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We introduce a new method to accurately and e�ciently estimate the e�ective dynamics of col-
lective variables in molecular simulations. Such reduced dynamics play an essential role in the study
of a broad class of processes, ranging from chemical reactions in solution to conformational changes
in biomolecules or phase transitions in condensed matter systems. The standard Markovian ap-
proximation often breaks down due to the lack of a proper separation of time scales and memory
e�ects must be taken into account. Using a parametrization based on hidden auxiliary variables,
we obtain a generalized Langevin equation by maximizing the statistical likelihood of the observed
trajectories. Both the memory kernel and random noise are correctly recovered by this procedure.
This data-driven approach provides a reduced dynamical model for multidimensional collective vari-
ables, enabling the accurate sampling of their long-time dynamical properties at a computational
cost drastically reduced with respect to all-atom numerical simulations. The present strategy, based
on the reproduction of the dynamics of trajectories rather than the memory kernel or the velocity-
autocorrelation function, conveniently provides other observables beyond these two, including e.g.

stationary currents in non-equilibrium situations, or the distribution of �rst passage times between
metastable states.

I. INTRODUCTION AND MAIN RESULTS

In di�erent branches of Science, the interpretation and
mathematical modeling of both experimental and com-
putational data requires the analysis of the system dy-
namics in terms of a reduced set of collective variables
(CVs), or order parameters. Prominent examples include
chemical reactions in solution, conformational changes
in biomolecules or phase transitions in condensed mat-
ter systems. A standard approach is to approximate the
evolution of the CVs by an e�ective dynamics, namely a
closed equation in which the degrees of freedom beyond
the CVs (forming the so-called environment or �bath�)
do not appear explicitly. Such coarse-grained models not
only provide a physical interpretation more accessible to
understanding than the full system, but also, from a nu-
merical perspective, enable one to recover the desired
dynamical properties with long but cheap simulations of
the reduced system (while only shorter simulations of the
large system are used to determine the e�ective dynam-
ics).
The most widespread model for this task is the

Langevin equation, which can be derived � in some par-
ticular cases � from the Hamiltonian dynamics of a small
system interacting with a large environment. It describes
the evolution of a Markov process, which requires that
the decorrelation time of the environment is short com-
pared to the characteristic times of the reduced system.
However many cases do not enter the validity range of
this approximation, displaying memory e�ects [1�8]. To

go beyond the Markovian approximation, a popular class
of processes is given by the generalized Langevin equa-
tion (GLE) [9�15]ẋ(t) = v(t)

Mv̇(t) = Fe�(x(t))−
∫ t

0

K(t− τ)v(τ)dτ +R(t),

(1)
where x(t) is the value of the d-dimensional collective
variable at time t, v(t) its time derivative, M is an e�ec-
tive mass, Fe� is a mean force, usually deriving from a
potential V identi�ed with the free energy, K a memory
kernel and R(t) a (colored) noise.
This form of the GLE can be motivated from the dy-

namics of the original full system following the Mori-
Zwanzig formalism [9, 16�18], even though it cannot be
formally obtained as a controlled approximation of the
exact coarse-grained dynamics, since a rigorous deriva-
tion generally results in a memory kernel that depends
on the CVs [19, 20]. Nevertheless, in practice this simple
form is the most widely used e�ective dynamics. While
an analytical derivation of the memory kernel is possible
only in a few cases [21], for more general systems, K can
be estimated from a data-driven approach. In most cases,
the goal is to extract the memory kernel from trajectories
of the CV computed with all-atom simulations [4, 22? �
36]
As already mentioned, the solutions of (1) are not

Markov processes, except when K is the Dirac δ function
and R is a white noise. Both for �tting the model and
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then for generating new trajectories of the e�ective dy-
namics, it is convenient to consider the subclass of models
where an extended process (x, v, h) is Markovian, with h
some hidden auxiliary variables [12, 37�44]. Restricting
further to the case where the evolution of the hidden
variables and the coupling with the observed variables
are linear, this leads to an equation of the form


ẋ = v

v̇ = M−1Fe�(x)−Avhh−Avvv + σvvξ(t) + σvhW (t)

ḣ = −Ahhh−Ahvv + σT
vhξ(t) + σhhW (t)

(2)
where Avh, Avv, Ahh, Ahv, σvv, σvh, σhh are constant ma-
trices and ξ and W are independent standard white
noises. This gives a convenient class of models
parametrized by the dimension dh of h, the corresponding
matrices and the (rescaled) e�ective force M−1Fe�. For
equilibrium processes, the coe�cients of (2) are related
by the so-called Fluctuation-Dissipation relation [39]. Al-
though we could enforce this condition, thereby reducing
the number of parameters, we do not since we also con-
sider non-equilibrium systems in the following.

Integrating over the hidden variables, we recover (1)
with a memory kernel of the form of a �nite Prony series
[39, 40]

K(τ) = w0δ(τ) +

dh∑
k=1

wke
−λkτ (3)

where wk and λk are (possibly complex) coe�cients of
the series derived from the matrices Avh, Avv, Ahh, Ahv.
In principle, on all �nite time intervals, any kernel given
as the sum of a Dirac function at zero and of a continuous
function can be approximated arbitrarily accurately by a
sum of the form (3). However, in practice dh is relatively
small and memory kernel with e.g. algebraic tail can only
be approximated on small time interval [37, 44].

The use of auxiliary variables in the form of (2) has
been abundantly used and studied, as it allows e�cient
integration of GLE (1) [39, 41, 45], even though other
methods exist [28, 29, 33, 46, 47]. The estimation of GLE
parameters from simulations is an active �eld of research.
The main method consists in a non-parametric estima-
tion of the memory kernel via the Volterra integral equa-
tion [12, 25, 34, 38, 45, 48�50], but other methods have
also been proposed [24, 32, 43, 44, 51]. In the present
work, we i) introduce a novel parametric estimator of
GLE coe�cients, based on a maximum likelihood ap-
proach and ii) show that it allows building faithful coarse-
grained models of MD simulations in a cost-e�ective way
(i.e., starting from a relatively small training data set),
such that the dynamics is well reproduced.

II. DATA-DRIVEN APPROACH ON
EXTENDED DYNAMICS

In statistics, a standard method to deal with hidden
variables is the Expectation-Maximization (EM) algo-
rithm, which belongs to the category of likelihood max-
imization algorithms [52, 53]. It is of frequent use to
estimate parameters of time series models in the case
of partial or noisy observations of the system, either for
hidden Markov models [54] or state-space models [55].
A �rst application in the context of GLE was proposed
in Ref. 37 to reconstruct the memory kernel in the ab-
sence of e�ective force Fe�(x) and under more restrictive
conditions than the method presented below.
The algorithm proceeds by alternating steps: In the

E-step, one determines the conditional probability law
of the hidden variables given the observed ones at �xed
parameters; in the M-step, one optimizes the parameters
to maximize the log-likelihood averaged with respect to
these conditional laws. In the following we denote as Θj

the whole set of parameters estimated after j iterations
of the algorithm, which includes the mean force projected
on some functional basis (which can be very large in gen-
eral, or reduced if prior knowledge on the system is avail-
able), the coe�cients of the matrices A, σ of (2) and, for
technical reasons discussed below, the mean value at time
zero of the hidden variables, 〈h0〉.

A. EM algorithm

The available data, obtained from all-atom simula-
tions, consists of a set of independent trajectories. For
simplicity of the notation, we introduce the algorithm
with only one trajectory {x}0:N = {x(k∆t), k ∈ J0, NK}
for some timestep ∆t and simulation time T = N∆t,
the extension to the general case being straightforward.
The statistical models we consider are Euler-Maruyama
discretizations of (2) with the same timestep ∆t, for
a �xed dimension dh of auxiliary variables h. The
state of the system at time t = k∆t will be denoted

(xk, vk, hk) = (X̃, h)k = Xk and we write {X}0:N a com-

plete trajectory of the system. Hence, X̃ is the value
of the known variables since, from the choice of the
Euler-Maruyama scheme, the velocity can be computed
as vk = (xk+1 − xk)/∆t. In the following we write π(z)
the probability density of a variable z, π(z|u) the condi-
tional probability density of z with respect to u and, in
both cases, πΘ to explicit the value of the parameters if
needed.
As the extended system is Markovian, we have for the

probability density of a trajectory

π ({X}0:N ) = π (X0)×
N−1∏
k=0

π(Xk+1|Xk) (4)

and the form of (2) and of the Euler-Maruyama scheme
lead to a Gaussian transition kernel, characterized by its
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mean µ and variance Σ (see Appendix).
a. E-step The �rst step is to compute the con-

ditional law of the hidden variables given the ob-
served variables at the current guess of the parame-

ters, i.e. πΘj
({h}0:N |{X̃}0:N ). Due to the Markovian-

ity of the extended system, it is su�cient to compute
the mean and variance of the Gaussian marginal laws

π(hk, hk+1|{X̃}0:N ) for all k ∈ J0, N − 1K. Taking ad-
vantage of the explicit form of the transition probabil-
ity (Eq. (3) in the S.I.), we apply an iterative predictor-
corrector-smoother approach (also known as Kalman �l-
ter and Rauch-Tung-Striebel smoother) [56]. Starting
from the trajectory up to step k − 1, we determine the
law of the hidden variable hk conditioned on the past in-

formation {X̃}0:k−1 only. We then use the expression of
the transition probability π(Xk|Xk−1) to determine the

current value of π
(
hk|{X̃}0:k

)
. These are the prediction

and correction parts that are run forward on the trajec-
tory, i.e. from k = 0 to k = N (arrow (1) on Fig. 1). The
initial guess at k = 0 of π (h0) uses the measured 〈h0〉
vector as the mean and an arbitrary variance (identity
matrix). Such initial guess could be optimized, but we
did not observe any in�uence on the �nal results. The
second part of the E-step, called the smoother part, com-

putes π(hk−1|hk, {X̃}0:N ) and is run backward, i.e. from
k = N to k = 0 (arrow (2) on Fig. 1) which �nally gives
the required probability law of hk−1, hk conditioned to
the full observed trajectory. Detailed formula are pre-
sented in Appendix.

Prediction-
Correction:

Smoothing:

Figure 1. E-step. (1) We �rst predict iteratively the history
of ht for the whole trajectory, using a predictor-corrector.
(2) The values of ht are then smoothed iteratively backwards
from the end of the trajectory (see text).

b. M-step For any set of parameters Θ, introduce
the evidence lower bound LjLB after the j-th iteration
of the algorithm as the expectation with respect to

πΘj ({h}0:N |{X̃}0:N ) of the log-likelihood of the full tra-
jectory {X}0:N with parameter Θ, namely (see derivation
in Appendix)

LjLB(Θ) =

∫
πΘj

({h}0:N |{X̃}0:N ) lnπΘ ({X}0:N ) d{h}0:N

=

∫
πΘj (h0|{X̃}0:N ) lnπΘ(X0)dh0

+

N−1∑
k=0

∫
πΘj

(hk, hk+1|{X̃}0:N )

× lnπΘ(Xk+1|Xk)dhkdhk+1.
(5)

The M-step consists in setting Θj+1 to be the maximizer
of this quantity. Notice that due to the particular form
of (2), LjLB(Θ) is an explicit function of Θ, that can be
easily optimised as described in Appendix.
c. Full algorithm The algorithm then run as follows.

An initial random or informed guess Θ0 is taken for the
parameters. Such informed guess could come from a pre-
vious execution of the algorithm with a di�erent number
of hidden dimensions. From parameters Θj , a new set of
parameters Θj+1 is computed through an iteration of E
and M steps. Since maximizing the evidence lower bound
LjLB increases the observed likelihood, the method is it-
erated until either a prescribed maximum number of EM
steps or a convergence criterion is reached.
d. Assessing the quality of a given model The num-

ber of hidden dimensions dh is an important parameter of
the algorithm. It can be chosen using a model validation
approach, classically by dividing the set of trajectories
between a training and a validation set. However here,
we simply compute the optimal parameters for several
values of dh and compare the predictions of the corre-
sponding models for a number of observable properties,
such as the memory kernel, velocity-autocorrelation func-
tions (VACF) or mean �rst passage times. Similarly, the
quality of the model depends on the time step used for
the coarse-grained dynamics. This choice depends among
other things on the numerical scheme for the propagator.
For a given underlying dynamics of the full system, the
most accurate choice for the coarse-grained one is to use
the same time step ∆tfull, but as a compromise with the
amount of data one can also use ∆t = m∆tfull (i.e. using
only every m step), with m a small integer.
e. E�cient sampling of new trajectories Once the

model has been optimized by the EM algorithm, it can
be used to generate new trajectories in the CV-space.
Due to their limited computational cost compared to MD
trajectories, such synthetic data grants easier access to
well-converged average properties, in the form of static
and dynamic observables. As an example, in section III
the mean �rst passage times (as well as their probability
densities) of a Lennard-Jones dimer in a bath are esti-
mated based on the GLE model and compared with the
corresponding ones extracted from expensive MD simu-
lations.

III. RESULTS

We �rst present the result of the algorithm on a simple
yet non-trivial test case with a 1D system following the
extended dynamics of (2), with 5 hidden dimensions and
a quadratic potential well V (x) = x2/2, using 20 trajec-
tories of 2.5 · 104 steps and a timestep of 5 · 10−3. The
e�ective force is �tted as a linear function of x. Fig. 2a
compares the result of our algorithm to the true memory
function that can be computed from (3) and the one ob-
tained by the Volterra method (see Materials and Meth-
ods). It demonstrates that the present EM method is
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able to reproduce the true memory kernel. Furthermore,
the parametric structure of the �tted model enforces the
decay to zero of the memory kernel, whereas the Volterra
method is unstable at long time. Fig. 2b �nally shows
that the method accurately reproduces the VACF.

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

(a)

(b)

−0.8

−0.4

0

0.4

0.8

1.2

0.01 0.1 1 10 100

(a)

(b)

K
(τ
)/
M

τ

True

Volterra

EM

〈v
(τ
)v
(0
)〉

τ

Referen
e

EM

Figure 2. Equilibrium 1D case. (a) Memory kernel K(τ)
divided by the mass M : The true kernel used to generate
the reference trajectories (dark blue line) is compared with
the predictions of the Volterra method (cyan solid line, with
shaded area indicating uncertainties computed from a boot-
strap analysis) and of the present EM method (dashed-dotted
yellow line). (b) Velocity autocorrelation function, from the
reference trajectories (dark blue line) and from new trajecto-
ries sampled using the �tted EM model (dashed-dotted yellow
line).

The algorithm also applies to multidimensional and
nonequilibrium systems. This is illustrated on Fig. 3
for a 2D system with two di�erent thermal noises along
each axis, with temperatures Tx = 1 and Ty = 5 and a

quadratic potential V (x, y) =
1

2

(
x2 +

3

4
xy + y2

)
whose

principal axes are not aligned with the x and y axes,
leading to non-equilibrium conditions. This setup is in-
spired by a similar Markovian model used to describe
non-equilibrium experiments on cold atoms [57]. We run
20 trajectories of 3 · 104 steps with a timestep of 5 · 10−3.
The e�ective 2D force is �tted as a linear combination
of x and y. The corresponding quadratic potential, il-
lustrated in Fig. 3a, is in good agreement with the one
used to generate the trajectories. Fig. 3b then shows that
the algorithm correctly estimates the memory kernel (in
the present case, a simple one with a single hidden di-

mension for each visible dimension). In particular, the
presence of strong Markovian component is captured by
the algorithm but missed by the Volterra method. Fi-
nally, the dynamics of the system is well reproduced, as
demonstrated for the VACF on Fig. 3c.

The present approach, based on the reproduction of the
dynamics of trajectories rather than the memory kernel
or the VACF, conveniently provides other observables be-
yond these two. Indeed, by generating new trajectories
corresponding to the �tted GLE model, one has in prin-
ciple access to all properties that can be computed from
the time evolution of the collective variables. As an il-
lustration, Fig. 4 shows for the same non-equilibrium 2D
case the stationary probability distribution and the aver-
age velocity as a function of the position, estimated using
either the initial trajectories used to �t the GLE model
(panel 4a) or the same number of trajectories generated
with the latter (panel 4b). Despite the relatively small
number (only 20) of original trajectories used to �t the
model and to compute the properties, those computed
from the �tted GLE model are in very good agreement
with the original ones.

As a �nal illustration, we apply our algorithm to a
more realistic 3D system composed of 512 Lennard-Jones

(LJ) particles at reduced temperature T̂ = kBT/ε = 1
and reduced density ρ̂ = ρσ3 = 1. Two of the LJ par-
ticles are singled out to form a dimer [24], the others
constituting the solvent. The CV of interest is the dis-
tance r between the two particles forming the dimer. LJ
parameters for all interactions are taken as ε = 1 and
σ = 1 (in LJ units), except between the two particles
forming the dimer, with εd = 2 and σ = 1. The size of
the cubic simulation box is 8σ, with periodic boundary
conditions in all directions. The dynamics is integrated
with a time step of ∆tMD = 10−3 (in LJ units) in the
NVE ensemble using the LAMMPS simulation package
[58]. We run 20 trajectories with length of 106 timesteps
and CV values are extracted every 2 steps.

We �t GLE models (2) with the EM algorithm for a
number of hidden dimensions ranging from 3 to 6. In
all cases, the e�ective force F e�(r) determined from the
MD trajectory is used as the single function of the above-
mentioned functional basis, so that �tting this part re-
duces to determining a single prefactor. Our aim is to
test the ability of these models to reproduce, in the sta-
tistical sense, the properties of the original simulations.
In order to check the importance of the hidden variables,
we also provide an analysis for a Markovian model, �t-
ted using a maximum likelihood algorithm with 0 hidden
dimensions (corresponding to the M-step of the above
EM algorithm). For each �tted GLE model, we gener-
ate 75 new trajectories of length 105 timesteps using (2),
to compute the observable properties and compare them
with those obtained from the original set of MD trajec-
tories.

We �rst compare the stationary distribution for the
various GLE models in Fig. 5a, which shows the free
energy as a function of the r coordinate computed from
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Figure 3. Non-equilibrium 2D case. (a) Locus of V (x, y) = 1 for the original potential and the one estimated by the EM
algorithm. (b) xx component of the reconstructed memory kernel Kxx(τ) divided by the mass M : The true kernel used to
generate the reference trajectories (dark blue line) is compared with the predictions of the Volterra method (cyan solid line,
with shaded area indicating uncertainties computed from a bootstrap analysis) and of the present EM method (dashed-dotted
yellow line); the left peak represents the Dirac function of (3). (c) Velocity autocorrelation function (for the x component of
the velocity), from the reference trajectories (dark blue line) and from new trajectories sampled using the �tted EM model
(dashed-dotted yellow line).

the histogram of each set of new trajectories (i.e. not the
one corresponding to the �tted e�ective force). The good
agreement with the MD free energy pro�le demonstrates
(i) that the coe�cient multiplying the model free energy
pro�le of each model is �tted precisely and (ii) that the
numerical integration of the GLE models is performed
accurately. Notice that free energy beyond r = 4σ is af-
fected by the size of the periodic box. The free energy
displays two potential wells at r = 1.12σ and r = 2.00σ,
corresponding to the contact pair (CP, i.e. the dimer)
and the solvent shared pair (SSP, with solvent atoms be-
longing to the solvation shells of both solutes), whose
dynamics is investigated below.

We then consider dynamical observables in Fig. 5b,
which shows the memory kernel estimated from the
Volterra method [4] for MD as well as GLE trajectories,
and Fig. 5c, which illustrates the VACF (the velocities
being computed numerically from positions both in the
MD and GLE trajectories). In both cases, increasing the
number of hidden dimensions increases the �delity of the
model with respect to the original data. The latter are
correctly reproduced for 5 and 6 hidden dimensions. The
plot also shows the poor quality of the Markovian model,
which con�rms the necessity of introducing some hidden
variables [48].

Finally, we study the transition kinetics between the
CP and SSP states, as a stringent test requiring accu-
rate reproduction of both thermodynamic and dynamic
properties of the system. Fig. 5d represents the mean
�rst passage time (FPT) to reach the SSP state starting
from smaller r distances, whereas Fig. 5e represents the
FPT distribution for trajectories starting from the CP
state and reaching the SSP state. Clearly, a su�cient
number of hidden dimensions (in this case 5-6) allows to
quantitatively reproduce the detailed transition statis-

tics. This demonstrates again both the importance of
memory e�ects and the ability of the present algorithm
to reconstruct an accurate GLE model.

CONCLUSIONS

In this work we addressed the construction of reduced
mathematical models of the dynamics of complex molec-
ular systems. Projecting the phase-space trajectories on
a reduced set of collective variables leads to a powerful
framework for the prediction of thermodynamic and ki-
netic properties of experimental interest. However, the
key problems in this context consist in the identi�cation
of a suitable dynamical equation and its parametriza-
tion. We developed a novel approach combining gen-
eralized Langevin equations, their numerically-e�cient
representation via Markovian equations including hid-
den variables, and a powerful machine-learning algorithm
borrowed from the �eld of statistical modeling and data
science. Starting from non-Markovian trajectories (e.g.
projected all-atom molecular dynamics trajectories in
condensed-matter applications), we maximize the like-
lihood of an extended Markovian model employing the
expectation-maximization algorithm. The advantage of
obtaining an explicit parametrization allows for inexpen-
sive sampling of synthetic trajectories, that can be used
for the direct computation of quantitative observables
(beyond the standard memory kernel and VACF) such
as stationary currents in non-equilibrium situations, or
the distribution of �rst passage times between metastable
states, generally hard to access through atomistic simu-
lations.
Several features distinguish our approach from others

existing in the literature. Firstly, the model we optimize
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Figure 4. Non-equilibrium 2D case: beyond the kernel and
the VACF. Stationary probability distribution (colors) and
average velocity (arrows) as function of the position for (a)
the original dynamics and (b) the GLE model estimated by
the EM algorithm. The two ellipses are the same as in Fig. 3a
and represent the locus of V (x, y) = 1 for the original poten-
tial (blue line) and the one estimated by the EM algorithm
(dashed yellow line).

includes an explicit parametrization of both the friction
and the noise, ensuring consistency between the anal-
ysis of the MD trajectories and the generation of new
projected trajectories. Secondly, our method is based
on a maximum likelihood procedure, which is well justi-
�ed from a mathematical perspective. In particular, in-
stead of estimating a non-parametric kernel which is then
parametrized (as e.g. in Volterra-based approaches), the
parametric model is directly �tted on the data; this
should limit the accumulation of errors. Thirdly, we
do not enforce equilibrium conditions (such as the �uc-
tuation dissipation theorem) on the model, so that the
present approach o�ers the possibility to investigate non-
equilibrium systems. Finally, the present approach read-
ily applies to multidimensional CVs and corresponding
matrix memory kernels.

The maximum likelihood approach o�ers a versatile
strategy to implement various extended Markovian mod-
els, which could be extended in particular to position-
dependent generalized Langevin equations and higher or-
der discretization schemes. Overall, the present work
provides an e�cient way to generate reduced dynamical
models for multidimensional collective variables, with the
same memory kernels as the underlying complex system,
enabling the accurate sampling of the long-time dynam-

ics of the latter at a dramatically reduced computational
cost.
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MATERIALS AND METHODS

a. Estimate of the (potential of) mean force In the
�rst two examples, the coe�cients of the quadratic po-
tentials in the EM method follow from those of the cor-
responding forces, which are the ones determined numer-
ically along with the parameters related to the memory
(see Appendix). Potentials of mean force in the Volterra
method result from quadratic �ts of the logarithm of his-
tograms of the position. We obtain the results for the
memory kernel with the Volterra approach, using the
memtools package (https://github.com/jandaldrop/
memtools [4]) in the 1D case and the multidimensional
version of Ref. 38 (see the link to our implementation
below) in the 2D case.
b. MD simulation details for the LJ dimer The dy-

namics is integrated with a time step of ∆tMD = 0.001
(in LJ units) in the NVE ensemble with the velocity-
Verlet algorithm using the LAMMPS simulation pack-
age [58]. We run 20 trajectories of 106 timesteps and CV
values are extracted every 2 steps.
c. EM convergence Initial values of the parameters

are taken randomly. For all examples, we stop the EM
iterations if the di�erence of log-likelihood between two
EM steps is less than 10−8 or if the number of EM steps
exceeds 2000.
d. Density and average velocity for the non-

equilibrium 2D case The density is estimated by kernel
density estimation using the positions along the trajecto-
ries. The average velocities are estimated conditionally
on the positions using kernel regression. The same Gaus-
sian kernel is used in both cases, with a bandwidth of 1.
For Fig. 4b, 20 new trajectories of 3 · 104 steps with a
timestep of 5 · 10−3 were sampled from the �tted GLE

https://github.com/jandaldrop/memtools
https://github.com/jandaldrop/memtools
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Figure 5. Lennard-Jones �uid: two solutes in an explicit solvent. In all panels, results are shown for the reference MD
trajectory (dark blue line) and for trajectories generated by the estimated Markov model (dashed cyan lines) and EM models
with 3 to 6 hidden dimensions (from dark green to purple). Unless speci�ed, all quantities are in LJ units. (a) Free energy (in
units of the thermal energy, kBT ) estimated from histograms of the distance r between the two solutes; the various cases are
shifted by physically irrelevant constants for clarity. (b) Memory kernel compared and (c) velocity autocorrelation function;
the inset in panel (b) shows a zoom on intermediate times. (d) Mean �rst passage time to reach r = 2.0 starting from the

distance r. (e) Distribution of the �rst passage time for trajectories starting at r = 21/6 and ending at r = 2.0 (the inset shows
a zoom on the tail of the distributions, on semi-logarithmic scale).

model and compared to the original 20 trajectories of
Fig. 4a.

e. Mean �rst passage time estimation The FPT is
estimated for molecular dynamics starting by restraining
the initial position with a parabolic potential as a func-
tion of r using PLUMED [59]. 2000 trajectories are gen-
erated from di�erent restrained positions. Gaussian ker-
nel estimates (with bandwidth of 1/∆tMD) of the mean
FPT as well as the FPT density are then obtained con-

ditioned on the realized starting position. The FPT and
MFPT from the �tted models are computed using 1500
trajectories per initial value of the distance, again em-
ploying kernel estimates.
f. Code availability A python package to perform

the analysis introduced in the present work is available
at https://github.com/HadrienNU/GLE_AnalysisEM.
Our implementation of the 2D Volterra method
is available here: https://github.com/HadrienNU/
VolterraBasis

APPENDIX

Likelihood of a trajectory

We introduce the Euler-Maruyama discretizations of Eq. (2) in the main text
xk+1 = xk + vk∆t

vk+1 = vk + ∆t
(
M−1Fe�(xk)−Avvvk −Avhhk

)
+
√

∆tσvvGv +
√

∆tσvhGh
hk+1 = hk −∆t (Ahvvk +Ahhhk) +

√
∆tσT

vhGv +
√

∆tσhhGh

(6)

where Gv and Gh are random centered reduced Gaussian vectors. To alleviate notations, we introduce the vector
µ∆t(Xk) and the matrix σ∆t such that the last two equations of (6) read(

vk+1

hk+1

)
= µ∆t(Xk) + σ∆t

(
Gv
Gh

)
. (7)

The transition probability density in Eq. (4) of the main text is

π(Xk+1|Xk) = N
((

vk+1

hk+1

)
;µ∆t(Xk), σ∆tσ

T
∆t

)
δ

(
vk −

xk+1 − xk
∆t

)
(8)

https://github.com/HadrienNU/GLE_AnalysisEM
https://github.com/HadrienNU/VolterraBasis
https://github.com/HadrienNU/VolterraBasis
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where

N (y;µ,Σ) =
e−

1
2 [y−µ]TΣ−1[y−µ]√

(2π)D det Σ
=
e−

1
2 Tr[Σ−1[y−µ][y−µ]T]√

(2π)D det Σ

is a notation for a (D-variate) Gaussian distribution density for the variable y with mean µ and variance Σ. Since
the presence of the Dirac function imposes the velocity as vk = (xk+1 − xk)/∆t, we always assume this condition to
be satis�ed and consider in the following only the non-degenerate part of the transition probability.
From Eq. (4) in the main text, the log-likelihood of a trajectory is then given by

lnπΘ ({X}0:N ) = lnπ(X0)− 1

2
N ln

[
(2π)d+dh detσ∆tσ

T
∆t

]
− 1

2

N−1∑
k=0

Tr
[
(σ∆tσ

T
∆t)

−1 (Xk+1 − µ∆t(Xk)) (Xk+1 − µ∆t(Xk))
T
]
.

M-step

Our ultimate objective is to maximize, with respect to the parameters Θ =

{Fe�, Avv, Avh, Ahv, Ahh, σvv, σvh, σhh, 〈h0〉}, the log-likelihood of the observed trajectory {X̃}0:N given by

lnL(Θ) = ln

∫
πΘ({X}0:N )d{h}0:N = ln

∫
πΘ({h}0:N |{X̃}0:N )πΘ

(
{X̃}0:N

)
d{h}0:N .

However, there is no practical way to maximize this expression directly, due to the integration with respect to the
hidden variables, so that the EM algorithm relies instead on another quantity. Given Θj the current guess of the

parameters at the jth iteration of the EM algorithm, the evidence lower bound (Eq. (5) in the main text) is de�ned
by

LjLB(Θ) =

∫
πΘj

({h}0:N |{X̃}0:N ) lnπΘ ({X}0:N ) d{h}0:N

=

∫
πΘj

(h0|{X̃}0:N ) lnπΘ(X0)dh0 +

N−1∑
k=0

∫
πΘj

(hk, hk+1|{X̃}0:N )× lnπΘ(Xk+1|Xk)dhkdhk+1.

Using a convexity inequality, it can be shown (see Section 8.4.1 of Ref. 53) that, for all Θ,

lnL(Θ)− lnL(Θj) > LjLB(Θ)− LjLB(Θj) .

The M step then consists in taking Θj+1 as the maximizer of LjLB , which ensures that lnL(Θj+1) > lnL(Θj), i.e. an
increase of the log-likelihood at each iteration.
Contrary to the log-likelihood, the evidence lower bound can be optimized in practice. Indeed, from the transition

probability (8), the evidence lower bound is

LjLB(Θ) = lnπ(X0)− 1

2
N ln

[
(2π)d+dh detσ∆tσ

T
∆t

]
− 1

2

N−1∑
k=0

Tr

(σ∆tσ
T
∆t)

−1

〈(vk+1

hk+1

)(
vk+1

hk+1

)T
〉

Θj

−
〈(

vk+1

hk+1

)
µ∆t(Xk)T

〉
Θj

−
〈
µ∆t(Xk)

(
vk+1

hk+1

)T
〉

Θj

+
〈
µ∆t(Xk)µ∆t(Xk)T

〉
Θj

 (9)

where all averages are with respect to πΘj (hk, hk+1|{X̃}0:N ). Let B be the d × NF matrix of the coe�cients of the

force in the functional basis, i.e. −M−1Fe�(x) = BG(x) where G = (G1, . . . , GNF
) are the basis functions. From (6),

the vector µ∆t(Xk) has a linear dependency in the parameters (B,Avv, Avh, Ahv, Ahh) as it can be written as

µ∆t(Xk) =

(
vk
hk

)
−∆t

(
Avv Avh B
Ahv Ahh 0

) vk
hk

G(xk)

 :=

(
vk
hk

)
−∆tΘ̃

 vk
hk

G(xk)


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where we have introduced a (d+ dh)× (d+ dh +NF ) matrix Θ̃. As a consequence, the evidence lower bound reads

LjLB(Θ) = lnπ(X0)− 1

2
N ln

[
(2π)d+dh detσ∆tσ

T
∆t

]
− Tr

[
(σ∆tσ

T
∆t)

−1
(
C1 − Θ̃CT

2 − C2Θ̃T + Θ̃C3Θ̃T
)]

where C1, C2, C3 are matrices, independent from Θ, which can be explicitly computed using (9) from the observations

{X̃}0:N and the mean and covariance matrix of πΘj
(hk, hk+1|{X̃}0:N ) for all k (see the E-step below). The equation

∇ΘLjLB(Θ) = 0 can then be solved explicitly [60, 61] and has the following unique solution:

Θ̃ = CT
2 C

−1
3

σ∆tσ
T
∆t = C1 − Θ̃CT

2 − C2Θ̃T + Θ̃C3Θ̃T .

E-step

The goal of the E-step is to compute πΘj (hk, hk+1|{X̃}0:N ), as required in the M-step, for a �xed Θj . In the
following we drop the subscript Θj and simply write π = πΘj .

First, the prediction-correction part of the E-step computes the probability distribution of hidden variables condi-

tioned on the past trajectory of the visible variables, namely π(hk|{X̃}0:k), for all k. This is done iteratively, forwards
(i.e. from k = 1 to k = N), using that

π
(
hk|{X̃}0:k

)
=

∫
π
(
hk−1|{X̃}0:k−1

)
π
(

(X̃, h)k|(X̃, h)k−1

)
dhk−1

π
(
X̃k|{X̃}0:k−1

) . (10)

Since the denominator does not depend on hk and, for all k, π((X̃, h)k|(X̃, h)k−1) is a Gaussian density, it follows

that π(hk|{X̃}0:k) is a Gaussian distribution for all k and that its mean and covariance matrix can be computed by
induction on k (see (12) below for the explicit expression).

This �rst part is followed by the Rauch-Tung-Striebel smoother part of the E-step, where πΘj (hk, hk+1|{X̃}0:N ) is
computed for all k, iteratively, backwards (i.e. from k = N − 1 to k = 0), using the relation

π
(
hk, hk+1|{X̃}0:N

)
= π

(
hk|hk+1, {X̃}0:N

)
π
(
hk+1|{X̃}0:N

)
. (11)

The second term can be computed iteratively starting with k = N − 1, already computed in the prediction-correction
part (for k = N in Eq. 10), as the marginal of the previous iteration (from time step k + 2 to k + 1)

π
(
hk+1|{X̃}0:N

)
=

∫
π
(
hk+1, hk+2|{X̃}0:N

)
dhk+2.

The �rst term of the right hand side of (11) is obtained from the results of the prediction-correction part and the
transition probability distribution, using that

π
(
hk|hk+1, {X̃}0:k

)
=

π
(

(X̃, h)k+1|hk, {X̃}0:k

)
π
(
hk|{X̃}0:k

)
∫
π
(

(X̃, h)k+1|hk, {X̃}0:k

)
π
(
hk|{X̃}0:k

)
dhk

=
π
(

(X̃, h)k+1|(X̃, h)k

)
π
(
hk|{X̃}0:k

)
∫
π
(

(X̃, h)k+1|(X̃, h)k

)
π
(
hk|{X̃}0:k

)
dhk

.

Similarly to the prediction-correction part, these relations imply that πΘj
(hk, hk+1|{X̃}0:N ) is a Gaussian distribution

and that its mean and average can be computed by an induction relation from k = N − 1 to k = 0 (see (13) below
for explicit expressions). This concludes the E-step.

The E-step is illustrated in Fig. 6: here, we sample a trajectory {X}0:N with known parameters Θ (with a single

auxiliary variable, i.e. dh = 1), and our goal is to reconstruct the law πΘ({h}0:N |{X̃}0:N ) of the trajectory of the

hidden variable, using only the trajectory of the observed variables {X̃}0:N . This conditional law, represented in
Fig. 6 by its mean k 7→ 〈hk〉 and twice its standard deviation (blue area), is concentrated on the original realization.
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Figure 6. Estimation by the E-Step of the law of the trajectory of a single hidden variable (dh = 1), πΘ(hk0:N |{X̃}0:N ),

reconstructed using only the trajectory of the observed variable {X̃}0:N for the one-dimensional case (d = 1) with a quadratic
potential V (x) = x2/2 discussed in the main text (with more hidden variables). The �gure shows the original trajectory of
the hidden variable (red line) and the conditional law, represented by its mean k 7→ 〈hk〉 (blue line) and twice its standard
deviation (shaded area).

E-step: explicit expressions

Since the computations of the E-step follow from integrals over hidden variables, we decompose the average term

in (7) between a part that depends on X̃k and another that depends on the hidden variables,

µ∆t(Xk) = µ̃(X̃k) +Ahhk ,

with Ah a (d+ dh)× dh matrix. The prediction-correction part of the E-step proceeds forward (iterating from k − 1
to k) and we have for (10)

π
(
hk|{X̃}0:k

)
= N

(
hk;µfk ,Σ

f
k

)
(12)

where the mean and variance are given by

µfk = µ∗
h + Σ∗

h,v

[
Σ∗
v,v

]−1
[vk − µ∗

v]

Σfk = Σ∗
h,h − Σ∗

h,v

[
Σ∗
v,v

]−1
Σ∗
v,h

where (
µ∗
v

µ∗
h

)
= µ̃(X̃k−1) +Ahµ

f
k−1(

Σ∗
v,v Σ∗

v,h

Σ∗
h,v Σ∗

h,h

)
= σ∆tσ

T
∆t +AhΣfk−1Ah

T.

The smoother part of the E-step proceeds backward (iterating from k+ 1 to k). Introducing the dh× (d+ dh) matrix

R =
(
Rv Rh

)
= ΣfkAh

T
[
σ∆tσ

T
∆t +AhΣfkAh

T
]−1

,

we have for (11)

π
(
hk, hk+1|{X̃}0:N

)
= N

((
hk
hk+1

)
;

(
µsk
µsk+1

)
,

(
Σsk RhΣsk+1

(RhΣsk+1)T Σsk+1

))
(13)
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using the expression of the marginal distribution π
(
hk|{X̃}0:N

)
= N (µsk; Σsk) whose mean and variance are

µsk = µfk −R
[
Ahµ

f
k + µ̃(X̃k)

]
+Rvvk+1 +Rhµ

s
k+1

Σsk = RhΣsk+1R
T
h + Σfk −RAhΣfk .

Comparison between the EM and Volterra methods and estimate of the (potential of) mean force

In the main text we compare the EM and Volterra methods to compute the memory kernel from an initial set of
trajectories. This requires an estimate of the potential of mean force (PMF) as a function of the collective variables.
In the �rst two examples, we consider harmonic potentials in one and two dimensions, respectively. Figure 7 compares
the memory kernels obtained in the 1D case by the Volterra (V) and EM methods with various ways of computing the
e�ective force. For both V and EM, we consider the kernels resulting from trajectories generated using the original
harmonic potential used to generate the initial trajectories (original), as well as using the harmonic potential obtained
by �tting the forces (for EM) or the potential of mean force (for V) sampled from the initial trajectories (�tted). In
the V case, we also show the results for the default use of the memtools package which does not rely on a �t of the
potential of mean force (obtained by histograms) by a harmonic potential but rather a numerical approximation by
cubic splines. We �nd that there is little di�erence at long times between the original and �tted harmonic potentials,
while using splines for the PMF with the Volterra method deteriorates the results compared to the �ts by a quadratic
potential (for V) or corresponding linear force (for EM). Nevertheless, even in these cases we observe some instability
and a large variance at long times and the conclusions of the comparison between the proposed likelihood-based
method and the Volterra ones are unchanged.
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Figure 7. Comparison between memory kernels involved in the 1D example (see Fig. 2a of the main text). See the text of this
Appendix for the description of the labels.
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