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Abstract: Reverse supply chains (RSC) deal with End-Of-Life products (EOL). They provide
the benefits of reducing solid waste, creating new jobs, and generating income from the sales of
re-manufactured products and savings in raw materials. At the same time, their design is more
challenging in comparison with forward supply chains because of hardly predictable reverse flows
of EOL products. Conventional approaches to address the uncertainty are usually risk-oriented
and do not consider eventual opportunities. In order to overcome this drawback, we propose
to use the R∗ criterion in the decision making process in a context of complete ignorance with
a discrete set of equally possible scenarios. This criterion integrated in a new lexicographic
algorithm is used in order to take the Decision-Maker’s (DM) behavior into account in different
ways regarding if the uncertainty is considered as a risk or as an opportunity. Its performances
are evaluated on the case study of facility location problem in reverse logistics.
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1. INTRODUCTION

When information about the distribution of uncertain
parameters is not available, it is common to define a set
of possible scenarios, each of them corresponding to a
possible realization of the uncertain parameters. Robust
approach is then applied in the case of a discrete set
of equally possible scenarios. Its goal is to maximize the
minimum profit over all scenarios. It is very conservative
in the way that too much weight is given to the worst case
scenario, preventing from finding satisfying solutions when
good case scenarios happen (Bertsimas and Sim (2004)).
In this paper, we propose to use a different criterion in
order to consider the DM optimism while searching for
opportunistic solutions.

Several criteria have been proposed in the literature in
order to consider the DM’s optimism in the case of
discrete scenarios. The most common ones are the Hurwicz
criterion (Hurwicz (1951)) and the Ordered Weighted
Average (OWA) criterion (Yager (2004)). With the OWA
criterion, costs of the scenarios are ranked from the best
one to the worst one, then a weighted average is calculated
on the ranked costs (the weights depend on the ranking).
Hurwicz criterion is a special case of OWA when the best
case scenario has a weight equals to α and the worst case
scenario has a weight equals to 1−α and all other scenarios
weights equal 0. These two criteria are compensatory, i.e.
a good case scenario will soften the effect of a bad case
scenario and reciprocally.

In order to take into account the psychological evidence
that a DM will not react to uncertainty in the same way

if considered as a risk or as an opportunity (Grabisch
(2006)), we are interested in considering the DM optimism
with a non compensatory criterion, in order to distinguish
areas of risks and opportunity.

In the case of the design of a RSC, the DM has to deal
with a lot of uncertainty: on the demand for reprocessed
products, the quantity of EOL products returned, the
quality of the products, etc... Since the concept of RSC
is relatively new, there is a lack of knowledge preventing
from efficient probability distribution of possible scenarios.
Many studies have already been conducted in this area
(Govindan et al. (2017)), but existing models are most
of the time risk-oriented and neglect the opportunities
that can exist. However, it is very important to take
into account these opportunities in order to build more
realistic models and show the benefits the RSC may
provide. Recent studies show the positive impact of the
reverse logistics on economy. For instance, the McKinsey
Center for Business and Environment has demonstrated
that the choice of a circular economy could reduce the
cost of raw materials in Europe by 2030 by 1,800 billion
Euro (25%). Economic benefits can be obtained by the
reuse of materials and/or components (Toffel (2004)).
Furthermore, the management of EOL products improve
the image of the company and protect its market which is
an indirect source of additional economic benefits (de Brito
and Dekker (2003)).

In order to help the DM to explore the opportunities of
RSC, we develop a new lexicographic R∗ criterion. This
criterion is a ”bipolar” operator able to take into account
uncertainty in the form of risk but also in the form of



opportunity. The classic R∗ criterion’s formulation is given
in Section 2. The Lexicographic algorithm with R∗ is
detailed in Section 3. In Section 4, it is applied to a facility
location problem for a RSC. The conclusions of the study
are presented in Section 5.

2. BACKGROUND

As aforementioned, there is a psychological evidence that
in many cases the DM does not consider uncertainty in the
same manner if it is perceived as a risk or an opportunity.
To take into account this fact, bipolar operators have been
introduced by Grabisch (2006). They consider a neutral
value (for instance 0 or e) below which a score is considered
as ”bad” and above which a score is considered as ”good”.
Then, ”good” and ”bad” scores are not aggregated in the
same way.

Yager and Rybalov (1996) presented the family of Uni-
norm operators which are a subgroup of bipolar operators
and are defined as follows:

A Uninorm R is a mapping R : R+ × R+ → R+ having
the following properties:

(1) R(a, b) = R(b, a) (Commutative)
(2) R(a, b) ≤ R(c, d) if a ≤ c and b ≤ d (Monotonous)
(3) R(a,R(b, c)) = R(R(a, b), c) (Associative)
(4) There exists some element e ∈ R+, called the identity

element, such that for all x ∈ R+ R(x, e) = x

On [0, e] a Uninorm behaves like a t-norm, and on [e,+∞[
like a t-conorm. We can thus consider that [0, e] is an inter-

val of hazards while [e,+∞[ is an interval of opportunities.
The threshold e therefore corresponds to the optimism
level of the DM.

In the considered context of RSC, we are particularly
interested in the Uninorm which takes the minimum for t-
norm and takes the maximum for t-conorm. The objective
is to minimize the risks and maximize the opportunities.
This Uninorm is called R∗ and is defined as following:

Let F (x, s) be the evaluation of the objective function for
solution x over a scenario s ∈ S,

R∗((F (x, s))s∈S , e) =

{
min
s∈S

F (x, s) if ∃ F (x, s) ≤ e
max
s∈S

F (x, s) otherwise

(1)
The solution space of the R∗ criterion in the case of the
maximization of the profit and two scenarios is shown in
Fig. 1. f(x, s1) is the profit when scenario s1 happens and
f(x, s2) when scenario s2 happens. We consider x1, x2 two
solutions. The zone of hazards is represented in grey and
the zone of opportunities in white. In the first figure, both
solutions x1 and x2 are in the zone of hazards. In that
case, to select the final solution we choose the one with
the maximum minimum scenario (here x2) called robust.
In the second figure, one solution is in the zone of hazards
and another is in the zone of opportunities. In this case,
the solution in the zone of opportunities (here x1) will
always be preferred. If all the solutions are in the zone
of opportunities, the final solution selected is the one with
the maximum value of the objective function (or optimistic
solution).
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Fig. 1. R∗ criterion solution space

R∗ is an interesting non compensatory criterion, but it
only takes into account the best case and worst case
scenarios and neglects all scenarios in between. It means
that two solutions with the same best and worst case
scenario won’t be differentiated by this criterion. We
propose a lexicographic approach of R∗ in order to fix this
drawback.

The lexicographic R∗ (lexiR∗) approach is the combi-
nation of a lexicographic maximum (leximax) approach
and of a lexicographic minimum (leximin) approach. The
former searches to maximize not only the largest profit
but also to maximize the second largest profit, the third
largest, and so on. The latter searches to maximize not
only the smallest profit but also to maximize the sec-
ond smallest profit, the third smallest and so on... (see
Ogryczak (1997); Ogryczak and Sliwiski (2003)). In lexiR∗
approach, we use leximin in the areas of hazards and
leximax in the areas of opportunities.

In a more formal way, it can be written as follows (we
denote S− = {s ∈ S|F (x, s) ≤ e} and S+ = S \ S−):

LexiR∗((F (x, s))s∈S , e) ={
Leximins∈S−F (x, s)
Then
Leximaxs∈S+F (x, s)

(2)

In order to make the process of resolution more clear for
the reader, we present an example below.

Example 1. Let S be a discrete set of scenarios with S =
{s1, s2, s3, s4}. Let F (x, s) = (2, 3, 8, 10) (resp F (y, s) =
(2, 5, 7, 10)) be a vector of objective values for solution x
(resp y) of a decision problem regarding the set of scenario
S. In order to lighten the notation, we note F x

s = F (x, s)
and F y

s = F (y, s) in the rest of the example. Our goal is
the maximization of the objective. The two vectors cannot
be differentiated with R∗ as they both have the same worst
case scenario (i.e. 2) and the same best case scenario (i.e.
10). We will study the resolution of the problem with
LexiR∗ criterion for 3 different cases:

(1) In the first case, we consider e = 12. In that case,
the DM is pessimistic and both solutions have all
their objective values in the area of hazards. Thus, a
leximin is applied in order to choose the solution (see
Fig.2(a)). The evaluation of the objective in the worst
case scenario being the same for the two solutions,
they cannot be differentiated at the first iteration.
Yet, at the second iteration, F y

s2 is higher than F x
s2.

In this case, solution y is chosen.
(2) In the second case, we consider e = 1. In that case,

the DM is optimistic and both solutions have all



their objective values in the opportunity area. Thus,
a leximax is applied in order to choose the solution
(see Fig.2(b)). The evaluation of the objective in the
best case scenario is the same for the two solutions,
they are differentiated at the second iteration, where
F x
s3 is better than F y

s3.
(3) In the last case, we consider e = 6. The DM is neither

optimistic nor pessimistic. Two objective values of
each solution are in the area of hazards, and two
are in the opportunity area (see Fig.2(c)). In that
case, LexiR∗ starts by considering the risky scenarios
with leximin. The evaluation of the objective in the
second worst case scenario is in the risky area for
both solutions, however, it is better with y than with
x, thus, solution y is chosen. If F y

s and F x
s had been

equal for all risky scenarios then the differentiation of
the solution would have been on the opportunity area
with leximax.
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Fig. 2. Examples of resolution with LexiR∗ criterion

3. LEXICOGRAPHIC R∗ ALGORITHM

Notation Description Notation Description

Rk Linearization of min Ys Binary variable
rk Linearization of max δks Binary variable
k Number of iteration γks Binary variable
e Risk threshold M Big value

Table 1. Notations

With the use of notations in Table 1, the lexicographic
approach can be described as follows. Firstly, the model
is solved with R∗ to select the first set of solutions. Then,
at the first iteration, the scenario on which the selection
of the solution has been made (either the maximum best
case scenario or the maximum worst case scenario) is
recorded and removed. Then, R∗ criterion is reapplied
to the selected set of solutions with one less scenario. A
second set of solutions is thus defined, and the process
is repeated until it is possible to differentiate the best
solution.

Algorithm 1.

• Step.0
k ← 0
N ← {s1, ..., sm}
i = 0..k

• Step.1
Solve Model (3)

maxRk + rk (3)

S.t

(a) Rk ≤ F ((x, y), s) ∀s ∈ N,
(b) Rk ≤ e
(c) F ((x, y), s) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N
(d) F ((x, y), s) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N
(e) rk ≤ (1− Ys)M ∀s ∈ N

(f)

S∑
s=1

δks = 1

(g) rk ≤ F ((x, y), s) + (1− δks )M ∀s ∈ N

• Step.2
If Rk + rk ≤ e
then Rk = R∗k, k=k+1 and go to Step.3.
Otherwise,
define Rk = e, r1 = r∗k, k′ = 2 and go to Step.5
• Step.3:

Solve Model (4)

maxRk + rk (4)

S.t

(a) Ri ≤ F ((x, y), s) +M(1− γis) ∀s ∈ N, i ∈ 1..k

(b)

S∑
s=1

γis = S − i ∀i ∈ 1..k

(c) Rk ≤ e
(d) F ((x, y), s) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N
(e) F ((x, y), s) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N
(f) rk ≤ (1− Ys)M ∀s ∈ N

(g)

S∑
s=1

δks = 1

(h) rk ≤ F ((x, y), s) + (1− δks ) ∗M ∀s ∈ N

• Step.4:
If S − k = 0 then go to Step.7
Otherwise:
If Rk ≤ e, then Rk = R∗k, k = k + 1 and return to
Step.3
If Rk + rk > e, then Rk = e, r1 = r∗k define k′ = 2
and go to Step.5

• Step.5:
Solve Model (5)



max rk′ (5)

S.t

(a)Ri ≤ F ((x, y), s) +M(1− γis) ∀s ∈ N, ∀i ∈ 1..k

(b)

S∑
s=1

γis = S − i, ∀i ∈ 1..k

(c) ri ≤ F ((x, y), s) +M(1− δis) ∀s ∈ N, ∀i ∈ 1..k′

(d)

S∑
s=1

δk
′

s = k′

• Step.6:
If S − k − k′ − 1 = 0 then go to Step.7
Otherwise rk′ = r∗k′ , k

′ = k′ + 1, and go to Step.5

• Step.7:
Stop.

Algorithm 1 operates in the following way.

Step 0 is the initialization of the algorithm: we define an
index k that will be the number of the iteration, a set of
all scenarios considered N and an index i.

In Step 1, the model is solved with the R∗ criterion (only
the best and worst case are considered).

At Step 2, the cases minimax and maximax are distin-
guished in order to proceed differently at the second it-
eration: if the found solution is lower than e, we want to
optimize the second worst case scenario; in that case we go
to Step 3. On the contrary, if the found solution is higher
than e, we want to optimize the second best case scenario,
thus we go to Step 5.

Step 3 chooses the second maximum minimum scenario,
then the third and so on as long as the solution at the
previous iteration stays lower than e.

Step 4 makes a transition between a maxmin case and a
maxmax case if the solution of Model.4 at the previous
iteration become higher than e.

Step 5 and 6 select the second maximum maximum sce-
nario, then the third and so on and so forth as long as the
solution at the previous iteration is higher than e

When there is no more scenario to treat, Algorithm stops
in Step 7.

4. CASE STUDY

We apply our LexiR∗ criterion to a RSC design problem.
The results obtained are compared with the robust solu-
tions.

4.1 Description of the case study

The application is based on a facility - location - trans-
portation problem applied to RSC design for a third party
logistic company.

Our goal is to locate the different facilities (collection
center, re-manufacturing center and disposal) and opti-
mize the transport between them. The objective is the
maximization of the profit. The uncertainty is related

Fig. 3. Reverse Supply Chain

to the quantity of returned EOL products, the quantity
of demand for re-manufactured EOL products and the
reprocessing time of EOL products.

4.2 Mathematical model

Indexes, parameters and variables are presented here:

Indexes
k = 1..K Index of customers
m = 1..M Index of spare markets
c = 1..C Index of collection centers
r = 1..R Index of re-manufacturing centers
d = 1..D Index of disposal sites
s = 1..S Index of scenarios

Demand
Dm,s of spare market m for scenario s

Capacity
CapCc of collection center c
CapRr of re-manufacturing center r

Distance between...
DKCk,c customer k and collection center c
DCRc,r collection center c and re-manufacturing center r
DCDc,d collection center c and disposal d
DRDr,d re-manufacturing center r and disposal d
DRMr,m re-manufacturing center r and spare market m

Time parameters
Tremanus Unit dismantling time

Unit operational cost
Cophc at collection center c
Cdisp at re-manufacturing center p
Ceco tax for non-reprocessed products
TC transportation cost for 1 kilometer

Rate parameters
Rs Quantity of return for scenario s
Rr Re-manufacturing rate after collection
Rd Disposal rate after re-manufacturing

Unit selling price parameters
RSPm of product at spare market m

Fixed opening cost parameters
CFCc for collection center c
CFRr for re-manufacturing center r
CFDd for disposal d

Positives variables (Flow from . to . for s)
XKCk,c,s customer k to collection center c
XCRc,r,s collection center c to re-manufacturing center r
XCDc,d,s collection center c to disposal d
XRDr,d,s re-manufacturing center r to disposal d
XRMr,m,s re-manufacturing center r to spare market m

Binary variables
Y Cc collection center c is opened or not
Y Rr re-manufacturing center r is opened or not
Y Dd Disposal d is opened or not



In order to simplify the presentation of the model, we
introduce the following expressions.

The total income: it includes all sales revenues. It is
scenario dependent and can be formulated as:

Incomes =

M∑
m=1

(

R∑
r=1

(RSPm ∗XRMr,m,s))) (6)

The total operational cost : it includes all production costs,
assembling costs, buying costs, dismantling costs or distri-
bution costs from/to all centers of the chain. It is scenario
dependent and can be defined as follows:

OpCosts =

K∑
k=1

(

C∑
c=1

(Cophc ∗XKCk,c,s))

+

C∑
c=1

(

R∑
r=1

(Cdisr ∗XCRc,r,s))

+

F∑
f=1

(

C∑
c=1

(Ceco ∗ (XRDr,d,s +XCDc,d,s))))

(7)

The total fixed cost : it is the sum of the set-up costs of
facilities:

FixedCost =

C∑
c=1

(CFCc ∗ Y Cc)

+

P∑
p=1

(CFRr ∗ Y Rr)

+

D∑
d=1

(CFDd ∗ Y Dd)

(8)

The total transportation costs: it is the sum of travel
costs between connected points of the Supply Chain. It
is scenario dependent and can be written as:

TrtCosts =

K∑
k=1

(

C∑
c=1

(TC ∗DKCk,c ∗XKCk,c,s))

+

R∑
r=1

(

C∑
c=1

(TC ∗DCRc,r ∗XCRc,r,s))

+

D∑
d=1

(

C∑
c=1

(TC ∗DCDc,d ∗XCDc,d,s))

+

R∑
r=1

(

D∑
d=1

(TC ∗DRDr,d ∗XRDr,d,s))

+

R∑
r=1

(

D∑
d=1

(TC ∗DRSMr,m ∗XRMr,m,s))

(9)

Objective The objective is to maximize the total profit
calculated as:

TotalProfits = Incomes −OpCosts − FixedCost− TrtCosts(10)

Constraints

(1)

K∑
k=1

XKCk,c,s ≤ CapCc ∗ Y Cc ∀c ∈ C, s ∈ S

(2)

C∑
c=1

XCRc,r,s ∗ Tremanus ≤ CapRr ∗ Y Rr ∀r ∈ R, s ∈ S

(3)

C∑
c=1

XCDc,d,s +

R∑
r=1

XRDr,d,s ≤ B ∗ Y Ff ∀d ∈ D, s ∈ S

(4)

R∑
r=1

XRMr,m,s ≤ Dm,s ∀m ∈M, s ∈ S

(5)

C∑
c=1

XKCk,c,s ≤ Rs ∀k ∈ K, s ∈ S

(6)

K∑
k=1

XKCk,c,s ∗Rr =

R∑
r=1

XCRc,r,s ∀c ∈ C, s ∈ S

(7)

C∑
c=1

XCRc,r,s ∗Rd =

D∑
d=1

XRDr,d,t,s ∀r ∈ R, s ∈ S

(8)

K∑
k=1

XKCk,c,s =

R∑
r=1

XCRc,r,s

+

D∑
d=1

XCDc,d,s ∀c ∈ C, s ∈ S

(9)

C∑
c=1

XCRc,r,s =

D∑
d=1

XRDr,d,s

+

M∑
m=1

XRMr,m,s ∀r ∈ R, s ∈ S

Constraints (1) to (3) verify that the capacities of all cen-
ters are respected. Constraint (4) verifies that the demand
is never over-satisfied. However, the demand can remain
unsatisfied and considered lost in this case. Constraint (5)
calculates the quantity of collected EOL products. Con-
straints (6) and (7) calculate the quantity of dismantled,
repaired and recycled products. Constraints (8) and (9)
are the flow balance constraints.

4.3 Results: Robust model versus LexiR∗ model

In order to show the advantages of our model, we compare
it with a Robust model, and with a classic R∗ model
as presented in Section 2. The results of the numerical
experiment are reported in this section. The scale of
the numerical experiment is as follows: the number of
potential locations for establishing the collection centers,
re-manufacturing centers and disposal is 10, the number
of customers and spare market customers is 10. The data
used for the resolution are presented in Table 2. The
transportation costs are defined per product and per 1
kilometer.

We define four different scenarios from the worst case to
the best case. They are presented in Table 3.

The numerical experiment was conducted with IBM-ILOG
CPLEX 12.6.3 on an Intel Core 2.60 gigahertz machine
with 15 gigabyte RAM. The results from R∗ are presented
in Table 4 and the results from LexiR∗ are presented in
Table 5. The two tables are built in the same way: Column
1 is the model used to solve the problem, Column 2 is
the chosen value for e when the R∗ or the LexiR∗ model



Parameter Value

CapC Uniform(55000,200000)
CapR Uniform(28000,56000)
Distances Uniform(0,500)
Coph Uniform(1,6)
Cdis Uniform(2,8)
Ceco 1
TC 0.003
Rd 80%
Rr 80%
RSP Uniform(90,120)
CFC Uniform(10000,90000)
CFR Uniform(40000,60000)
CFD Uniform(40000,60000)

Table 2. Deterministic Parameters

Parameter s1 s2 s3 s4
D (∗1000) U(22,27.5) U(12,17.5) U(22,27.5) U(22,27.5)
R (∗1000) U(12,17.5) U(12,17.5) U(22,27.5) U(22,27.5)
Tremanu U(1,2) U(5,6) U(5,6) U(1,2)

Table 3. Uncertain Parameters

are used (they are indicated in relative percentage of the
”MaxMin” solution). Column 3 to 6 are the results for each
scenario. Every scenario for which the R∗ or the LexiR∗
model brings an improvement compared to the Robust
model are colored in green and every scenario for which the
R∗ or the LexiR∗ model brings a degradation are colored
in red.

Model e s1(e) s2(e) s3(e) s4(e)
Robust - 1552422 1899237 1969349 1981001
R∗ -0% 1552422 1899237 1969349 1981001
R∗ -3% 1538872 1896560 2662113 2902355
R∗ -5% 1482802 1666845 3204561 3212546

Table 4. Compared Profit between Robust ap-
proach and R∗ approach for the case of 4

scenarios

Model e s1(e) s2(e) s3(e) s4(e)
Robust - 1552422 1899237 1969349 1981001
LexiR∗ +3% 1552422 1899994 1970978 1981001
LexiR∗ -0% 1552422 1899994 1970978 1981001
LexiR∗ -3% 1538875 1897844 2663437 2902355
LexiR∗ -5% 1482862 1669413 3211150 3212546

Table 5. Compared Profit between Robust and
LexiR∗ approach for the case of 4 scenarios

The results obtained show that:

- If e is equal to or above the robust ”MinMax” solu-
tion, the found solution is the same with the Robust
model and with theR∗ model while the LexiR∗ model
improves the two middle case scenarios compared
to the robust solution. Thus, new opportunities are
disclosed without any risks for the DM.

- With the R∗ and the LexiR∗ models, the more e
decreases compared to the ”MinMax” solution, the
more the two worst case scenarios are degraded but
in return, opportunities are revealed in two best case
scenarios. The gains are much more important than
the losses in all considered cases and are slightly
superior with the LexiR∗ model than with the R∗
model. By choosing the value for e the DM accepts
to take a little more risks, but it is possible to keep
the control over the robustness of the solution while

the opportunity area is much better explored than
with the Robust model.

- The LexiR∗ model gives better results for two worst
case scenarios compared to the R∗ model. Therefore,
the risks taken by the DM are better controlled.

5. CONCLUSION

The implementation of RSC is essential in order to re-
duce waste. A successful RSC design relies on appropriate
modeling of uncertainty not only in terms of risks, but also
opportunities. In this paper, we suggest a new modeling
approach using LexiR∗ to take DM optimism into account
in both hazard and opportunity zones. The results ob-
tained show that the use of the LexiR∗ criterion makes it
possible to better explore the opportunity zone compared
to a robust model without loosing control over robustness.
It also provides the possibility to better control the risks
taken in comparison to theR∗ model without lexicographic
approach.

This study reveals many research perspectives. For in-
stance, we are planning to examine the case of a discrete
set of scenarios with imprecise probabilities. The presented
algorithm could also be improved by considering a fuzzy
value for e. Its extension to a continuous set of scenarios
should also be examined.
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