete and pedagogical review
[44] which contains both historical and modern references on epidemic processes on
complex networks.

A rigorousmathematical description of epidemics on configurationmodels is a chal-
lenging problem, since a mean field approach implies to consider a system of infinitely
manydifferential equations of SIR (susceptible–infectious–removed/recovered) or SIS
(susceptible–infectious–susceptible) type. These systems are coupled by the distribu-
tion of links between nodes with k and j neighbors, for any pair of values k, j ∈ N. A
seminal work in that direction was [14], where a set of finitely many differential equa-
tions describing the asymptotic dynamics of a SIR on a sparse configuration model
has been rigorously derived as projections of the infinite dimensional system. This is
a remarkable result as it allows the model to grasp both the specifics of the interaction
graph and the epidemic dynamics in a simple finite dimensional deterministic dynam-
ical system. Their work agrees with other approximations in the literature, like the
work of Volz which describe a Poissonian SIR epidemics using coupled non-linear
ordinary differential equations [53], and shows that these equations are indeed verified
in the thermodynamic limit (i.e., when the number of nodes tends to infinity in a sparse
configurationmodel). See also [29] for more on the SIR dynamics on the configuration
model and [38] for equivalent formulation of the ODE dynamics.

On theother hand, vaccinationprocesseswere extensively studied in last years, since
the anti-vaccine movements threaten social health programs by playing a common
goods dilemma: they try to avoid the individual costs of vaccination and simultaneously
pretend to enjoy the advantages of herd immunity. Bymodeling vaccination as a game,
we are faced with the classical difference between individual and social optima, and
worse equilibria are reached due to individual actions, than the ones obtained by a
centralized planner.

So, the optimal vaccination problem has been studied using control and game
theory tools, see [2,22,34,49,55]. Two main points of view are considered: a rational
individual immersed in the population who maximize its own benefit, or a centralized
agent who takes decisions for the overall population, for example a government.

The optimization problem for a centralized agent can be thought of as to minimize
the costs of a vaccination program while preventing the epidemic spread of a disease,
for example, achieving herd immunity. In [26], the authors consider a deterministic
epidemic compartmental model and use a time-dependent vaccination rate and linear
costs to get the optimal vaccination strategy.

Let us observe that the authors in [21] propose an evolutionary game-theoretic
problem, where individuals use evidence to estimate costs of vaccination, the model
being based on the agent point of view. Vaccination strategies can also be influenced
by a neighborhood behavior and may depend on the individual’s beliefs about their
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neighborhood vaccination strategies [36,45]. Another approach can be found in [22],
where they study how the psychology of individuals intervenes in their perception of
their risk, susceptibility or mortality rates.

Regarding a network background, the authors in [54] show that the vaccination
is most effective when the full network structure is known by the individual agents
although in the real world the decisions are based on partial information of the contact
underlying graph. This could justify that individuals decide to get vaccinatedwith rates
that depend on their degree in the network. Highly-connected individuals (hubs) have a
high incentive to vaccinate, whereas individuals with few contacts have less incentive
to vaccinate as exposed for example in [13,36,49]. We refer the interested reader to
[9] for an extensive review of compartmental models for epidemic modeling, both
in mean field setting and in networks mode, the discussion on the trade-off between
simple vaccination models which miss a lot of details but are very useful to reach
a general qualitative analysis, and more detailed models usually designed for quite
specific diseases and populations.

In [3,11], the authors considered different local vaccination strategies, where ran-
domly chosen neighbors of the selected individuals are vaccinated, prior to the
introduction of the disease. They obtained formulas for the final size of the epidemic
as function of the vaccination intensity using branching processes techniques and
generating functions.

In this work, we study degree related vaccination strategy including the case of the
“proportional to degree” strategy, which is very similar to the acquaintance vaccination
model, originally proposed in [12]. Let us remarkhowever that amajor difference in our
model is that the vaccination process and the epidemic occur simultaneously. We con-
sider a Markov-variant of the SIR model, where infectious periods are exponentially
distributed, see for details andmore generalmodels [4].We adapt the techniques devel-
oped in [14] and [29] to show the convergence of the degree measures that describe the
Markovian dynamics of propagation on the random graph in this context and obtain a
generic and deterministic description of the epidemic evolution. As in the case without
vaccination, we are able to derive a finite-dimensional differential system describing
the evolution of the quantities that usually describe the epidemics, namely the number
of individuals in each compartment (Susceptible, Infected, Recovered andVaccinated)
and the basic and effective reproduction number, whose definitions and description
are in Sect. 5.

The vaccination model deals with a context where individuals do not know if
their contacts are infected or not (otherwise, they might actually suppress them),
and could have an incentive of vaccination based on their social interactions. Usually,
macroscopic indicators at the level of city or state give a clue of the severity of the
epidemic, although as in the case of the actual Covid-19 pandemic, an exact knowledge
of the state of your contacts is challenging due to the presence of asymptomatic
individuals.
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Then, we study the optimal controls for the vaccination formulated as a game both
in a decentralized and centralized setting following ideas developed in [16] (in a purely
mean-field setting). We show in particular that the optimal vaccination strategy boils
down to a bang-bang control, i.e., the optimal solution consists in vaccinating with the
highest possible rate until some fixed time-threshold depending on the connectivity of
the network and the costs, and then not to vaccinate at all anymore. On the other hand,
using techniques from continuous optimization for systems with restricted controls,
we first define a general assumption that allows proving uniqueness and existence
of optimal control in the sense of viscosity solutions following [10] and [51]. We
also show that the optimal centralized strategy must be developed at the highest rate
possible when deployed. We could not however prove that there is only one phase of
vaccination.

Finally, we consider four network examples, compute the optimal vaccination strat-
egy and simulate the propagation of the disease and the vaccination program. We
observe that the optimal strategy has the desirable feature to reduce considerably the
total number of infected individuals, while a more conservative vaccination program
would increase costs without having significant effects on the epidemic.We also relate
our results to graph measures as centrality coefficients and to the classical indicators
associated to the epidemic.

1.1 Organization of the Paper andMain Contributions

In Sect. 2, we introduce the necessary notation and the epidemic model. For the sake
of completeness, we add a short description of the configuration model random graph,
together with the relevant measure spaces considered.

In Sect. 3we generalize the results of [14] describing the propagation of an epidemic
on a configuration model random graph by incorporating a strategy of vaccination for
the susceptible population depending arbitrarily on time and out-degrees.

Wefirst present ourmain scaling limit result:weobtain an infinite systemofmeasure
valued differential equations that describe the Markovian dynamics of propagation of
a disease on the random graph, subject to a vaccination strategy, see Theorem 1.
Then, we derive a finite-dimensional differential system describing the evolution of
themain variables that describe the epidemic, namely the number of individuals in each
compartment (S, I , R, V ), and the probability of interaction between the susceptible
population with agents in different compartments.

In this edge-based system, pX will denote the probability that an edge connects a
susceptible with a node in state X , for X = S, I , R, or V . We use a generalization of
the probability generating function g, associated to the initial degree distribution and
depending on two variables that describe the probability that an individual remains
susceptible: α, the probability that an edge has not transmitted the disease to a given
node (which help us to describe the probability that the node is not infected), and θ to
describe the probability of no vaccination. The closed system we get is the following
(see the next section for the precise definitions and notation):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −rpIα

θ̇ = −πθ

İ = −γ I + rpIα∂αg(α, θ)

V̇ = πθ∂θg(α, θ)

ṗS = rpI pS
(

1 − α∂ααg(α, θ)

∂αg(α, θ)

)

− π pS − θπ pS
∂αθg(α, θ)

∂αg(α, θ)

ṗ I = −γ pI + rpI pS
α∂ααg(α, θ)

∂αg(α, θ)
− rpI (1 − pI )

ṗV = rpI pV + θπ pS
∂αθg(α, θ)

∂αg(α, θ)
,

(1)

where r , γ and πt are the contagion, recovery and vaccination rates.
The heterogeneity of the population connections, which is an important feature in

many propagation models [2,40,44,52], can be grasped here through the function g of
the degree distribution; in our case, through the expression αt∂ααg(αt ,θt )

∂αg(αt ,θt )
.

We also write the system in the cases where the vaccination rate depends linearly on
the degree of a node or is constant. Here the system relies on the probability generating
function of the initial degree distribution ψ and the mean excess degree of the nodes
generalizing known results [42,53].

Let us observe that this heterogeneity is not present in classical mean field mod-
els which rely on the assumption of a completely homogeneous mixed population.
However, we will show that the system (1) in a configuration model with a Poisson
degree distribution converges to the classical SIR model when the mean degree goes
to infinity. The system of equations (1) allows us to compare agent based simulations
or real data with the curves obtained by numerical integration [19].

In Sect. 4, we study the optimal control problems associated with vaccination. In
order to consider the effect of the graph structure, we define a vaccination strategy
as a bounded and measurable time dependent function, followed uniformly by all
the individuals in the population but depending on the connectivity of an individual.
We assume that the rate of vaccination is not decreasing in the degree, in agreement
with the literature where highly connected individuals have more incentive to get
vaccinated whereas individuals with few contacts have less incentive. On the other
hand, this is already a large family of controls, needing a quite general theoretical
treatment, involving in particular weak viscosity solutions.

The optimal vaccination policy will vary if we consider the individual point of
view. This decentralized case is approached using the theory of mean field games,
by considering the perspective of a single rational individual added to an infinite
population with a given arbitrary vaccination policy. We show in particular that the
optimal vaccination strategy boils down in that case to a bang-bang control, i.e., the
optimal solution consists in vaccinating with the highest possible rate until some fixed
stopping time depending on the connectivity of the network and the costs, and then
not to vaccinate at all anymore,

πt = ν1[0,τ ](t),
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where ν is the rate of vaccination and 1[0,τ ] is the characteristic function of the set
[0, τ ]. Then, we consider the social optimum, and we introduce a particular cost
functional in order to find the optimal centralized strategy. As before, we show that
the optimal strategy πt is of threshold type, taking either the maximum value or zero.

In Sect. 5we analyze the theoretical results andwe present numerical computations.
Weobtain amodifiedBasicReproductionNumber for the epidemic on the graph before
the vaccination process started, namely

R0 = r

r + γ

∂ααg(1, 1)

∂αg(1, 1)
.

Therefore, an epidemic outbreakwill occur with strictly positive probability if R0 > 1,
and corresponds to the already known critical threshold stated in [41,44]. We compute
the optimal vaccination strategy and we simulate both the propagation of the disease
and the vaccination program. We observe that the optimal strategy has the desirable
feature to reduce considerably the final size of the epidemic, depending on the con-
tagion and recovery rates r and γ , the function g, the threshold τ and the rate of
vaccination ν, while a more conservative vaccination program would increase costs
without having significant effects on the epidemic.

Finally, we consider different networks generated by four degree distributions, all
with the same mean degree first, and with the same R0 later:

(a) Poisson, which corresponds with mean field models with homogeneous mixing,
as we show in Sect. 3.2.1;

(b) Bimodal, where a fraction of the population has few links distributed Poisson,
while the rest of the nodes has many links, as proposed in [9].

(c) a Regular graph, as an example of networks where all nodes are equals on its
rates; and

(d) Power Law, a classical model of social networks [42].

We conclude in Sect. 6, and the full proofs of the different theorems can be found
in Sect. 7.

2 Model Setting and Notation

2.1 ConfigurationModel Graph

Let us introduce the stochastic environment of the epidemic process. We use the
configuration model random graph introduced by Bollobás [7] which can be con-
structed as follows. First denote Nn

0 = {0, . . . , n} and suppose we have n nodes, and
a sequence of degrees k1, . . . , kn independent and identically distributed according
to p(n) = (p(n)

k )k=1,...,n−1
1 such that the sum of the degrees is even. One initially

assigns a quantity ki of half-edges to the i th-node and then choose two of them uni-
formly from the unmatched ones, establishing the connection between the nodes, until
all the half-edges are matched. Nodes will represent individuals, thus we will use both
terminology throughout the paper.

1 The independence assumption can be relaxed, but we assume it for simplicity.
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Under the assumption that p(n) converges in probability to p = (pk)k∈N0 and

E[p(n)2] converges to E[p2] < ∞ when n goes to infinity, there is asymptotically a
probability bounded away from 0 of obtaining a simple graph as showed in [28]. Thus,
we may repeat the matching procedure until we obtain a simple graph, i.e., until the
resultant graph does not contain self-loops nor multiedges [18].

As a consequence, the degree of a randomly chosen node is distributed according
to p(n). Now, the probability that a neighbor has degree k is kpk∑

j=1,...,n jp j
, which is the

so-called size-biased degree distribution. This distribution will greatly influence the
dynamics on configuration models as opposed to the mean field point of view, where
the underlying graph of potential connections is complete.

Given a degree distribution p = (pk)k∈N, the associated probability generating
function is defined by ψ(z) = ∑

k∈N pkzk .

2.2 Epidemic Dynamics andVaccination

We now describe the dynamics of the epidemic with vaccination. For a given Suscep-
tible node (i.e., not having contracted the illness nor vaccinated) we consider several
independent exponential clocks with parameter r , one for each edge connecting an
Infected node (i.e., potential encounters). It will describe the contact process: if this
clock rings, the Susceptible makes a transition to state Infected and remain infec-
tious during an exponential time with mean 1/γ , whereupon it will not longer infect
any node, going to Recovered state. Also for the Susceptible, we consider a non-
homogeneous Poisson Process with rate πt (k) depending on the degree k of the node,
which is the time dependent control variable and represents the rate at which the
individual becomes Vaccinated, indicated by the jumps of this process.

Both Recovered and Vaccinated states are absorbing states of the resulting con-
tinuous time Markov chain, and we differentiate between both to keep track of the
epidemic characteristics. Also, they have a different impact on the total costs of an
epidemic.

In the sequel, we suppose that πt (k) = ξ(k)πt , where πt is a measurable bounded
function on [0, T ] and ξ : N → R. For the existence of the fluid limit, some technical
assumption on ξ is needed, and we suppose that

∑

k

μS
t (k)ξ(k) <

∑

k

πt (k)μ
S
0 (k)k

3,

where μS
0 is the initial degree distribution of the susceptible population.

The cases ξ(k) = 1 and ξ(k) = k appear more frequently in the literature of local
vaccination strategies. Constant rate indicate homogeneity of the agents on the immu-
nization effort; and a rate proportional to the degree, as in the case of acquaintance
vaccination [3,11,12], takes into account that vaccination of hubs and higher degree
nodes is convenient to stop the transmission of a disease. This can also be achieved
using a targeted vaccination where higher degree nodes are vaccinated, which corre-
sponds to ξ(k) = 1κ≤k(k) for some threshold κ . In the acquaintance vaccination, one
samples a fraction of the nodes, and for each sampled node, one of their neighbors
uniformly chosen is vaccinated. Hence, the probability of a node to be selected by any
neighbor is proportional to their degree since it has the size biased distribution.
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2.3 SIR-V Dynamics on a ConfigurationModel

Wedenote Snt , I
n
t , R

n
t and V

n
t the total number of Susceptible, Infected, Recovered and

Vaccinated nodes respectively, and Sn
t , In

t , Rn
t and Vn

t the sets containing the nodes
in each state. These quantities are of central interest in the literature and they are the
main variables describing the dynamics (we refer the reader to [30] for an informative
review on epidemics dynamics). Nevertheless, let us remark that our model being
over a Configuration Model random graph, computing its dynamics is in principle
very demanding, as we should study a stochastic process in (growing) dimension n,
the number of nodes.

The principal signification of part (ii) in Theorem 1 below is that the limit behavior
is a good approximation of the case n large.

Instead, we study the dynamics of four measures in MF (N0), the set of finite
measures onN0 embeddedwith the topology of weak convergence (we refer the reader
to [6] for a complete description of topological properties and results), describing the
connection between the susceptible population and the rest. For this purpose, we resort
to the so-called principle of deferred decisions, revealing the graph simultaneously
with the propagation of the disease, regarding the types of the edges connecting the
different states of the individuals. This trick is possible since the random environment
for the epidemic dynamics acts over a configuration model which is constructed using
a uniform matching. We follow here the ideas developed in [14] and [5].

We now describe the quantities involved in our formulation of the dynamics pre-
cisely. For the i th-node, we denote kSi the random number of edges connecting the
i th-node to a susceptible individual, and δk the Dirac measure on N0. The empirical
measureμ

S,n
t ∈ MF (N0) describes the degree of the susceptible individuals: for each

k ∈ N0, μ
S,n
t (k) denotes the number of susceptible nodes with degree k at time t ,

μ
S,n
t =

∑

i∈Sn
t

δki .

Similarly,

μ
I S,n
t =

∑

i∈In
t

δkSi
, μ

RS,n
t =

∑

i∈Rn
t

δkSi
and μ

V S,n
t =

∑

i∈Vn
t

δkSi

represent the number of nodes in each state I , R, V connected with the susceptible
population. We write μn

t = (μ
S,n
t , μ

I S,n
t , μ

RS,n
t , μ

V S,n
t ).

Instead of considering the proportion of the population in each state, our work
describes the dynamics of the following edge-based quantities:

NS,n
t = 〈μS,n

t , χ〉 :=
∑

k∈N
kμS,n

t (k),

the number of semi-edges connecting a susceptible node; and, analogously, N I S,n
t ,

N RS,n
t , NV S,n

t are the number of edges linking a susceptible node with an infected,
recovered or vaccinated one, when the size of the population is n.
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We also consider the proportions of edges associated to those quantities:

pI ,nt = N I S,n
t

N S,n
t

,

pR,n
t = N RS,n

t

N S,n
t

,

pV ,n
t = NV S,n

t

N S,n
t

,

pS,n
t = NS,n

t − N I S,n
t − N RS,n

t − NV S,n
t

N S,n
t

.

2.4 Scaling Limits

Ourmain result consists in the convergence of the normalized empiricalmeasures in the
Skorokhod space embedded with the weak topology. We write the semi-martingale
decomposition stated in Proposition 5 and a description of the Markovian process
through a system of stochastic differential equations derived form Poisson point mea-
sures, see Sect. 7.1.

For each μ ∈ MF (N0), the set of finite measures on the natural numbers including
zero, and f ∈ Bb(N0), the set of bounded real functions on N0, we write

〈μ, f 〉 =
∑

k∈N0

f (k)μ(k).

In order to show that the normalized degree empirical measures of each type con-
verge to the solutions of an infinite system of differential equations as the population
size tends to infinity, we scale the measures in the following way: for n ∈ N, we set

μ
(n)
t = 1

n
μn
t .

The suppression of n will denote the limit measures associated to the fluid limit
μt = (μS

t , μ
I S
t , μRS

t , μV S
t ). In the limit we also define:

αt = e− ∫ t0 rpIs ds and θt = e− ∫ t0 πsds, (2)

that allow us to describe the probability that a node with degree k has not contracted
the disease, αk

t , and the probability of no vaccination at time t , θξ(k)
t .

3 Results

3.1 Large Graph Limit

We now state the convergence of the degree empirical measures when the size of the
population tends to infinity. The corresponding deterministic solution of the measure-
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valued system will in turn give interesting insights on the effect of the vaccination in
the propagation of the epidemic for large populations.

The proof is similar to the proof of the main theorem in [14], for a SIR without
vaccination. We use strongly the fact that πt is uniformly bounded on time, and this
introduces several differences in steps 2 and 5 (compared to their original proof), where
we need to invoke results from [15] in order to ensure uniqueness of weak solutions
to the transport equation involved. We add it in the last section for completeness.

Theorem 1 Suppose (μ
(n)
0 )n∈N converges to μ0 inM4

F (N0) embedded with the weak
topology. Then

(i) there exists a unique solution μt of the deterministic system of equations (3);
(ii) the sequence (μ(n))n∈N converges in distribution to μ in the Skorokhod space

when n goes to infinity.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μS
t , f 〉 =

∑

k∈N
μS
0 (k)αk

t θ
ξ(k)
t f (k),

〈μI S
t , f 〉 = 〈μI S

0 , f 〉 −
∫ t

0
γ 〈μI S

s , f 〉ds +
∫ t

0

∑

k∈N
rpIs k

×
∑

i, j,l,m/
i+ j+l+m=k−1

(
k − 1

i, j, l,m

)

(pSs )i (pIs ) j (pRs )l (pVs )mμS
s (k) f (i)ds

+
∫ t

0

∑

k∈N
rkpIs (1 + (k − 1)pIs )

∑

j∈N0

( f ( j − 1) − f ( j))

+ jμI S
s ( j)

N I S
s

μS
s (k)ds

+
∫ t

0

∑

k∈N
πs(k)kp

I
s

∑

j∈N0

( f ( j − 1) − f ( j))
jμI S

s ( j)

N I S
s

μS
s (k)ds.

〈μRS
t , f 〉 = 〈μRS

0 , f 〉 +
∫ t

0
γ 〈μI S

s , f 〉ds +
∫ t

0

∑

k∈N
(rkpIs (k − 1)pRs

+ πs(k)p
R
s k)

∑

j∈N0

( f ( j − 1) − f ( j))
jμRS

s ( j)

N RS
s

μS
s (k)ds.

〈μV S
t , f 〉 = 〈μV S

0 , f 〉 +
∫ t

0

∑

k∈N
πs(k)

∑

i+ j+l+m=k

(
k

i, j, l,m

)

+ (pSs )i (pIs ) j (pRs )l (pVs )mμS
s (k) f (i)ds

+
∫ t

0

∑

k∈N
(rpIs k(k − 1)pVs + πs(k)p

V
s k) μS

s (k)

×
∑

j∈N0

( f ( j − 1) − f ( j))
jμV S

s ( j)

NV S
s

ds.

(3)
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The derivation of the system of equations (3) can be explained by the underlying
Markovian process describing an epidemic on a configuration model graph, which is
also useful for a possible simulation. The edges basedmeasures must be updated when
any of the three possible events occur: the infection or vaccination of a susceptible
individual (with a rate that depends linearly on their degree k), and the removal of an
infected one (according to exponential clocks of parameter γ ).

Let us recall that probability that an individual of degree k that started susceptible
remains in that state at time t is θ

ξ(k)
t αk

t , which gives the first equation. In the second
equation, the first integral accounts for the removing of infectious individuals; the
second one corresponds to the addition of the newly infected, rkpI is the rate of
infection for a susceptible of degree k and the multinomial part is the random draw of
the neighbors according to the probabilities of the edges. The third and fourth integrals
correspond to the infection or vaccination of the neighbors of each infected individual,

whose degree is chosen according jμI S
s ( j)
N I S
s

, the size biased distribution. The number

of edges to the susceptible population decreases by one in both events, infection and
vaccination.

Now, choosing f (k) = 1i (k) in (3) we obtain a countable system of ordinary
differential equations that allows us to describe the infection propagation in terms of
the measures:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μS
t (i) = μS

0 (i)αit θ
ξ(i)
t

μI S
t (i) = μI S

0 (i) −
∫ t

0
γμI S

s (i)ds +
∫ t

0
rpIs

×
∑

j,l,m

(i + j + l + m + 1)

(
i + j + l + m + 1

i, j, l,m

)

× (pSs )i (pIs ) j (pRs )l (pVs )mμS
s (i + j + l + m + 1)ds

+
∫ t

0

(
rpIs 〈μS

s , χ〉 + r(pIs )2〈μS
s , χ2 − χ〉 + pIs 〈μS

s πs , χ〉
)

×
(

(i + 1)μI S
s (i + 1) − iμI S

s (i)

〈μI S
s , χ〉

)

ds

μRS
t (i) = μRS

0 (i) +
∫ t

0
γμI S

s (i)ds +
∫ t

0

(
rpIs p

R
s 〈μS

s , χ2 − χ〉 + pRs 〈μS
s πs , χ〉

)

×
(

(i + 1)μRS
s (i + 1) − iμRS

s (i)

〈μRS
s , χ〉

)

ds

μV S
t (i) = μV S

0 (i) +
∫ t

0

∑

j,l,m

πs(i + j + l + m)

(
i + j + l + m

i, j, l,m

)

× (pSs )i (pIs ) j (pRs )l (pVs )mμS
s (i + j + l + m)ds

+
∫ t

0

(
rpIs p

V
s 〈μS

s , χ2 − χ〉 + pVs 〈μS
s πs , χ〉

)

×
(

(i + 1)μV S
s (i + 1) − iμV S

s (i)

〈μV S
s , χ〉

)

ds.
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3.2 Closed System

In Proposition 1, we now derive a generalization of the equations proposed by Volz
[53] including a generic vaccination strategy.

If the vaccination function was constant or bounded and continuous, then existence
and uniqueness would be trivial. However, we are allowing the control to be bounded
andmeasurable implying the necessity of a general treatment as the one studied in [10]
or [51] which states that the functional describing the dynamics needs to be Lipschitz.
This hypothesis is straightforward using classical computations and bounds together
with the properties of the involved functions.

We define the function

g(α, θ) =
∑

k∈N
μS
0 (k)α

kθξ(k), (4)

and denote with a subscript the partial derivation of g, namely:

∂αg(α, θ) =
∑

k∈N
μS
0 (k)α

k−1kθξ(k),

and analogously for the rest. This function will be key to reduce the number of equa-
tions to seven, obtaining in this way a tractable description of both the epidemic
dynamics and the optimal vaccination strategy.

Proposition 1 In the limit of infinitely many nodes, the system (3) can be reduced to
the following system of differential equations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −rpIα

θ̇ = −πθ

İ = −γ I + rpIα∂αg(α, θ)

V̇ = πθ∂θg(α, θ)

ṗS = rpI pS
(

1 − α∂ααg(α, θ)

∂αg(α, θ)

)

− π pS + θπ pS
∂αθg(α, θ)

∂αg(α, θ)

ṗ I = −γ pI + rpI pS
α∂ααg(α, θ)

∂αg(α, θ)
− rpI (1 − pI )

ṗV = rpI pV + θπ pS
∂αθg(α, θ)

∂αg(α, θ)
.

(5)

Moreover, the right-hand side of the system is Lipschitz and uniformly bounded, and the
problem (5) hence admits a unique solution for any initial datum and any measurable
π : [0, T ] → [0, ν].
Proof We use the function g to compute a closed expression for NS

t , N
I S
t , N RS

t and
NV S
t and its derivatives. We denote 1(k) := 1 and χ(k) = k.
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Note that

St = 〈μS
t ,1〉 =

∑

k∈N
μS
t (k) =

∑

k∈N
μS
0 (k)α

k
t θ

ξ(k)
t = g(αt , θt )

is the proportion of susceptible individuals at time t .
Similarly,

It = 〈μI S
t ,1〉

=
∑

k∈N
μI S
0 −

∫ t

0
γ Isds +

∫ t

0
rpIs αs∂αg(αs, θs)ds

= I0 +
∫ t

0
−γ Is + rpIs αs∂αg(αs, θs)ds,

Rt = R0 +
∫ t

0
γ Isds,

Vt = V0 +
∫ t

0
πsθsαs∂θg(αs, θs)ds.

The next step is to find the dynamics for pSt and the other edges probabilities. Before
computing it, let us note that:

NS
t = 〈μS

t , χ〉 =
∑

k∈N
μS
t (k)k =

∑

k∈N
μS
0 (k)α

k
t kθ

ξ(k) = αt∂αg(αt , θt ). (6)

Using the definition of pIt and α̇t = −rpIt αt , we obtain:

Ṅ S
t

N S
t

= −rpIt − θtπt∂αθg(αt , θt )

αt∂αg(αt , θt )
− αt r pIt ∂ααg(αt , θt )

∂αg(αt , θt )
.

We replace f by χ in (3), and after some basic computations, by rearranging terms
using the multinomial theorem, we have

ṗ It =
˙N I S
t

N S
t

− pIt
Ṅ S
t

N S
t

= −γ pIt + pIt rp
S
t
αt∂ααg(αt , θt )

∂αg(αt , θt )
− rpIt (1 − pIt ).

(7)

Reasoning similarly with the other probabilities, and putting all the equations
together, we have, for each control π : [0, T ] → [0, ν], the closed system of
equations (5).

This finishes the proof. �	
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Remark 1 The particular case ξ(k) = ak+bwhich includes constant and acquaintance
vaccination can be studied using only the generating function of the initial degree
ψ(z) = ∑

k∈N μS
0 (k)z

k of the network. To this end, we define the quantities

βt = e− ∫ t0 rpIs +aπsds and φt = e− ∫ t0 bπsds,

and rewrite the system in terms of these new variables. Let us note that the derivation
follows from system (3). Noticing that St = φtψ(βt ), the dynamics are described by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̇ = (−rpI − aπ)β

φ̇ = −bπφ

İ = −γ I + rpIφβψ ′(β)

V̇ = aπφβψ ′(β) + bπφψ(β)

ṗS =
(

1 − βψ ′′(β)

ψ ′(β)

)

pSrpI − π pS(a + b) − pSπa
βψ ′′(β)

ψ ′(β)

ṗ I = −γ pI + pI rpS
βψ ′′(β)

ψ ′(β)
− rpI (1 − pI )

ṗV = pSπ(a + b) + rpI pV + π pSa
βψ ′′(β)

ψ ′(β)
.

(8)

Observe first that the dynamics of the epidemic depend strongly on the degree dis-
tribution, since the expression βtψ

′′(βt )
ψ ′(βt ) governs the expected number of susceptible

individuals connected with a neighbor of a given degree at time t .

3.2.1 Relation with Mean Field Models

Let us quickly clarify the differences between this model with a linear vaccination
rate and the usual mean field model. In the sparse Erdös–Renyi model, the number of
neighbors in the graph follows a binomial distribution, which can be approximated in
a large population by a Poisson distribution. On the other hand, when the graph is fully
connected and the contact process is determined by a Poisson process, the number of
neighbors with whom each node effectively connects is also Poisson distributed.

In the Mean Field model with vaccination [16], an individual of an homogeneous
population encounters others following a Markov process in continuous time with
rate r . So, individuals can be in three states: susceptible, infected and recovered or
vaccinated; and we denote St , It and Rt , its respective proportions of the total popula-
tion. Here, vaccinated individuals are treated as recovered, since the influence in the
propagation of the disease is the same. If the initial individual of the contact process
is susceptible and the encountered one is infected, the first one becomes infected. An
infected individual recovers at rate γ , and a susceptible can choose its own vaccination
rate π , going to recovery state. The optimal strategy π played for all the players is
called amean-field equilibrium, defined as a fixed point of the best response functional,
this is, π ∈ BR(π), which minimizes a properly defined cost functional [17]. A mean
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eld equilibrium consists in a strategy where no player has an incentive to deviate from
the common strategy for their own benefit. When the size of the population goes to
infinity, the dynamics of the population where all players use the vaccination strategy
π is described by the following system of equations:

⎧
⎨

⎩

Ṡ = −r I S − π S
İ = r I S − γ I
Ṙ = γ I + π S.

(9)

The main difference between the two systems lies on the term associated to the
infection process in the mean field case, r St It , which is now rpIt φtψ

′(βt ) = r N I S
t

and the neighbors are chosen according to the size biased distribution. In the particular
case of Poisson distribution, the size biased distribution is also Poisson, and, as we
show in this section, both models are asymptotically similar.

Here, we are considering an edge-based dynamics instead of an individual-based
one. In the propagation of the disease, exponential clocks of the contact process are
assigned to edges connecting susceptible with infected nodes, the mechanism is not to
choose uniformly between all the individuals in the population but in a neighborhood,
which modifies quantitative and qualitatively the generator of the Markov process and
therefore the limit equation.

Though the dynamics are not the same, (even in the case of a Poisson distribu-
tion for the configuration model), one can actually show that they are asymptotically
equivalent, when the mean number of connections between individuals grows large.

If we consider a population of size N in which every individual has C possible
contacts and scale it such that r̂ = rC remains constant, the mean field equation of
these dynamics is described by (9) replacing r and π by r̂ and π̂ respectively. Then
our limiting dynamics on a configuration model with Poisson degree distribution, not
fully connected but uniformly linked, solve the MF equations when C goes to infinity
taking ψ(z) = CeC(z−1). Being S = φψ(β), we have:

Ṡ = φβψ ′(β)(−rpI + aπ) − πbSt = −CSrpIβ − aβπCS − bπ S.

Since r̂ is taken to be constant, it is of order O(1) asC grows, and only a proportion
of order O(I/C) of the edges may transmit the infection from one infected neighbor
to the observed susceptible. Also, the last term is of order O(1). Therefore, for large
C , pI can be approximated by I − O(I/C) and similarly, when C is large enough,
β = 1 − O(1/C). Moreover, pIβ = I + O(I/C), giving us

Ṡ = −r̂ I S − π̂ S + O(I S/C),

which is asymptotically the first equation in (9). The third equation follows from a
similar reasoning, and the second one from the fact that S = 1 − I − R.
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4 Optimal Control Problems

As underlined before, we aim in this section at describing the optimal strategy which
will consist in vaccinating at the maximum rate as soon as possible up to some critical
time (not necessarily deterministic) depending on the parameters of the model.

We define a generic vaccination strategy, which is time dependent and also depends
on the individual connection in the network environment. Using the theory developed
in [10,51], we characterize under mild assumptions the existence and uniqueness of
a viscosity solution for our optimization problem. Of course, the model is a crude
simplification of a very complex reality, but we believe it still allows to grasp an
interesting phenomenology (see Sect. 5.1). We do not involve explicitly in our setting
more individual features like age, risk, or beliefs, nor susceptibility to the disease.
However, many of these characteristics may be modeled through adequate parameters
and cost values.

4.1 Individual Cost

In this section, we analyze the optimal control problem from an individual point of
view.We focus on the perspective of a particular individual immersed in the population,
who will take decisions in order to minimize their cost in a game against the whole
population. This rational individual can be considered as a player seeking for the best
response to a fixed strategy followed by the population, and we are therefore in the
context of the theory of mean field games, which shall provide our context, definitions
of equilibrium and existence results.

Supposewe add an individual to a population that evolves according to a vaccination
strategy π . Since the population is infinite, the behavior of this new individual will
not affect the evolution of the whole population, hence its dynamics will be described
by the already stated equations (5), which we represent in the form ẋ = ϕ(x, π). We
denote by π̃ the vaccination strategy for the new individual and x̃ = (S̃t , Ĩt , R̃t , Ṽt )
their probability distribution over the four possible states.

Finally, let us remark that despite the mean field game denomination, the dynamics
of the population follows the network based system that we described in Sect. 3.2.

We suppose that the new individual has degree k, therefore, we have that

θ̃t = e− ∫ t0 π̃sds .

Since S̃t = αk
t θ̃

ξ(k) as before, but depending on the dynamics of the population
infected edges and on their own vaccination rate, their state is determined by the
following system of the form ˙̃x = f0(x, x̃, π, π̃):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
θ = −π̃ θ̃

˙̃I = −γ Ĩ + rpIαg′(α, θ̃)

˙̃V = π̃ θ̃∂αg(α, θ̃)

α̇ = −rpIα

θ̇ = −πθ

İ = −γ I + rpIα∂αg(α, θ)

V̇ = πθ∂θg(α, θ)

ṗS = rpI pS
(

1 − α∂ααg(α, θ)

∂αg(α, θ)

)

− π pS − pSθπ
g(α, θ)

∂αg(α, θ)

ṗ I = −γ pI + rpI pS
α∂ααg(α, θ)

∂αg(α, θ)
− rpI (1 − pI )

ṗV = rpI pV + pSθπ
g(α, θ)

∂αg(α, θ)
.

(10)

We do not write the dependence of the variables on time nor on the degree of the node
in order to avoid heavy notations.

We consider a cost function similar to the one proposed in [16,26,31], which con-
tains a linear term in the vaccination rate cVπt where cV may depend on the cost
of the vaccine and its possible side effects; and a term modeling the cost incurred
by an infected patient per time unit, which could include the possible loss generated
by being unable to attend work, the costs of treatment and medical consultation, and
could consider the severity of an illness such as its sequels or even death. Hence, the
new individual wants to minimize their cost defined by:

C̃t (π, π̃) =
∫ T

t
cI Ĩs + cV π̃sα

k
t θ̃

ξ(k)ds. (11)

So, the new individual looks at the best response to strategy π , i.e., they want to
play BR(π) ∈ argminπ̃ C̃t (π, π̃). The minimum is taken over

� = {π̃ : [0, T ] → [0, ν] bounded and measurable},

which is a compact set for the weak topology. This implies that BR(π) is not empty,
since any minimizing sequence has a limit.

In Theorem 2 of [17], the authors show that if the dynamics and the costs are contin-
uous functions of the involved variables there always exists a mean-field equilibrium
in such games; thus the existence of a solution for our problem follows from their
result, since the cost is linear in I , the function g is analytic, and the rates of transition
for the new individual depend linearly on pI or are constant for a fixed π .

Although this result guarantees the existence of a mean field equilibrium, we will
compute the best response strategy for any π played by the population analyzing our
problem as a continuous time Markov Decision Problem with finite horizon.
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Denote JS(t), JI (t) the optimal cost starting at time t in states susceptible and
infected, respectively. The optimal cost J and the strategy π̃∗ that realize it, satisfy
the following Hamilton–Jacobi–Bellman optimality equation [46]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

JS(T ) = JI (T ) = 0

− ˙JS(t) = inf π̃
[
π̃ θ̃ ξ(k)(cV − JS(t)) + pIt rk(JI (t) − JS(t))

]

− ˙JI (t) = cI − γ JI (t)

π̃∗ = argminπ̃∈�̃

[
π̃ θ̃ ξ(k)(cV − JS(t)) + pIt rk(JI (t) − JS(t))

]
.

(12)

The equation explains how state transitions and their rates impact on the individual
expected cost.

Proposition 2 Let π̃∗ be the strategy of a node with degree k that realizes the optimal
cost J . Then, π̃∗ is threshold, that is, π̃∗ = ν1[0,τ ](t) for some τ ∈ [0, T ].
Proof We will prove that the optimal strategy is constantly the maximum rate of
vaccination until some time τ , and after that instant, the optimal strategy boils down
to zero. Let us remark that the costs associated to two different strategies that differ in
a null measure set stay the same. So, we have uniqueness up to a zero measure set.

We can see from the third equation in (12) that

JI (t) = cI
γ

(1 − eγ (t−T )).

Hence JI decreases from JI (0) = cI
γ

(1 − e−γ T ) to JI (T ) = 0.
Let us also observe that if JS(t) > cV then π̃(t) = 0. Since JS(T ) = 0 and the

costs are continuous, J̇S(T ) = 0 therefore, if we call τ the first instant at which JS is
below cV , we have JS(t) ≤ JI (t) for all τ ≤ t ≤ T , such that the second term in the
second equation in (12) is non-negative. If JS does not cross cV , then we take τ = 0.

Moreover, if the cost of being susceptible is bigger than the vaccine cost, the deriva-
tive of JS will be even smaller. Hence, JS(t) ≤ JI (t) for all 0 ≤ t ≤ T and therefore
JS is always decreasing before τ . This concludes the proof. �	

Let us remark that the optimal cost depends on the degree k of the individual, thus
π̃∗
t = π̃∗k

t . Moreover, if we suppose that ξ(k) is increasing in k, meaning that the
nodes with more contacts have more incentive to vaccinate, the derivative of JS(t, k)
is always bigger than the derivative of JS(t, j)when k is bigger than j , and both JS and
JI are equal at the beginning of the propagation of the disease if the initial proportion
of infected is small enough. Thus, the threshold τk will be bigger than τ j . We have:

Proposition 3 Letπ∗k
t = ν1[0,τk ](t) be the optimal strategy for an individual of degree

k. Then τk > τ j if k > j .

4.2 Social Optimum

Nowwe consider a centralized planner trying to optimize from the point of view of the
total population. We first consider the control system of the form ẋ = ϕ(x, π) like (1)
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where the set� of admissible controls is compact, and the family of admissible control
functions π is only restricted by its measurability. Given the initial data x(0) = x0 the
Cauchy problem has a unique solution, as we stated in Proposition 1.

Given an initial data (s, y) we consider the general optimization problem:

minimize : J (s, y, π) =
∫ T

s
L(x(t), π(t))dt + �(x(T )), (13)

where L is the instant cost functional, � is the final cost, and the state variable x
depends not only on time but on the control and the initial data. The optimal π is taken
over � the set of measurable functions π : [0, T ] → [0, ν].

As stated by the dynamic programming method, the optimal control can be charac-
terized by the value function V (s, y) := infπ∈� J (s, y, π), but the classical point of
view does not allow discontinuous control functions. Hence, we start by verifying the
hypothesis that our setting must satisfy in order to ensure existence and uniqueness
of the optimal control, based on more general results on viscosity solutions theory
[10,51]. In the case of measurable control, we can also apply the Pontryagin’s Maxi-
mum Principle with less restrictive assumptions.

According to Lemma 9.2 in [10], the functionals involved must satisfy

|ϕ(x, π)| ≤ C, |ϕ(x1, π) − ϕ(x2, π)| ≤ C |x1 − x2|,
|L(x, π)| ≤ C, |�(x)| ≤ C,

|L(x1, π) − L(x2, π)| ≤ C |x1 − x2| |�(x1) − �(x2)| ≤ C |x1 − x2|,
(14)

for all x1, x2 ∈ R
7, and π ∈ �, for some constant C . Under these assumptions, the

value V is a bounded, Lipschitz continuous function, and it can be characterized as
the unique viscosity solution to a Hamilton-Jacobi equation.

Since the epidemic dynamics satisfy these assumptions on ϕ, to the best of our
knowledge, the most general condition on the cost functions to admit a solution is to
be Lipschitz in the state variable and bounded, which allows us to model a wide range
of real situations.

As a particular case inspired by the individual optimization problem exposed above
and in agreement with [16,22,26,31], we define the cost:

L1(x, π) = cI It + cVπt g(αt , θt ). (15)

We can easily check, by basic computations and bounding the second term using
the regularity of g and the Mean Value Theorem, that our setting satisfies hypotheses
(14).

Further, given the data x(0) = x0, let t �→ x∗(t) = x(t, π∗) be an optimal trajectory
corresponding to the optimal control π∗. Following Theorems 7.18 and 11.27 in [51],
there exists an absolutely continuous application t �→ p(t) ∈ R

7 called the adjoint
vector, and a real number p0 ≥ 0, such that (p, p0) is non trivial, and such that for
almost every t ∈ [0, T ]
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ẋ∗ = f (x∗, π∗),
x(0) = x0,

ṗ∗ = −∂H

∂x
(x∗, p∗, π∗),

p∗(T ) = 0,

π∗ = argminπ H(x∗, p∗, π),

(16)

where the Hamiltonian of the system is H = p0L1 + p f .
Summarizing, we have the following result.

Proposition 4 Let π∗ the strategy that minimizes (13) for the cost functions defined
above. Then π∗ is threshold.

Proof Writing the equation for π∗ we get

π∗ = argmin
{(

p0cV g(α
∗, θ∗) − p∗

2θ
∗

+ p∗
4θ

∗∂θg(α
∗, θ∗) − p∗

5 p
S∗ + (p7

∗ − p5
∗)pS∗

θ∗ pS∗ ∂αθ (α
∗, θ∗)

∂αg(α∗, θ∗)

)
π
}

(17)

which is a linear function of π with principal coefficient ρ∗. Since we are minimizing
over π ∈ [0, ν] we can conclude that

π∗
t =

{
ν if ρ∗(t) < 0

0 if ρ∗(t) > 0,
(18)

and the proof is finished. �	
Since it is impossible to solve analytically the system (16), the method of Forward-

Backward Sweep presented in [37] can be useful to understand the behavior of ρ∗.
From (14) we can deduce that ρ∗(T ) > 0 indicating that the vaccination rate must be
zero after some time. As in the preceding section, the optimal vaccination strategy is
of threshold type, in the sense that vaccination must be intended with the maximum
effort (maximum rate) and otherwise discouraged. This result may be explained by the
intuition that the individuals would vaccinate if the vaccination cost is lower than the
potential cost associated to the infection, and the probability of ever contracting the
disease decreases from the start of the epidemic. However, remark that a quantitative
characterization of the change of regime depends on the complete behavior of the
epidemic. This is solved by calculating Bellman equations and using the theory of
Dynamic Programming.

5 Phenomenological Conclusions and Epidemic Analysis

Given a cost and a maximum vaccination rate, our results can be exploited to design
vaccination policies which combined effectiveness to get immunization of the popu-
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lation and mild economical cost. Note that it is natural to suppose that there exists an
upper bound on the vaccination rates which takes into account both economical and
organizational considerations.

Knowing the effective contact rate r of the disease in consideration and its recov-
ering rate γ , the vaccination budget represented in ν, and taking in account the
connectivity of the population, we aim at finding this optimal vaccination effort.

In usual SIR mean field models, there exist two regimes: above a threshold in the
ratio r

γ
the epidemic will propagate and the final number of infected reach a fraction of

the population even when the number of initially infected ε is arbitrary small. Below
this threshold the final size of the epidemic will be proportional to ε.

Here, this threshold can be described in terms of the connectivity of the graph
which depends on the average number of contacts for the size biased distribution. In
our model, the number of newly infected in a small time interval is proportional to the
quantity pI . The threshold is then determined by the following equation:

0 = ṗ It |t=0 = (−γ pIt + pIt rp
S
t
αt∂ααg(αt , θt )

∂αg(αt , θt )
− rpIt (1 − pIt ))|t=0,

If we take an ε-proportion of initially infected individuals, then we have the initial
conditions:

I0 = ε, S0 = 1 − ε, pI0 = ε

1 − ε
, and pS0 = 1 − 2ε

1 − ε
. (19)

Assuming ε � 1, after a simple computation we get the inequality:

r

(
∂ααg(1, 1)

∂αg(1, 1)
− 1

)

> γ. (20)

As we mentioned before, ∂ααg(1,1)
∂αg(1,1)

is the expectation of the size biased distribution,

therefore it represents themean degree of a randomneighbor (a new infected agent). By
subtracting one (the spread will not return to the infecting agent), we get the expected
out degree, which represent the possible number of contacts that the newly infected
individual has. Therefore, Eq. (20) states that the epidemic outbreak will occur if the
total rate of infection is bigger than the rate of recovering. We can rewrite it and find
back the already known critical threshold stated in Prop 6.1 of [44]:

R0 = r

r + γ

∂ααg(1, 1)

∂αg(1, 1)
> 1.

Written in terms of the transmissibility T = r
r+γ

(i.e., probability of infection given
contact between a susceptible and infected individual) we recover the formula stated
in [41] for the epidemic threshold.

Finally, for the optimal strategies that we found in the previous section, we compute
the impact of the vaccination process in terms of epidemic sizes, showing that the
decrease of the susceptible population canbedescribed through the generating function
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of the network, the proportion of IS edges and the vaccination rate, through a simple
formula.

Following Miller [38], we can compute the final epidemic size in our model which
allows to measure the impact of the vaccination process. To that end, we compute
αk∞ the probability that a randomly chosen susceptible node u with degree k is never
infected in terms of the transmissibility T = r

r+γ
, interpreted here as the probability

that one of the edges of u with an infected neighbor transmit the disease to u. The
probability that this neighbor is never infected, given that u does not transmitted the

disease, is T
(
1 − ∂αg(α∞,θ∞)

∂αg(1,1)

)
because the neighbor degrees follow the size biased

distribution. Thus, the probability that the edge is not an infected contact for u solves
the fixed point equation:

α∞ = 1 − T + T
∂αg(α∞, θ∞)

∂αg(1, 1)
. (21)

Proposition 5 If πt = ν1[0,τ ](t) and ξ(k) = k, taking

λ(τ) =
∫ τ

0 πt dt
∫ τ

0 πt + rpIt dt
,

we have:

R∞ = S0 − ψ(α∞e−τν) + λ(τ)(g(θτατ ) − 1).

Proof After some simple computations we get

θ∞ = e−τν .

Now, we can also compute the probability that an initially susceptible node remains
susceptible at the end of the epidemic, corresponding to never be infected nor vacci-
nated:

S∞(k) = θ
ξ(k)∞ αk∞ = αk∞e−τν .

With this,

S∞ =
∑

k

μS
0 (k)θ

ξ(k)∞ αk∞ = g(α∞, e−τν).

In order to compute the size of the epidemic (total number of recovered agents),
first we compute the final number of vaccinated agents. This can be thought of as
an exponential race with non-homogeneous rate. Thus, the probability that a node of
degree k will be vaccinated is:

V∞(k) = λπ
k (τ )

λπ
k (τ ) + λI

k (τ )
(1 − e−τνξ(k)αk

τ ),

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1769–S1818 S1791

whereλπ
k (t) = ∫ t

0 ξ(k)πsds andλI
k (t) = ∫ t

0 rkp
I
s ds.With this,V∞ = ∑

k μS
0 (k)V∞(k),

and therefore the final epidemic size is R∞ = 1− S∞ − V∞. The case of the degree-
proportional vaccination, ξ(k) = k, can be described by the generating function of the
initial degree of the susceptible. By taking

λ(τ) = λπ
k (τ )

λπ
k (τ ) + λI

k (τ )
=

∫ τ

0 πt dt
∫ τ

0 πt + rpIt dt
,

one can write:

V∞ =
∑

k

λ(τ)[1 − (θτ ατ )
k]μS

0 (k) = λ(τ)S0 − λ(τ)ψ(θτατ ).

On the other hand, α∞ is the fixed point of α∞ = 1− T + Tψ ′(α∞e−τν)/ψ ′(1) and
S∞ = ψ(α∞e−τν). This finishes the proof. �	

Here, we can see the strong dependence on the connectivity model of the network
through the generating function g (or ψ) and on the maximum rate of vaccination in
order to reduce, (exponentially in τν and through the functions g and ψ respectively),
the propagation of the epidemic. Additionally, the maximum rate of vaccination can
be translated in the budget of the decisionmaker, because it may indicate how effective
the decision to vaccinate may be.

5.1 Simulations

Currently, the development of vaccines is usually subsequent to the appearance of a
possible epidemic. In many of them, it is through the value R0 that the epidemiological
parameter r (or β for homogeneous compartmental models) can be estimated. It con-
tains the probability that in an encounter between a susceptible and an infected person,
the former becomes ill, and the number of encounters in a unit of time; and γ which
is related to the average time that a person is infectious. Knowing these parameters,
the quotient ∂ααg(1,1)

∂αg(1,1)
can be inferred from the formula (1.1).

In this sectionwe fix the parameters of the epidemic and simulate the propagation of
the disease and the vaccination process in the cases ξ(k) = ak+b solving numerically
the system of equations (8).

We suppose a threshold vaccination strategy of the form πt = ν 1[0,τ ] in the period
[0, T ] thus the global optimization cost is

C(π) = C(τ ) =
∫ T

0
cI It + cV ν1[0,τ ]φψ(βt )dt .

We do not write explicitly the dependence of the variables on τ to reduce notation.
Let us remember that an agent of degree k will vaccinate according to the rate ak+bν
during the vaccination period [0, τ ], which is hidden in the probability generating
function g.
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Hence, the optimization problem reduces to find τ ∗ = argminτ C(τ ). Thus, for
each τ we run the numerical integration and select the optimal threshold that minimize
this cost.

We do this for two vaccination policies, constant and degree-proportional. In order
to compare both strategies,we seta = 1 andb = ψ ′(1), themeannumber of neighbors,
obtaining the same vaccination rate.

As we stated in Sect. 3.2.1, the mean field model corresponds to taking a Poisson
degree distribution. In [9], the authors establish that the Poisson distribution is not
realistic for the modeling of contacts, and propose to use a Bimodal distribution in
which a proportion p of the population follows a Poisson law of mean C and the
rest a delta-L distribution. If the whole population follows a delta distribution, the
associated graph is called regular. Other distribution were also proposed in [25,39,41],
in particular the power law, found in several social networks [1,32,33,43].

Thus, we consider four different networks of size N = 10000, associated to a
correspondent generating function of the degree distributions, choosing the parameters
in order to get the four with mean degree ψ ′(1) = 5:

(a) Poisson: Degrees are distributed according a random variable Poisson P(λ) with
parameter λ = 5, which gives ψ(z) = e5(z−1).

(b) Bimodal: a proportion p = 4/5 has degree P(3) and the rest follows a delta
distribution with parameter 13, thus ψ(z) = pe3(z−1) + (1 − p)z13.

(c) Regular: all nodes have the same degree 5, ψ(z) = z5.

(d) Power Law: the probability that a node has degree k is given by pk = k−αe−k/κ

Liα(e−1/κ )

for k in N, α = 1.474 and κ = 100, resulting ψ(z) = Liα(z)(ze−1/κ)

Liα(e−1/κ )
where Lis(z)

is the s-polylogarithm of z. We consider an exponential cut-off around κ = 100
in order to have finite moments.

Here we can see that the graph structure makes a difference for the propagation
or eradication of the disease through the existence of hubs that could play the role
of super-spreaders, or almost disconnect the networks due to vaccination at higher
rate. We summarize some network measures of the generated graphs, and show the
numerical solutions of system (5) in each of them in order to compare the spread of
the epidemic. We use the python package networkx for the graph creation and the
calculus of the coefficients [24], and we solve the system (5) using a Runge-Kutta 4.

We can see in the plot of Fig. 1, that the Bimodal network has typically more nodes
of high degree than a Poisson (with same mean), and less than a Power Law network,
according to the results in [9].

For the epidemic evolution we take r = 3 and γ = 1, and in Table 1 we can see that
networks (b) and (d) have a bigger basic reproduction number due to the size biased
distribution and the expected excess degree.

Typical parameters of the nodes of social networks are the clustering coefficient,
which indicate the tendency of a node to form a cluster, and the betweenness centrality,
measuring the presence of the node in the shortest paths between different nodes, see
[27]. Both play an important role in the propagation of a disease, the former due to
potential contagion to larger groups of nodes, and the later because imply a quick
connection between different parts of the network. Also, the closeness coefficient
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Fig. 1 Instances of graphs when N = 100 for the same mean degree ψ ′(1) = 5

Table 1 Network quantities Graph ψ ′′(1) R0

(a) Poisson 25 3.75

(b) Bimodal 61.5 5.76

(c) Regular 20 3.0

(d) Power-Law 80.31 12.03

measures how far apart are the nodes, see [8]. Proper definitions of these coefficients
could be:

• Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest
paths that pass through v.

• The density for undirected graphs is 2m
n(n−1) , where n is the number of nodes and

m is the number of edges.
• The clustering of a node v is the fraction of triangles passing through that node
that effectively exist.

• Closeness centrality of a node v is the reciprocal of the average shortest path
distance to v over all n − 1 reachable nodes.

See [42] for more details.
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Table 2 Average graph parameters

Graph Betweenness Density Clustering Closeness
×104 ×104 ×104

(a) Poisson 4.83 5.00 4.80 0.168

(b) Bimodal 3.77 5.06 11.46 0.18

(c) Regular 5.36 5.00 3.54 0.157

(d) Power Law 3.34 5.03 28.69 0.20

In Table 2we show the average number for thesemeasures after several experiments
with networks of 104 nodes. We observe that density, related to the mean degree of
the four networks, is similar. Nevertheless, there are important differences between
the averages of the clustering coefficients.

In Fig. 2, we present three simulations for a Bimodal graph for different opti-
mization costs and vaccination rates, for the constant (abbreviated Const) and degree
proportional (abbreviated Deg) vaccination strategies. We plot the total cost, the
final number of vaccinated and the epidemic size as a function of the vaccination
threshold τ , obtaining the same behavior and shape in all the studied cases, namely,
the final vaccinated population is increasing in τ , and the costs decrease up to the
optimum.

We can see from the simulation of the optimization in Fig. 2 that the epidemic size
decreases notably with respect to the case without vaccination which corresponds to
the vaccination threshold τ = 0. On the other hand, we observe that the epidemic
size curve flattens around the value τ ∗ that minimizes the cost. Therefore, it makes no
sense (neither financially nor epidemiologically) to continue a vaccination program
after that time, because the final cost will be bigger and the population infected will
not decrease further with more vaccinated individuals.

In Fig. 3, we present the result of the simulation for the variables S, I , R and V
when ν = 0.2, cV = 10 and cI = 50, and the vaccination threshold is obtained by
solving the optimization problem.

We expect a faster spread of the disease in the networks with a bigger clustering
and closeness coefficients and lower betwenness, from the ideas exposed in the last
paragraph.

Comparing Fig. 3 with Tables 1 and 2 we can check that the velocity of propagation
of the disease and themaximumnumber of infected agents is bigger in networks (b) and
(d), where the basic reproduction number and the clustering and closeness coefficients
are bigger and the betwenness is smaller. Moreover, the size of the epidemic in (d) is
greater than the size for networks (a) and (c).

On the other hand, the final number of vaccinated is bigger in networks (a) and (c),
almost doubling the number of vaccinations in network (d). The former are the most
homogeneous in terms of degree and mixing modeling, meaning that the vaccination
rate of different individuals are similar, while (d) have a big number of degree 1
individuals and a considerable proportion of high-degree nodes, whose vaccination
rates have great variability.
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Fig. 2 Threshold optimization for Bimodal Network. Const is for constant vaccination and Deg for degree-
proportional. cV and cI are the vaccination and infection costs, and ν is the vaccination rate

The Bimodal and Power Law networks seem to best reflect the interactions between
people [1,32,33,43]. In those cases, we observe that the spreading of the disease is
faster and infect a bigger proportion of the network, due the presence of hubs, and the
degree-dependent vaccination effect is not enough to contain the epidemic.

123



S1796 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1769–S1818

Fig. 3 Evolution of the epidemic indicators. Numerical integration of system 8 with ξ(k) = ak + b, solid
lines are for ξ(k) = k (degree dependent vaccination) and dashed for ξ(k) = 5 (constant vaccination) in
networks with the same mean degree equal to 5

Let us note that for networks (b) and (d) we have R0 ∼ 10, and the herd immunity is
reached when about 50–60% of the population is infected or vaccinated. In a complete
network, we need about 90%of the population recovered or vaccinated. Also, for R0 ∼
3–4, we need about of 70–75% in the complete network, while in networks (a) and (c)
the vaccinated and recovered agents surpass the 90% of the population.

Finally, we present the results of the numerical integration for four networks with
the same R0 = 3.75. The degree distribution is the same as the one used in the
previous plots, but with a fine-tuned selection of parameters: λ = 5 for the Poisson,
λ = 3, L = 8, p = 0.73 for the Bimodal, the degree of the Regular network is 6, and
for the Power Law we take α = 2 with exponential cutoff κ = 20.

In this case, the Power Law (d) network is very different to the other three. Its
coefficients of centrality indicate that a more rapid spread of the disease is expected.
Here, the role of the hubs is more relevant because the quotient ψ ′′(1)/ψ ′(1) is the
same. This is shown in the Table 3. We can also expect from Fig. 4 that vaccinating
the hubs, which will occur at high rate, will somehow cleave the network, stopping
the propagation of the disease.

Effectively, in Fig. 5 we observe that the final size of the epidemic is substantially
lower than in the other networks, and the final number of vaccinated is also much
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Fig. 4 Instances of graphs when N=80 for the same R0

Table 3 Average of centrality coefficient for the same quotient ψ ′′(1)/ψ ′(1)

Graph Betweenness Density Clustering Closeness
×104 ×104 ×104

(a) Poisson 3.47 4.88 4.92 0.219

(b) Bimodal 3.29 4.38 4.45 0.199

(c) Regular 3.19 5.99 4.22 0.239

(d) Power Law 2.24 2.18 5.68 0.109

lower, indicating that in this case the network used to model the reality plays a central
role.

From the presented instances, we can also observe that acquaintance vaccination
is more effective in all the cases, arriving to lower numbers of infected and with a
less number of vaccinated, except for the case of the Regular network (c), where both
vaccination strategies perform the same because the degree is equal for all the nodes.

6 Conclusion

Weconsidered a generalization of the SIRmodel on a large configurationmodel adding
a vaccination strategy. The variables describing the dynamics were determined by a
Markovian contact process on a diverse population where individuals have different
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Fig. 5 Evolution of the epidemic indicators for the same R0. Numerical integration of system 8 with
ξ(k) = ak+b, solid lines is for ξ(k) = k (degree proportional rate of vaccination) and dashed for ξ(k) = 1
(constant rate of vaccination)

degrees in a network of random connectivity, the vaccination mechanism depending
on the number of possible contacts of an individual.

We derived large graph limits for the evolution of the epidemic in this context
leading to a system of seven differential equation that describe the SIRV dynamics.

We then solved the associated optimal control problems for a general vaccination
rate, proving existence and uniqueness of the solutions under mild assumptions on
cost functions. We also characterized the optimal solutions as threshold type.

For this type of strategies, we computed the impact of the vaccination process in
terms of epidemic sizes, finding a fixed point equation that describes the impact of the
vaccination intensity and the time on which it is developed through the function g (or
ψ) and depending on the proportion of I S edges and the vaccination rate.

Finally,we studied four particular networks and their centrality coefficients, relating
it with the epidemic indicator R0. Given a maximum vaccination rate and for fixed
disease parameters, we solved numerically the system of equations for the cases of
degree-proportional and constant vaccination, on networks with the samemean degree
first and then with the same mean excess degree. We observed that in the networks
that describe better the interaction of the individuals, the epidemic level of infection
can be significantly different from in homogeneous models.
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7 Proofs

In this section we describe the theoretical background of the proofs and modeling
methods.We first introduce the stochastic differential equations that define the process
and then explain the scaling used in order to get the fluid limit result. We apply a
tightness-uniqueness strategy to prove convergence and characterize the fluid limit
thanks to a martingale representation.

7.1 Poisson Point Measures and Stochastic Differential Equations

Inspired by [14] and [20] we will represent the behavior of our dynamic as a process
which is solution of a systemof a stochastic differential equations derived fromPoisson
Point Measures (PPM).

We will use three different PPM for each event which modifies the quantities we
are interested in: an infection, a recovery, or a vaccination. We need to identify the
rates of these events and how to update the measures on the graph.

Suppose an event occur at time T , and let us analyze the first case, an infection. For
that, it is convenient first to consider

λT−(k) = rk
N I S
T−

NS
T−

, (22)

the rate of infection of a given k-degree individual at time T . They will have their half-
edges connected according to the quantitiesμT anddistributed following amultivariate
hypergeometric distribution. We denote

pT−( j, l,m | k − 1) =
(N I S

T−−1
j−1

)(N RS
T−
l

)(NV S
T−
m

)(NS
T−−N RS

T−−N I S
T−−NV S

T−
k−1− j−l−m

)

(NS
T−−1
k−1

) . (23)

Finally, given k, j , l and m, we have to update the measures μI S
T , μRS

T and μV S
T

choosing the infected, recovered and vaccinated individuals who will be connected
to the newly infected. In order to do that, we draw three vectors u = (u1, . . . , uIT−),
v = (v1, . . . , vRT−), and w = (w1, . . . , wVT−) indicating how many links each I , R
or V node has with the newly infected. We consider U = ⋃

n∈N(N0)
n and for each

μ ∈ MF (N0) and n ∈ N we define

U ⊇ U(μ, n) :=
{
u = (u1, . . . , u〈μ,1〉) :

〈μ,1〉∑

i=1

ui = n and ui ≤ ζi (μ)
}
,

where ζi (μ) := F−1
μ (i) is the degree accordingμ of the i-th node. Similarly, we define

v, w ∈ U depending on the measures μRS
T and μV S

T .
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Thus, the number of edges of type I S, RS or V S will be given respectively by

ρ(u | j + 1, μI S
T−) =

∏IT−
i=1

(
ζi (μ

I S
T−)

ui

)

(N I S
T−

j+1

) 1u∈U(μI S
T−, j+1),

ρ(v | l, μRS
T−) =

∏RT−
i=1

(
ζi (μ

RS
T−)

vi

)

(N RS
T−
l

) 1u∈U(μRS
T−,l),

ρ(w | m, μV S
T−) =

∏VT−
i=1

(
ζi (μ

V S
T−)

wi

)

(NV S
T−
m

) 1w∈U(μV S
T−,m).

(24)

We define

D(t, u, μ) =
〈μt ,1〉∑

i=1

δζi (μt )−ui − δζi (μt )

and

D f (t, u, μ) =
〈μt ,1〉∑

i=1

f (ζi (μt ) − ui ) − f (ζi (μt )).

Then, we update our measures as follows, introducing some notation:

μS
T = μS

T− − δk = μS
T− + �S

1 (T−),

μI S
T = μI S

T− + δk−( j+l+m+1) + D(T , u, μI S) = μI S
T− + �I S

1 (T−),

μRS
T = μRS

T− + D(T , v, μRS) = μRS
T− + �RS

1 (T−),

μV S
T = μV S

T− + D(T , w,μV S) = μV S
T− + �V S

1 (T−). (25)

Another event in consideration is a recovering. Here we choose uniformly an
infected i and set:

μI S
T = μI S

T− − δζi (μ
I S
T−) = μV S

T− + �I S
2 (T−),

μRS
T = μRS

T− + δζi (μ
I S
T−) = μRS

T− + �RS
2 (T−). (26)

This happens with probability 1/IT−.
The last event is vaccination. The corresponding rate isπt N S

t .We remark the strong
dependence on the degree of the individual, because it is more probable that a higher
connectivity node to be vaccinated first. More precisely, the probability that the new

vaccinated has degree k is
kμS

T−(k)

NS
T−

. Once we draw the vaccinated individual, and
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supposing their degree is k, we update the measures as follows:

μS
T = μS

T− − δk =: μS
T− + �S

3 (T−),

μI S
T = μI S

T− + D(T , u, μI S) =: μI S
T− + �I S

3 (T−),

μRS
T = μRS

T− + D(T , v, μRS) =: μRS
T− + �RS

3 (T−),

μV S
T = μV S

T− + δk−( j+l+m) + D(T , w,μV S) =: μV S
T− + �V S

3 (T−). (27)

Nowwe introduce three Poisson Point Measures that will be very useful to describe
the MF (N0)-valued stochastic process (μt )t≥0. For a similar point of view, see [14]
or [20].

The first one will provide us the possible instant in which an infection occurs. We
define dN1(s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5) as a product measure on R+ × E1
with E1 = N0 × R+ × (N0)

3 × R × (U × R+)3, where ds and dθ are Lebesgue
measures and dn are counting measures on N0 or U , accordingly.

The degree k infected agent will be connected with j infected, l recovered and m
vaccinated agents, drawn according u, v and w as we explained above.

We also have dN2(s, i) on E2 = R+ ×N a PPMwith intensity γ for the recovering
process. That is, for each atom we have associated a possible recovering time s and
the identification number i of the new recovered.

The last PPM, dN3(s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5) is defined in R+ × E3
where E3 = E1 and it is very similar to the first one. It assigns a mass to each possible
time s where a degree k vaccinated agent is connected with j infected, l recovered
and m vaccinated agents, drawn according u, v and w.

In all the cases, the auxiliary variables θ are useful to take into account the rates in
this integral representation.

In order to simplify notation we will not write the dependency on the variables, and
consider the following indicator functions to represent the rates:

I1 = I1(s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5)

= 1θ1≤λs−(k)μS
s−(k)1θ2≤ps−( j,l,m|k−1)1θ3≤ρ(u| j+1,μI S

s−)

× 1θ4≤ρ(v|l,μRS
s− )1θ5≤ρ(w|m,μV S

s− ),

I2 = I2(s, i) = 1i≤Is− ,

I3 = I3(s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5)

= 1θ1≤πs−(k)μS
s−(k)1θ2≤ps−( j,l,m|k)1θ3≤ρ(u| j,μI S

s−)

× 1θ4≤ρ(v|l,μRS
s− )1θ5≤ρ(w|m,μV S

s− ).

(28)

Now that we have clarified the evolution of the measures according to the events
that may occur, we are ready to write an integral form for this evolution in terms of
the Poisson Point Measures, for example for the second coordinate

μI S
t = μI S

0 +
∫ t

0

3∑

k=1

∫

Ek

�I S
k (s)IkdNkds. (29)
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Doing the same for the four coordinates, we can write the system of Stochastic Dif-
ferential Equations:

μt = μ0 +
∫ t

0

3∑

k=1

∫

Ek

�k(s)IkdNkds. (30)

Proposition 6 Givenμ0 = (μS
0 , μ

I S
0 , μRS

0 , μV S
0 ) and N1, N2, N3 there exists a unique

strong solution to the system (30) in the Skorokhod space D(R+, (MF (N0))
4).

Proof First note that all the measures are dominated by the expectation ofμS
0 +μI S

0 +
μRS
0 + μV S

0 and the supports are bounded on the positive integers. The proof can be
completed in the same way as in [50]. �	

7.2 Renormalization

Inspired by the techniques developed in [14] and [20] wewrite a renormalization of the
system when the number of individuals is n and the number of edges is proportional to
n. We observe that the intensity of the jump process has the same order, and deduce the
scaling for the fluid limit renormalization. We prove the convergence of the solution
of the finite case system of equations to the solution of (30) in the weak sense of the
Skorokhod space [23].

Let us consider four sequences of measures indexed by n ∈ N, (μn,S), (μn,I S),
(μn,RS) and (μn,V S) satisfying the system of equations (30) for each n ∈ N with
initial conditions μ

n,S
0 , μ

n,I S
0 , μ

n,RS
0 and μ

n,V S
0 . We associate Snt , I nt , Rn

t and V n
t the

number of individuals in each state at time t and denote St , It ,Rt ,Vt the sets of the
nodes susceptible, infected, recovered and vaccinated, respectively.

We take the scaling μ
(n),S
t = 1

nμS
t for each t ≤ 0 and analogously, μ(n),I S

t , μ(n),RS
t

andμ
(n),V S
t . We denote N (n),S

t = 〈μ(n),S
t , χ〉 and S(n)

t = 〈μ(n),S
t ,1〉 and, accordingly,

N (n),I S
t , N (n),RS

t , N (n),V S
t , I (n)

t , R(n)
t and V (n)

t .

Finally, we scale the rates and the indicator functions associated, λnt (k) = rk N
n,I S
t

N
n,S
t

,

and pnt ( j, l,m | k − 1) = (
Nn,I S
t −1
j−1 )(

Nn,RS
t
l )(N

n,V S
t
m )(

Nn,S
t −Nn,RS

t −Nn,I S
t −Nn,V S

t
k−1− j−l−m )

(
Nn,S
t −1
k−1 )

,

I (n)
1 = I (n)

1 (s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5)

= 1
θ1≤λns−(k)nμ

(n),S
s− (k)

1θ2≤pns−( j,l,m|k−1)1θ3≤ρ(u| j+1,nμ
(n),I S
s− )

× 1
θ4≤ρ(v|l,nμ

(n),RS
s− )

1
θ5≤ρ(w|m,nμ

(n),V S
s− )

,

I (n)
2 = I (n)

2 (s, i) = 1i≤I ns− ,

I (n)
3 = I (n)

3 (s, k, θ1, j, l,m, θ2, u, θ3, v, θ4, w, θ5)

= 1θ1≤πs−(k)μS
s−(k)1θ2≤pns−( j,l,m|k)1θ3≤ρ(u| j,nμ

(n),I S
s− )

× 1
θ4≤ρ(v|l,nμ

(n),RS
s− )

1
θ5≤ρ(w|m,nμ

(n),V S
s− )

.
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We assume that the sequences of initial conditions converge weakly inMF (N0) to
μS
0 , μ

I S
0 , μRS

0 and μV S
0 when n goes to infinity.

We obtain the renormalized system:

μ
(n)
t = μ

(n)
0 + 1

n

∫ t

0

3∑

k=1

∫

Ek

�
(n)
k (s)I (n)

k dNkds. (31)

Let us define

�t =
∑

k∈N
λ

(n)
t (k)μ(n),S

t (k)
∑

j+l+m≤k−1

pnt ( j, l,m | k − 1)
∑

u∈U
ρ(u | j + 1, μ(n),I S

t )

and

�t =
∑

k∈N
πt kμ

(n),S
t (k)

∑

j+l+m≤k

pnt ( j, l,m | k)
∑

u∈U
ρ(u | j, μ(n),I S

t ).

Proposition 7 For all f ∈ Bb(N) and all t ≥ 0 we have the following decomposition

〈μ(n),I S
t , f 〉 =

∑

k∈N
f (k)μ(n),I S

0 (k) + A(n),I S, f
t + M (n),I S, f

t ,

where the finite variation is given by

A(n),I S, f
t =

∫ t

0
�s

(
f (k − ( j + l + m + 1)) + D f (s, u, μI S)

)
ds

−
∫ t

0
γ 〈μ(n),I S

s , f 〉ds +
∫ t

0
�s D f (s, u, μI S)ds, (32)

and the associated martingale is square integrable with quadratic variation,

〈
M (n),I S, f

〉

t
= 1

n

∫ t

0
�s

(
f (k − ( j + l + m + 1)) + D f (s, u, μI S)

)2
ds

+ 1

n

∫ t

0
γ 〈μ(n),I S

s , f 2〉ds + 1

n

∫ t

0
�s(D f (s, u, μI S))2ds.

Proof (Sketch) We first calculate the infinitesimal generator L of our process, and we
write the Levy’s martingale with φ = 〈μ, f 〉 and φ2. Then we apply the integration
by parts formula [47], and identifying the martingales in the expression, we rearrange
the terms in order to get the quadratic variation. For a detailed proof see [20]. �	

Our fluid limit result may be proved in the same way as the proof of the main
theorem of [14] but we add it for completeness.
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Proof of Theorem 1 The proof is divided in five steps. The first one consists in the
tightness of the renormalized process regarding several criteria of convergence in the
Skorokhod space. The second step is the uniqueness of the solution. The third step
prove that the renormalized process satisfies asymptotically the deterministic system
1, showing that the limit is a good approximation for large populations. In step 4 we
prove that the limit satisfy this equation. This is done for themeasure of the susceptible-
infected edges. In step 5 we prove the convergence of the other measures regarding
the solution of a transport equation.

Let us consider, for any ε ≤ 0 and A > 0, the closed set ofMF (N0),

Mε,A = μ ∈ MF (N0) : 〈μ, 1 + χ5〉 ≤ A and 〈μ, χ〉 ≥ ε,

and M0+,A = ⋃
ε>0 Mε,A. Some topological properties of this can be found in the

appendix of [14] or [20].
We suppose that μ

(n)
0 converges to μ0 and that μ

(n)
0 ∈ M4

0,A for any n, with

〈μI S
0 , χ〉 > 0.
We alsomake the assumption 〈πtμt , 1〉 ≤ ν

∑
k μS

0 (k)ξ(k) < C〈μS
0 , χ

j 〉 for j = 3
just in order to keep the hypothesis of finite 5-th. moment, although we can change
it to finite j + 2-th. moment if necessary imposing more restrictive conditions but
deriving the result making the changes needed.

In order to prove (ii), since limε′→0 tε′ = ∞, is enough to prove the result in
D([0, tε′ ],M4

0,A) for ε′ sufficiently small. From now on, we take 0 < ε < ε′ <
〈
μI S
0 , χ

〉
.

Step 1: Tightness of the renormalization. Take (μn)n∈N, t ∈ R>0 and n ∈ N. By
assumptions, we have:

〈μ(n),S
t , 1 + χ5〉 + 〈μ(n),I S

t , 1 + χ5〉 + 〈μ(n),RS
t , 1 + χ5〉 + 〈μ(n),V S

t , 1 + χ5〉
≤ 〈μ(n),S

0 , 1 + χ5〉 + 〈μ(n),I S
0 , 1 + χ5〉 ≤ 2A

(33)

This implies that the sequenceμ
(n)
t is tight for each t . By the criterion of convergence

of measure valued processes proposed by Roelly [48] we have to prove that, for each
test function f ∈ Bb(N),(〈μ(n),S, f 〉, 〈μ(n),I S, f 〉, 〈μ(n),RS, f 〉, 〈μ(n),V S, f 〉)n∈N is tight in D(R>0,R

4).
We present here the calculations only for 〈μ(n),I S, f 〉 because the others are similar

or simpler. Since we have a semimartingale decomposition, applying the Rebolledo
criterion for weak convergence of sequences of semimartingales, we have to prove that
both the finite variation part, and the quadratic variation satisfy the Aldous criterion.
We want to prove that, for all θ > 0 and η > 0 there exist n0 ∈ N and δ > 0 such that
for all n > n0 and for all stopping times Sn and Tn with Sn < Tn < Sn + δ we have

P(|A(n),I S, f
Tn

− A(n),I S, f
Sn

| > η) ≤ θ, (34)

P(|〈M (n),I S, f 〉Tn − 〈M (n),I S, f 〉Sn | > η) ≤ θ. (35)
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For the finite variation condition (34), we take the following bound:

E

[
|A(n),I S, f

Tn
− A(n),I S, f

Sn
|
]

≤ E

[∫ Tn

Sn
γ ‖ f ‖∞〈μ(n),I S

s , 1〉ds
]

+ E

⎡

⎣

∫ Tn

Sn

∑

k∈N
λns (k)μ

(n),S
s (k)

∑

j+l+m≤k−1

pns ( j, l,m|k − 1)(2 j + 1)‖ f ‖∞ds

⎤

⎦

+ E

⎡

⎣

∫ Tn

Sn

∑

k∈N
πn
s (k)μ(n),S

s (k)
∑

j+l+m≤k

pns ( j, l,m|k − 1)2 j‖ f ‖∞ds

⎤

⎦ .

Since
∑

j+l+m≤k p
n
s ( j, l,m|k − 1)2 j is twice the mean number of edges with the

infected population conditioned to having degree k, this number is bounded by k, and
using the definitions of λn , π and p we have that:

E [|] A(n),I S, f
Tn

−A(n),I S, f
Sn

| ≤ δE
[
γ ‖ f ‖∞(S(n)

0 + I (n)
0 )

+r‖ f ‖∞〈μ(n),S
0 , 2χ2 + 3χ〉 + ν‖ f ‖∞〈μ(n),S

0 , 2χ2〉
]

< ∞.
(36)

Then, applying Markov’s inequality:

P(|A(n),I S, f
Tn

− A(n),I S, f
Sn

| > η) ≤ (2γ + 5r + 2ν)‖ f ‖∞δA

η

which is smaller than θ if δ is small enough.
We bound the quadratic variation of the martingale reasoning analogously,

E

[
|〈M (n),I S, f 〉Tn − 〈M (n),I S, f 〉Sn |

]
≤ E

[
δγ ‖ f ‖2∞(S(n)

0 + I (n)
0 )

n

]

+ E

[
δr‖ f ‖2∞〈μ(n),S

0 , χ(2χ + 3)2〉
n

]

+ E

[
δν‖ f ‖2∞〈μ(n),S

0 , χ3〉
n

]

≤ (25r + 2γ + ν)δ‖ f ‖2∞A

n
,

and applying Markov in the same way, we have the condition for the martingale part
(35), so we are in the hypothesis of Aldous-Rebolledo criterion. Therefore, we have
proved tightness in D(R+,M4

0,4).
We now prove the uniqueness of the solution. Before, observe that, by Step 1 and

Prohorov’s theorem, the laws of μ(n) for n ∈ N are a family of bounded measures, a
precompact set in D(R+,M4

0,4). Hence, also are the laws of the stopped processes

(μ
(n)
·∧τ nε

)n∈N.
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Let μ be a limit point in C(R+,M4
0,4) of the sequence of stopped processes and

let (μ(n))n∈N be a subsequence that converges to μ, denoted with only one over-script
to simplify notation. Since the limit is continuous, the convergence is uniform over
compact sets of the positive reals.

Define, for all t ∈ R+ and f ∈ Cb(N) the applications

�
S, f
t , �

I S, f
t , �

RS, f
t , �

V S, f
t : D(R+,M4

0,4) → D(R+,R)

such that (3) can be read as

(〈μS
t , f 〉, 〈μI S

t , f 〉, 〈μRS
t , f 〉, 〈μV S

t , f 〉)
= (�

S, f
t (μ),�

I S, f
t (μ),�

RS, f
t (μ),�

V S, f
t (μ)) (37)

Step 2: Uniqueness of the solution in C(R+,M0,4 × M0+,4 × M0,4 × M0,4).
The second step consists in proving the limit values are the unique solution of (3).

The strategy will be to prove that the total measure and the first and secondmoments of
two solutions are equals and then prove that the generating functions of thosemeasures
satisfies a partial differential equation that admits a unique solution in a weak sense.

Due to extension by regularity, it is enough to prove the uniqueness in C([0, T ],
M0,4 × Mε,4 × M0,4 × M0,4) for all ε, T > 0.

Takeμi = (μS,i , μI S,i , μRS,i , μV S,i ) for i = 1, 2 two solutions of (3) in this space
with the same initial condition and define

ϒt =
3∑

j=0

|〈μS,1
t , χ j 〉 − 〈μS,2

t , χ j 〉|

+
2∑

j=0

(
|〈μI S,1

t , χ j 〉 − 〈μI S,2
t , χ j 〉| + |〈μRS,1

t , χ j 〉 − 〈μRS,2
t , χ j 〉|

+ |〈μV S,1
t , χ j 〉 − 〈μV S,2

t , χ j 〉|
)

(38)

Note that, for all t ∈ [0, T ) and i = 1, 2, we have NS,i
t ≥ N I S,i

t > ε and therefore

|pI ,1t − pI ,2t | ≤ A

ε2
|〈μS,1

t , χ〉 − 〈μS,2
t , χ〉| + 1

ε
|〈μI S,1

t , χ〉 − 〈μI S,2
t , χ〉|

≤ A

ε2
ϒt (39)

Analogously, a similar bound holds for |pI ,1t − pI ,2t |.
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Since μi are solutions of (3), we have, for j = 0, . . . , 3 and taking f = χ j

|〈μS,1
t , χ j 〉 − 〈μS,2

t , χ j 〉| = |
∑

k∈N
μS
0k

j (α1
t − α2

t )|

≤ rν
∑

k∈N
k jμS

0

∫ t

0
|pI ,1s − pI ,2s |ds

≤ rν
A2

ε2

∫ t

0
ϒsds.

(40)

One can reproduce similar computations for the other quantities:

ϒt ≤ C(r , γ, ν, A, ε)

∫ t

0
ϒsds.

With this, ϒ satisfies a Gronwall’s type inequality which implies that is identically 0
for all t ≤ T . Then, for all t < T and for j = 1, 2, 3, we have

〈μS,1
t , χ j 〉 = 〈μS,2

t , χ j 〉 , 〈μI S,1
t , χ j 〉 = 〈μI S,2

t , χ j 〉
and〈μRS,1

t , χ j 〉 = 〈μRS,2
t , χ j 〉. (41)

This implies pS,1
t = pS,2

t , pI S,1
t = pI S,2

t ,pRS,1
t = pRS,2

t and pV S,1
t = pV S,2

t .
From the first equation in (3) and the regularity of the solutions, we have almost sure
uniqueness for μS .

It remains to prove the uniqueness for the other 3 measures. The method that we
will use to prove μI S,1 = μI S,2 can be used for the rest.

We consider the generating functions:

Gi
t (η) =

∑

k≥0

ηkμ
I S,i
t (k),

for any t ∈ R+, i = 1, 2 and η ∈ [0, 1).
Let us define

H(t, η) =
∫ t

0

∑

k∈N
rpI ,is k

∑

ι, j,l,m/
ι+ j+l+m=k−1

(
k − 1

ι, j, l,m

)

(pSs )ι(pIs )
j (pRs )l(pVs )mμS

s (k)η
ιds

and

Kt =
∑

k∈N

[
rkpIt (1 + (k − 1)pIt ) + πt (k)kp

I
t

] μS
t (k)

N I S
t

.

123



S1808 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1769–S1818

Using f (k) = ηk in the second equation of (3) and after some basic computations
we get

Gi
t (η) = Gi

0(η) + H(t, η) +
∫ t

0
Ks(1 − η)∂ηGi

s(η) − γGi
s(η)ds.

Now, H(t, η) is continuously differentiable with respect to time and it is well
defined and bounded in [0, T ]; and Kt is piece-wise continuous in L1 and also it is
well defined and bounded on [0, T ]. Further, H and K do not depend on the solutionwe
choose, because we already have μS,1 = μS,2 and pI ,1 = pI ,2. So, the applications
t → G̃i

t (η) := Gi
t (η)eγ t for i ∈ {1, 2} are solutions of the equation

∂tG(t, η) − (1 − η)Kt∂ηG(t, η) = ∂t H(t, η)eγ t .

In view of the regularity of H and K it is known that this equation admits only
one solution in a weak sense (see last section in [15]), hence G1

t (η) = G2
t (η) for all

t ∈ [0, T ] and for all η ∈ [0, 1). Since both measures have the same mass, we have
μI S,1 = μI S,2.

We can use similar arguments in order to prove that μV S,1 = μV S,2 and μRS,1 =
μRS,2.

Step 3: μ(n) satisfies asymptotically the deterministic system (3).
Let us remember that, for each f ∈ Cb(N), we can write:

〈μ(n),I S
t , f 〉 =

∑

k∈N
f (k)μ(n),I S

0 (k) + A(n),I S, f
t + M (n),I S, f

t .

In order to characterize the limiting values, for each n ∈ N and for all t ≥ 0, we
have

〈(μ(n),I S
t∧τ nε

), f 〉 = �
I S, f
t∧τ nε

(μ(n) + �
n, f
t∧τ nε

+ M (n),I S, f
t∧τ nε

, (42)

where �
n, f
·∧τ nε

vanishes in probability and uniformly in t over compact time intervals.
We can take bounds in a similar way as in Step 1 in order to get that:

E

[
(M (n),I S, f

t )2
]

= E

[
〈M (n),I S, f 〉t

]
≤ (25r + ν + 2γ )A‖ f ‖2∞t

n
, (43)

which implies the sequence (M (n),I S, f
t )n∈N vanishes in probability and in L2, and

therefore in L1 by Cauchy-Schwartz.
On the other hand, the finite variation part can be split in two: one considering

the simple edges between the newly infected node and the infected population, and a
second part regarding multiple edges, that we know is expected to vanish as the size
of the population grows. Formally,

A(n),I S, f
t = B(n),I S, f

t + C (n),I S, f
t ,
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where

B(n),I S, f
t

=
∫ t

0

∑

k∈N
λns (k)μ

(n),S
s (k)

∑

j+l+m≤k−1

pns ( j, l,m | k − 1)

× f (k − ( j + l + m + 1))

+
∑

u∈U(μ
(n),I S
s , j+1)
ui≤1

ρ(u | j + 1, μ(n),I S
s )

∑

i≤I ns−

[ f (ζi (μ(n),I S
s ) − ui ) − f (ζi (μ

(n),I S
s ))]

− γ 〈μ(n),I S
s , f 〉ds +

∫ t

0

∑

k∈N
πskμ

(n),S
s (k)

∑

j+l+m≤k

pns ( j, l,m | k)
∑

u∈U(μ
(n),I S
s , j+1)
ui≤1

ρ(u | j, μ(n),I S
s )

×
( Is∑

i=1

f (ζi (μ
(n),I S
s ) − ui ) − f (ζi (μ

(n),I S
s ))

)

ds,

(44)

and

C (n),I S, f
t =

∫ t

0

∑

k∈N
λns (k)μ

(n),S
s (k)

∑

j+l+m≤k−1

pns ( j, l,m | k − 1)

×
∑

u∈U(μ
n,I S
s , j+1)

i≤I ns−;∃i≤I ns−:ui>1

ρ(u | j + 1, μn,I S
s )

(
f (ζi (μ

n,I S
s− ) − ui ) − f (ζi (μ

n,I S
s− ))

)
ds

+
∫ t

0

∑

k∈N
πskμ

(n),S
s (k)

∑

j+l+m≤k

pns ( j, l,m | k)
∑

u∈U(μ
n,I S
s , j+1)

∃i≤I ns−:ui>1

ρ(u | j, μn,I S
s )

×
⎛

⎝
Is−∑

i=1

f (ζi (μ
n,I S
s− ) − ui ) − f (ζi (μ

n,I S
s− ))

⎞

⎠ ds.

(45)

In order to prove C (n),I S, f
t vanishes, let us denote

qnj,l,s =
∑

u ∈ U(μ
(n),I S
s , j + 1)

∃i ≤ I ns− : ui > 1

ρ(u | j, μn,I S
s )

the probability that the newly infected has a multiple edge with another infected agent.
Given an infected agent i , this probability is lower than the number of pairs of edges
connecting the newly infected with i times the probability that these two edges in
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particular connecting i with a susceptible individual at time s-begin to connect their
with the newly infected. That is,

qnj,m,l,s ≤
(
j − 1

2

) I ns−∑

i=1

k
Sns−
i (k

Sns−
i − 1)

Nn,I S
s− (Nn,I S

s− − 1)

=
(
j − 1

2

) 1
n 〈μ(n),I S

s− , χ2 − χ〉
N (n),I S
s− (N (n),I S

s− − 1
n )

≤
(
j − 1

2

)
1

n

A

ε(ε − 1
n )

,

(46)

as long as s ≤ τ nε and n ≥ 1/ε. Let us remember that k
Snt
i is the number of edges of

the i-th node connecting with the susceptible population at time t , for a population of
size n.

Additionally, for all the possible draws u ∈ U( j, μn,I S
s ) we have

∣
∣
∣
∣
∣

Is∑

i=1

f (ζi (μ
n,I S
s ) − ui ) − f (ζi (μ

n,I S
s ))

∣
∣
∣
∣
∣
≤ 2 j‖ f ‖∞,

and applying both inequalities, for n ≥ 1/ε we get

C (n),I S, f
t∧τ nε

≤
∫ t∧τ nε

0

∑

k∈N
rkμ(n),S

s (k)

×
∑

j+l+m≤k−1

pns ( j, l,m | k − 1)2( j + 1)‖ f ‖∞
Aj( j − 1)

2nε(ε − 1
n )

ds

+
∫ t∧τ nε

0

∑

k∈N
πs(k)μ

(n),S
s (k)

×
∑

j+l+m≤k

pns ( j, l,m | k)2 j‖ f ‖∞
A( j − 1)( j − 2)

2nε(ε − 1
n )

ds

≤ νr A‖ f ‖∞t

nε(ε − 1
n )

〈μ(n),S
0 , χ4〉.

(47)

This last expression tends to zero because of the weak convergence of μ
(n),S
0 to μS

0

and μ
(n),S
s ≤ μ

(n),S
0 for all s ≥ 0 and n ∈ N.

The next task is to prove that B(n),I S, f
·∧τ nε

is similar in some way to �
I S, f
·∧τ nε

(μ(n)). For
this, we realize that
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∑

u ∈ U(μ
(n),I S
s , j + 1)

∀i ≤ I ns−, ui ≤ 1

ρ(u | j + 1, μ(n),I S
s )

∑

i≤I ns−

(
f (ζi (μ

(n),I S
s ) − ui ) − f (ζi (μ

(n),I S
s ))

)

=
∑

u ∈ (I ns−) j+1

u0 �= . . . �= u j

( ∏ j
ι=0 kuι (S

n
s−)

Nn,I S
s− . . . (Nn,I S

s− − ( j + 1))

) j∑

m=0

f (k
Sns−
um − 1) − f (k

Sns−
um )

=
j∑

m=0

⎛

⎝

I ns−∑

i=1

k
Sns−
i

Nn,I S
s−

f (k
Sns−
i − 1) − f (k

Sns−
i

⎞

⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

u ∈ (I ns− \ {x}) j
u0 �= . . . �= u j−1

∏ j−1
ι=0 k

Sns−
uι

(Nn,I S
s− − 1) . . . (Nn,I S

s− − ( j + 1))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ( j + 1)
〈μ(n),I S

s− , χ(τ1 f − f )〉
Nn,I S
s−

(1 − qnj,m,l,s),

(48)

where τ j f (k) := f (k − j) for all f : N → R and ∀k ∈ N.
Now we introduce some notation for the proportions of edges the newly infected

agent has, discarding the edge involved in the infection process. It is important here
to make a difference between the term that comes from the infection from the one that
comes from the PPMmodeling the vaccination process, because in this case we do not
assume a priori that there is at least one infected neighbor. We define, for each t > 0
and n ∈ N0,

pn,I
t = 〈μn,I S

t , χ〉 − 1

〈μn,S
t , χ〉 − 1

,

pn,R
t = 〈μn,RS

t , χ〉
〈μn,S

t , χ〉 − 1
,

pn,V
t = 〈μn,V S

t , χ〉
〈μn,S

t , χ〉 − 1
,

pn,S
t = 〈μn,S

t , χ〉 − 〈μn,I S
t , χ〉 − 〈μn,RS

t , χ〉 − 〈μn,V S
t , χ〉

〈μn,S
t , χ〉 − 1

.

(49)

Let us remember that

pnt ( j, l,m | k − 1) =
(Nn,I S

t −1
j

)(Nn,RS
t
l

)(Nn,V S
t
m

)(Nn,S
t −Nn,RS

t −Nn,I S
t −Nn,V S

t
k−1− j−l−m

)

(Nn,S
t −1
k−1

)
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qnt ( j, l,m | k) =
(Nn,I S

t
j

)(Nn,RS
t
l

)(Nn,V S
t
m

)(Nn,S
t −Nn,RS

t −Nn,I S
t −Nn,V S

t
k− j−l−m

)

(Nn,S
t
k

) . (50)

In the case of the infection process, we also define, for all the j, l,m such that
j + l + m ≤ k − 1, and for all n ∈ N,

p̃nt ( j, l,m | k − 1) = (k − 1)! (pn,I
t ) j (pn,R

t )l(pn,V
t )m(pn,S

t )k−1− j−l−m

j ! l! m! (k − 1 − j − l − m)! ,

and for the vaccinations,

q̃nt ( j, l,m | k) = k! (pn,I
t ) j (pn,R

t )l(pn,V
t )m(pn,S

t )k− j−l−m

j ! l! m! (k − j − l − m)!

the probabilities of the multinomial variables counting the quantities of each type of
neighbors that will has the newly infected or vaccinated, respectively.

We can write

|B(n),I S, f
t∧τ nε

− �
I S, f
t∧τ nε

(μ(n))| ≤ |D(n),I S, f
t∧τ nε

| + |E (n),I S, f
t∧τ nε

|, (51)

where

D(n),I S, f
t∧τ nε

=
∫ t∧τ nε

0

∑

k∈N
λs(k)

nμ(n),S
s (k)

×
∑

j+l+m+1≤k

[
pnt ( j, l,m | k − 1) − p̃nt ( j, l,m | k − 1)

]

×
(

f (k − ( j + l + m + 1)) + ( j + 1)
〈μ(n),I S

s− , χ(τ1 f − f )〉
Nn,I S
s−

)

ds

+
∫ t∧τ nε

0

∑

k∈N
πs(k)

nμ(n),S
s (k)

∑

j+l+m≤k

[
qnt ( j, l,m | k) − q̃nt ( j, l,m | k)

]

×
(

j
〈μ(n),I S

s− , χ(τ1 f − f )〉
Nn,I S
s−

)

ds,
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E (n),I S, f
t∧τ nε

=
∫ t∧τ nε

0

∑

k∈N
λs(k)

nμ(n),S
s (k) ×

∑

j+l+m+1≤k

pnt ( j, l,m | k − 1)

×
(

( j + 1)
〈μ(n),I S

s− , χ(τ1 f − f )〉
Nn,I S
s−

qnj−1,l,m,s

)

ds

+
∫ t∧τ nε

0

∑

k∈N
πs(k)

nμ(n),S
s (k) ×

∑

j+l+m≤k

qnt ( j, l,m | k)

×
(

j
〈μ(n),I S

s− , χ(τ1 f − f )〉
Nn,I S
s−

qnj,l,m,s

)

ds. (52)

Thus, if we consider the differences

αn
t (k) =

∑

j+l+m+1≤k

|pnt ( j, l,m | k − 1) − p̃nt ( j, l,m | k − 1)|

and

γ n
t (k) =

∑

j+l+m≤k

|qnt ( j, l,m | k) − q̃nt ( j, l,m | k)|,

we can bound:

|D(n),I S, f
t∧τ nε

| ≤
∫ t∧τ nε

0

∑

k∈N

(
rkμ(n),S

s (k)αn
s (k)(1 + 2k)‖ f ‖∞

+ πs(k)μ
(n),S
s (k)γ n

s (k)k‖ f ‖∞
)
ds.

(53)

Since themultinomial term is a good approximation of themultivariate hypergeometric
as n goes to infinity, the last expression tends to zero due to dominated convergence.

On the other hand,

|E (n),I S, f
t∧τ nε

| ≤
∫ t∧τ nε

0

∑

k∈N

(

(r + ν)k2μ(n),S
s (k)‖ f ‖∞2

k2A

2nε(ε − 1/n)

)

ds

≤
∫ t∧τ nε

0

(

(r + ν)〈μ(n),S
s , χ4〉‖ f ‖∞

A

nε(ε − 1/n)

)

ds

≤ A2t(r + ν)

nε(ε − 1/n)
.

(54)

Putting all the bounds together, we can conclude that 〈μ(n),I S, f 〉 converges in prob-
ability uniformly over compact intervals.

Step 4: The limit satisfies the deterministic system (3)
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We are considering the sequence (μ
(n)
·∧τ nε

)n∈N and we already proved that its limit

in the closed setM4
0,A is μ, we want to prove the same for the non stopped sequence.

According to the Skorokhod representation theorem there exists a subsequence on the
same probability space of μ whose marginal probability distributions are the same as
those of the original sequence such that μ is the almost sure limit. With an abuse of
notation, we will denote (μ

(n)
·∧τ nε

)n∈N this subsequence.
The mappings

ν· := (ν1· , . . . , ν4· ) �→ 〈νk· ,1〉
∑4

j=1〈ν j· ,1〉

for k ∈ {1, 2, 3, 4} are continuous from C(R+,M0,A × Mε,A × M0,A × M0,A) in
C(R+,R).

According to Lemma 1 we have that, for p ≤ 5,�p : D(R+,Mε,A) → D(R+,R)

which assigns ν· �→ 〈ν·, χ p〉 is continuous.
Using this, and that the quotient (X1· , X2· ) �→ X1·

X2·
from C(R+,R) × C(R+,R∗) to

C(R+,R) is continuous, we deduce the continuity of ν· �→ 〈ν1· ,χ〉
〈ν2· ,χ〉 from C(R+,M0,A×

Mε,A × M0,A × M0,A) in C(R+,R). The same argument holds for ν· �→ 1{〈ν1· ,χ〉>ε}
〈ν2· ,χ〉

over the same spaces.
Since the mapping

y ∈ D([0, t],R) �→
∫ t

0
ysds

is continuous, we conclude the proof of the continuity of the application �
f
t defined

in (37).
Applying Lemma 1 with p = 1 we obtain that the process (N (n),I S

·∧τ nε
)n∈N converges

in distribution to N I S· := 〈μI S· , χ〉, and, as the limit is continuous, the convergence
also holds in (D([0, T ],R+), ‖.‖∞) for all T > 0 [6].

Since taking infimum is continuous over D(R+,R) we have that

inf
t∈[0,T ] N

I S
t = lim

n→∞ inf
t∈[0,T ] N

(n),I S
t∧τ nε

is greater than or equal to ε almost surely.
Let us define tε′ = inf{t ∈ R+ : N I S

t ≤ ε′}. We do not know this number to be
deterministic, but we can say that:

ε′ ≤ inf
t∈[0,T ] N

(n),I S
t∧tε′ = lim

n→∞ inf
t∈[0,T ] N

(n),I S
t∧τ nε ∧tε′
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Then, applying Fatou’s Lemma,

1 = P( inf
t∈[0,tε′ ]

N (n),I S
t∧tε′ > ε) ≤

lim
n→∞ P

(

inf
t∈[0,T∧τ n

ε′ ]
N (n),I S
t∧τ nε

> ε

)

= lim
n→∞ P(τ nε > T ∧ tε′)

(55)

Therefore, splitting in the following way:

�
I S, f
·∧τ nε ∧tε′∧T (μ(n)) = �

I S, f
·∧τ nε ∧T (μ(n))1τ nε ≤tε′∧T + �

I S, f
·∧tε′∧T (μ

(n)
·∧τ nε

)1τ nε >tε′∧T (56)

we have, from the bounds and estimations we made in Step 3, that �
I S, f
·∧τ nε ∧T (μ(n))

is bounded for the fourth moment of μ(n). Since μ
(n)
0 → μ0 and using (55), the

first term in (56) converges in L1 and in probability to zero. On the other hand,
the continuity of � I S, f in D(R+,M0,A × Mε,A × M0,A × M0,A), � I S, f (μ

(n)
·∧τ nε

)

converges to � I S, f (μ) and therefore, � I S, f
·∧tε′∧T (μ

(n)
·∧τ nε

) converges to �
I S, f
·∧tε′∧T (μ). So,

this convergence and (55) implies that, the second term converges to �
I S, f
·∧tε′∧T (μ) in

D(R+,R).
Hence, (〈μ(n),I S

·∧τ nε ∧tε′∧T , f 〉 − �
I S, f
·∧τ nε ∧tε′∧T (μ(n)))n∈N converges in probability to

〈μ·∧tε′∧T , f 〉 − �
I S, f
·∧tε′∧T (μ). Recalling Step 3 again, and the estimations done in

it, we can conclude this sequence also converges in probability to zero. Therefore, we
have that μI S is a solution to the system (3) on the interval [0, tε′ ∧ T ].

If either 〈μRS
0 , χ〉 > 0 or 〈μV S

0 , χ〉 > 0, then we could apply similar techniques
with both. If not, the result can be immediately deduced because for all t ∈ [0, tε′ ∧T ],
〈μ(n),I S

t , χ〉 > ε and the terms pnt ( j, l,m | k − 1) and qnt ( j, l,m | k) are negligible
when l or m are positives.

So, μ is almost surely the unique continuous solution of the deterministic system
(3) in [0, tε′ ∧ T ], which implies tε′ = tε′ and the convergence in probability of
(μ

(n)
·∧τ nε

)n∈N to μ holds, uniformly on the interval [0, tε′ ], due to the continuity of μ.
In order to prove the convergence in the Skorokhod space, for η > 0, we write:

P
(

sup
t∈[0,tε′ ]

|〈μ(n),I S
t , f 〉 − �

I S, f
t (μ)| > η

)

≤ P
(

sup
t∈[0,tε′ ]

|� I S, f
t∧τ nε

(μ(n)) − �
I S, f
t (μ)| >

η

2
; tε′ ≤ τ nε

)

+ P
(

sup
t∈[0,tε′ ]

|�n, f
t∧τ nε

+ M (n),I S, f
t∧τ nε

| >
η

2

)
+ P(τ nε < tε′).

(57)

Using the continuity of � f and the uniform convergence in probability that we have
proved, the first term in the last expression converges to zero. In order to show that
the second term vanish, we can reproduce the bounds taken in Step 2 of this proof and
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apply Doob’s inequality. Finally, since P(τ nε > T ∧ tε′) → 1 we have that the three
terms goes to zero.

Hence, due to uniqueness proved in Step 2, the original sequence (μ(n))n∈N con-
verges.

Step 5: The convergence of the other measuresWhat we have done for the infected-
susceptible connectivity measure can be also done for the recovered and vaccinated
measures in much the same way. For the susceptible connectivity measure, one can
reason in the following way. If we consider the renormalized equation 31 and we take
limit in n, the sequence (μ(n),S)n∈N converges in D(R+,M0,A) to the solution to the
transport equation

〈μS
t , ft 〉 = 〈μS

0 , f0〉 −
∫ t

0
〈μS

s , (rp
I
s + πs)χ fs − ∂s fs〉ds (58)

that can be solved as a function of pI andπ , for any test function f ∈ C0,1b (N×R+,R)

with bounded derivative respect time variable [15].

If we take f (k, s) = ϕ(k)e− ∫ t−s
0 rkpIu+πu(k)du we obtain

〈μS
t , ϕ〉 =

∑

k∈N
ϕ(k)αk

t θ
ξ(k)μS

0 (k)

as the first equation of (3) establishes.
The proof is finished. �	

Lemma 1 For any p ≤ 5, the map �p : D(R+,Mε,A) → D(R+,R) that assigns
�(ν.) �→ 〈ν., χ

p〉 is continuous.
Proof The proof can be obtained by following the steps of Lemmas 1–5 in the appendix
of [14]. �	
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