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Abstract

Aged Macular Degeneration (AMD) leads to a progressive decline in visual acuity until 

reaching blindness. It is considered as an irreversible pathology where an early diagnosis 

remains crucial. However, the lack of ophthalmologists, the permanent increase in elderly 

people and their limited mobility involves a delay in AMD diagnosis.

In this paper, we propose an automated method for AMD screening. The proposed 

processing pipeline consists in applying the well-known radon transform to the macula 

region in order to model the AMD lesions even with a moderate quality of smartphone 

captured fundus images. Thereby, the relevant features are carefully selected, related to the 

main proprieties of drusens, and then provided to an SVM classifier. The implementation 

of the method into a smartphone associated to a fundus image capturing device leads to a 

mobile CAD system that performs higher performance AMD screening. Within this 

framework and, to achieve a real time implementation, an optimization approach is 

suggested in order to reduce the processing workload. 

The evaluation of our method is carried out through the three public STARE, REFUGE 

and RFMID databases. A 4-fold cross validation approach is used to evaluate the method 

performance where accuracies of 100%, 95.2%, 94.3% are respectively obtained with 

STARE, REFUGE and RFMID databases. Comparisons with the state-of-the-art methods 

in the literature are done. Thereafter, the robustness of the proposed method was evaluated 

and proved. We note that 100% accuracy was preserved despite the use of degraded quality 

fundus images as noisy and blurred. Moreover, the propounded method was implemented 

in S7-Edge and S9 Smartphone devices, where the execution times of 19 and 15 

milliseconds were respectively achieved, which proves the AMD real time detection. 

Taking advantage of its mobility, cost-effective, detection performance and reduced 

execution time, our proposed method seems a good solution for real time AMD screening 

on mobile devices.

Keywords: Aged macular degeneration, fundus image, drusens, radon transform, feature 

extraction, real-time, m-health 

1. Introduction 

Aged Macular Degeneration (AMD) is a chronic irreversible pathology which leads to 

a gradual decline in visual acuity until reaching blindness. In healthy color fundus images, 

the macular region is usually described as a darker region, where darkness increases 
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towards the center of the macula due to increased pigmentation, as depicted in Fig. 1a. 

However, AMD causes appearing drusens in the macula, which correspond to yellowish-

white spots located under the layer of pigmented epithelial cells in the retinal image, as 

shown in Fig. 1b. The AMD pathology stages are categorized based on the drusen diameter, 

which is between 15 μm and 63 μm in the early AMD stage, between 63 μm and 125 μm 

in the intermediate stage, and above 125 μm in the later stage [1, 2].The World Health 

Organization reports that eight million people have severe blindness due to AMD. 

However, if diagnosed atan early stage, the risk of progression to a late stage of AMD can 

effectively be slowed down through an AMD dedicated therapy. Hence, an early diagnosis 

is of utmost importance. 

A fundus image, which is captured by the fundus camera, is used to diagnose and detect 

retinal diseases. Evidently, the usual diagnosis approaches require qualified 

ophthalmologists to acquiring retinal images and diagnose AMD. However, a low rate of 

ophthalmologists worldwide is registered, which is equal to 29 per million persons[3]. This 

leads to considerable waiting time, hence the delay between the AMD disease on set and 

the first diagnosis. Furthermore, this limitation will be aggravated in future years. In fact, 

the AMD pathology frequency rises for elderly people over 55 years [3]. The central 

statistics office has shown that the older population is expected to increase more than 

threefold between 2016-2051[4], where the number of patients is expected to grow to 288 

million affected individuals in 2040 [5]. Contrariwise, the ophthalmologist rate will remain 

stationary. Besides, AMD patients have a limited mobility, which inhibits traveling for 

medical examination. In addition, the usual approaches are performed by expensive 

equipment, making the AMD diagnosis costly. Consequently, those limitations contribute 

to the increasing risk of AMD progression to a late stage [6, 7]. 

(a) (b) 

Fig.1Symptoms of AMD: (a) Image of healthy retina; (b) Image of AMD-affected retina 

Currently, smartphones present an excellent opportunity to improve the medical practice 

in several healthcare domains[8–11], particularly in ophthalmology. Several lenses are 

designed to be snapped onto smartphones in front of their cameras allowing capturing 

fundus images, as depicted Fig. 2. The lenses insure a Field Of View FOV between 45° 

and 50°, such as the Volk-N-View and Welch Allyn Panoptic Ophthalmoscope. These 

lenses have provided fundus images containing all retinal structures such as the blood 

vessel tree and the macula. Some clinical works are interested in studying the quality of 

Smartphone-Captured Fundus Images (SCFIs) [12], where the study proposed in [13] 

assigned that they were readable with an average of 86% to 100%. Other studies affirmed 

that SCFI are sufficiently readable to identify the AMD [14]. 

In this paper, the main objective of our work is to provide an automated method of AMD 

detection dedicated to mobile devices. The targeted method must ensure higher detection 

accuracy while respecting the timing constraint with respect to the clinical use. The 

proposed method is intended to be implemented on a smartphone associated to a capturing 

device, to provide a Computer-Aided-Diagnosis (CAD) system for AMD screening. This 

CAD significantly allows the reduction of the overload placed on of ophthalmologists as 
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this, can be exploitable by non-ophthalmologist medical practitioners. The handheld aspect 

of the suggested CAD permits to use the CAD system in a limited clinical context, and so 

overcome the mobility limitations of patients. In addition, the system benefits from the 

cost-effectiveness of mobile phones and capturing devices. Consequently, this system 

overcomes the main problems that have caused a delay on the AMD diagnosis. 

Fig.2 Optical lenses for retinal capture : (a) Volk-N-View [15]; (b) Welch-Allyn lens [16] 

The clinical use requires that the proposed system provide an accurate assessment of the 

AMD pathology. The diagnosis should avoid false negative detection, which leads to 

expect serious disease states and results in an impractical treatment. Thus, the first 

challenge is to perform higher accuracy AMD screening despite the difficulty of drusen 

detection. The clinical employment requires a handled technology to be adapted to the 

patient mobility, which will become an alternative to the immobile classical fundus camera, 

as for angiographs and retino graphs. Due the handled aspect of smartphones, a light 

leakage normally occurs, which will lead to a noise in fundus images. Moreover, the non-

stationary angle of SCFIs causes a lack of brightness and a non-balanced contrast. As a 

second challenge, the suggested method should prove the robustness in detecting AMD 

despite of the low contrast and blurred quality of SCFIs. Besides, with respect to increasing 

elderly people, the aimed CAD system should be used in clinical mass screening, which 

requires detecting AMD in a short time delay. Thus, the third challenge is to perform 

automatic AMD screening in reduced time, while respecting the limited processing 

capacities of smartphones and the permanent increase in the retinal image size.  

Several studies have put forward automated AMD screening methods [1, 2, 17], but 

most of them have failed to provide optimal accuracy. Even in an opposite case, higher 

accuracy of existing methods is achieved due to the higher quality images, which cannot 

be guaranteed for SCFIs. Furthermore, the existing methods are always characterized by a 

higher computing complexity, which outreaches the capacity of mobile devices. 

Consequently, they cannot achieve reduced execution time, and so are not suitable for the 

aimed mobile CAD for AMD early diagnosis using SCFIs. Accordingly, our work is aimed 

at proposing a novel automated method for AMD screening that ensures accurate and 

robust detection despite the moderate quality of SCFIs with low execution time. 

The rest of the paper is organized as follows: Section 2 provides an overview of the 

recent related works. Section 3 describes the suggested method steps as well as 

preprocessing, feature extraction, Section 4 details the implementation of our method into 

a mobile CAD system for AMD screening. Section 5 describes the conducted 

experimentations where robustness and real time implementations are analyzed with 

respect to the state-of-the-art. The choice of SVM parameters and oversampling techniques 

are justified.  We finally draw a conclusion in section 6. 
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2. Related work 

The proposed automatic methods for the AMD diagnosis are varied in terms of 

processing principles, which can be partitioned into image processing based methods and 

Machine Learning (ML) based ones. Most of image processing based methods have 

focused on segmenting drusens as regards their color and intensity [4, 6, 7, 18]. However, 

those criteria are confused with other pathological lesions. As indicated in the survey of 

[5], the methods based on classical ML for AMD disease/no disease detection have been 

widely used and generally achieved higher performance AMD detection. 

This category of methods involves three main stages. The first one is the pre-processing 

step which consists in improving the quality of images and locating the regions of interest. 

The second stage proceeds to extract AMD features. Some work reduces the feature vector 

based on accuracy and then provides it to a classifier in order to screen the AMD disease. 

In this stage, most known classification algorithms are used, such as Support Vector 

Machines (SVMs), Decision Trees (DT), K-Nearest-Neighbors (KNN) and Random 

Forests (RF). A summary of AMD screening methods in terms of accuracy, complexity 

and inference time is presented in Table 1. 

In [19], the authors used mathematical morphology to highlight drusen areas and healthy 

macular regions. Subsequently, features called “Hu moments” were calculated from each 

pixel. Then, a feature selection method was used to evaluate the predictive capability of 

features and to choose the ones that were highly correlated to AMD detection. Thereafter, 

the extracted features were utilized by the SVM classifier for healthy and AMD distinction. 

In the work described in [20], the features of higher order spectra, entropy, fractal 

dimension and Gabor wavelet were extracted from fundus images. Then, they were ranked 

in order to select the optimal ones. Those features were transmitted for the training while 

using the SVM. In [1], the authors proceeded to convert the two-dimensional fundus image 

into one-dimensional signals. They performed the empirical mode decomposition of the 

signal to distinguish healthy from AMD classes. Then, the nonlinear features were 

extracted to characterize and classify healthy and AMD fundus images using the SVM 

classifier. In the study presented in [2], the local configuration coefficients and the pattern 

occurrence features were used to classify the fundus images into healthy and AMD fundus 

images. Thereafter, they used the SVM classifier. 

The accuracy of the methods based on classical ML largely depends on the type and 

quality of feature sets. However, most methods extract the features from the entire fundus 

image that contains anatomical structures, such as pathological lesions, Optic Disc (OD) 

and blood vessels, which have similar shapes as drusens and so might lead to higher false 

positive detection. Moreover, the previous studies did not explore all AMD morphological 

properties and often proceeded to extract redundancy features to identify the same 

propriety. For example, the methods suggested in [2, 21] were based only on the variation 

in the intensity in the fundus image while the method proposed in [19] was based only on 

the drusen color. As a consequence, they would fail to achieve a higher accuracy in real 

patient visual outcomes. 

In addition, method evaluations are always performed using database images containing 

retino graph captured images, with a higher quality compared to SCFI ones, as indicated in 

second column of Table 1. Even through the evaluation of several methods is applied on 

high quality images, some methods have failed to achieve optimal accuracy [2, 21], like 

the work proposed in [19]which had non optimal accuracy from 92% to 83.5%. Such 

performances have not been adequate for the aimed CAD system for AMD detection. It 

should be noticed that several fundus image databases have been employed for evaluation, 

such as ARIA and KMC, where Structured Analysis of Retina (STARE) has been the most 
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used. Since the detection performance has been the unique objective of such works, all 

methods have implemented on desktops through the MATLAB software tool. 

Furthermore, the existing methods are always aimed to achieve higher accuracy, without 

focusing on the computational performance. It can be deduced from columns 

“complexity”of Table 1, that the methods involve higher computationally processing 

caused by the large number of extracted features. The works reported in [1, 2, 20, 22], [23] 

led to extract 1262, 1000, 2068, 22 and 50–400 features respectively. Added to that, several 

features required iterative and recursive processing. Some feature processing achieved a 

complexity of about O(n3) and O(n4), like the third order Higher Order Spectral (HOS),the 

bis-pectrum [24] and H-jorth processing [21], where(n×n) was the fundus image 

dimension. In addition, some works have remedied for feature selection methods to 

enhance the classification performance. The selection process consisted in comparing all 

combination subsets of features to identify the ones having a higher correlation with the 

ground truth. The time complexities of selection were in terms of evaluated combination 

subsets k, where it achieved a polynomial complexity of O(nk+1)[25]. Both criteria 

deteriorated the time complexity of AMD screening methods [5]. Moreover, the rise in the 

image size resulted in a similar increase in the execution time.  It is observed in Table 1, 

that although the methods are evaluated using high-performant architectures, the time 

needed for feature extraction and classification is in the order of 39 seconds - 2.5 hours, as 

indicated in column 4. The execution time will be aggravated when implemented in mobile 

devices due to the limited processing capacity. Therefore, the existent AMD detection 

methods are not suitable for mobile CAD systems of AMD screening.  

Table 1 Accuracies and computational performances of AMD screening methods 

Works Data base Accuracy Execution time (s) Complexity Machine 

(Mookiah et al., 

2015a)[1] 

ARIA 85.09% 

9,496. 231 O(n3) 

Intel i7-4770, 

3.47 GHz/16 GB 

Matlab 2012b 

STARE 100% 

KMC 91.67% 

(Mookiah et al., 

2015b)[2] 
STARE 97.78% 109.550 O(n2) 

Intel i7-4770 

3.47 GHz/16 GB 

Matlab 2012b 

(Mookiah et al., 

2014a)[20] 

ARIA 95.07% 

39.017 O(n3) 

Intel i7-4770 

3.47 GHz/16 GB 

Matlab 2012b 

STARE 95.00% 

KMC 90.19% 

(Mookiah et al., 

2014b)[22] 
KMC 93.70% 87.78 O(n²) 

Intel i7-4770 

3.47 GHz/16 GB 

and MATLAB 

2012b 

(Acharya et al., 

2017)[21] 
KMC 85.12% NA O(n4) MATLAB 

(Acharya et al., 

2016)[17] 

ARIA 96.89% 

NA O(n²) MATLAB STARE 100.00% 

KMC  99.49% 

The contribution of our work is to suggest a new automated method for detecting the 

AMD disease dedicated to mobile devices, which will ensures an accurate AMD detection 

with respect to the state of the art screening techniques. Within this framework, our work 

aims to guarantee the robustness despite the low quality of SCFIs in addition to assuring 

AMD detection in real execution time even with the limited capacity of smartphones.
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3. AMD screening Method  

Our work mainly focuses on the development of a new method dedicated to the mobile 

architecture to ensure a CAD for AMD screening with a higher detection performance and 

optimized processing time. The first step consists in pre-processing the fundus image to 

locate the macula and extract it as a Region Of Interest (ROI) in order to reduce false 

positive detection. Then, contrast enhancement is subjected to improve the fundus image 

quality, as described respectively in sub-section 3.1.1 and sub-section 3.1.2. Secondly, our 

contribution consists in modeling the AMD proprieties. For this purpose, the Radon 

Transform (RT) was applied to the macula region, which offers an explicit intensity 

representation and robustness with respect to the degraded image quality and with a 

minimal computational requirement, as detailed in the sub-section 3.2. Thereby, the method 

consists in adequately selecting the AMD features for image classification. Those features 

are selected to reflect all AMD proprieties modeled in the radon transform representation 

in order to ensure higher accuracy. Besides, it is proceeded to identify few features with 

lower complexities with respect to the limited capacity of smartphone architectures, as 

indicated in the sub-section 3.3. Those features are provided to a classifier which is chosen 

to assure higher performance AMD detection in a low execution time, as depicted in the 

sub-section 3.4, where the whole flowchart of the proposed method is presented in Fig. 3. 

Fig.3 Flowchart of proposed method for AMD screening 

3.1 Preprocessing

3.1.1 Macula ROI extraction

The AMD pathology leads the drusens to appear inside the macula[26]. Thus, exploring 

the macula region is sufficient to detect AMD, avoiding the need to explore the entire 

retina[27]. In addition, a whole retina analysis involves higher computational processing 

due to the permanent increase in the image size.  

For that, we aim to locate the macula as a ROI. In fact, several approaches of macula 

detection have been suggested in the literature where the majority allowed effective 

detection. The work described in [28] used morphological operations followed by 

thresholding for segmenting the blood vessels and the darkest region property in fundus 

images. The suggested method provided 96% accuracy when tested on 100 images from 

the DRIVE and the STARE datasets. In [29], the macula was detected as a region in the 

retina having a low pixel intensity. However, the evaluation was performed without using 

AMD fundus images. The work proposed in [30]permitted locating the fovea, where a 

detection rate of 96.4% was achieved. However, their method was not evaluated with 

fundus images having a degraded quality. In [31],the method was able to detect the macula 

even in the presence of pathological lesions, which achieved higher accuracy equal to 

96.6%. This method was characterized by a low complexity making it benchmarked using 

images with a size of 2304 × 1536 and locating the macula in 0.007 second. As a result, the 

method of [31]was is employed in our work to locate the macula while respecting the 

complexity constraint. 

Macula location 

&enhancement 
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3.1.2 Contrast enhancement 

The green channel is more informative and has a better contrast than red and blue 

channels [32, 33]. It explicitly represents the retinal shapes that are characterized by high 

intensity. For that, the green channel is extracted, which is in accordancewith several AMD 

screening methods [1, 2, 17, 19, 20]. Thereafter, the drusens are mainly characterized by 

their higher intensity compared with their background. The drusens can be located with a 

higher performance if they belong to a homogeneous background. However, the ganglion 

cell layer is thinned continuously while going towards the fovea, which involves a steady 

decrease in intensity, as illustrated in Fig. 4a. Consequently, the regions containing drusens 

are characterized by a different contrast in relation to the distance from the fovea, where 

the regions close to the fovea are characterized by a higher contrast, while the regions 

around the macula have a reduced contrast. Furthermore, the smartphone capture brings to 

a non-stationary projection angle. Therefore, it involves a light leakage that causes an 

increasing contrast in partial region of the fundus image, as shown in Fig. 4b. As a result, 

the macula texture in smartphone capture leads to an unbalanced contrast with respect to 

the macula and the drusen lesions. 

(a) (b) 

Fig.4Illustration of unbalanced contrast caused by (a) macula texture (b) Smartphone captured 

fundus image 

Classical Histogram Equalization (HE) consists in globally improving the contrast, 

through transforming the histogram of the whole image with a uniform range. Since the 

contrast and intensity distributions change from one region to another, HE is inadequate to 

rectify the unbalanced contrast problem[34]. To avoid this problem, the authors 

in[32]showed that some works of image enhancement technique had used the Contrast 

Limited Adaptive Histogram Equalization (CLAHE) algorithm which would divide the 

input image into non-overlapping regions and perform adaptive HE to each region 

separately. The pixel intensities were rectified with respect to their rank on the intensity 

histogram [32] of the sub-image. Consequently, the contrast was improved in each region 

even if they had unbalanced ones. In addition, the CLAHE method was performed onall 

pixels in the entire image where the computational complexity was equal toO(n²)[35], 

which was appropriate for targeting a timing-constrained implementation. Accordingly, the 

CLAHE algorithm was employed in our study to avoid the unbalanced contrast problem of 

fundus images. 

3.2 Radon transform 

A drusen is distinguished by its greater intensity in the macula sub-image [36], which 

serves as an important pathological feature to evaluate AMD risk. For this purpose, we 

represent the contrast variation in the macula image to highlight the intensity of drusens 

from their background. A very relevant example is the work proposed by [37], which 

consisted in applying the well-known RT[38] processing in order to represent the intensity 

of the Optic Disc (OD).The writers in [39]suggested a method for detecting retinal 

vasculatures based on the RT representation of the vessel brightness in fluorescein 
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angiography fundus images. Compared to other approaches, the RT improves low 

frequency components and can derive a large number of features [40]. The RT also 

improves the intensity of small drusens. It reflects information about the entire image 

texture rather than each pixel separately. Furthermore, it generates the radon values that are 

computed in terms of pixel sum, as illustrated with arrows in Fig. 5. Hence, the RT is 

distinguished by its robustness with respect to noise, whether caused by the retinal shape 

texture or by the smartphone capturing process[41]. Moreover, the RT converts a 2D image 

into a 1D projection, where deducing drusens from the radon vector requires significantly 

lower computational time than deducing them from the whole image[42]. 

Fig. 5 Radon transform with angle 90° 

The RT transforms the intensity of image pixels into line parameters, named the radon 

projection [20, 37]. The Radon transform R, for a two-dimensional image I (x, y) maps an 

image to its integral on lines defined by angle θ and offset r, as formulated in Eq. (1)[43]. 

�(�, θ) = � � 	(
, �) . �(
. cos(�) + �. sin(�) − r) �
��
��

��
 (1)

Where I is the input image, x and y are the pixel indices in I, r is the distance between the 

projection line and the image center, and θ is the angle between the projection line and the 

x-axis. δ is the dirac function,that integrates to 1 and has infinite value when evaluated at 

0 and the value of 0 at all other points [44] . This allows for the summation of values along 

the line xcos(θ)+ysin(θ)-r for a given θ and is equivalent to rotating an image θ degrees and 

integrating pixel intensities along the height of the rotated image.  

As shown in the example Fig 5, when the image is passed through the RT, it  were 

divided into several non-overlapping paths or beams per angle spaced at 1 pixel unit, as 

modeled as red dotted rows which are labelled from L1 to Ln.  Assume that the image 

consists of M pixels in total, and that the intensity of the ith pixel is denoted by Ii, i = 1, 

...,M. The radon projection point value for each line would equal to the cumulative intensity 

of all M pixels. Each projection therefore contains the beam sums that are calculated at a 

given angle, as illustrated in Fig. 5, where the estimated radon projection of the macula 

image is given for angles equal to 90°.   

The RT allows efficiency representing the intensity of an image in the radon domain as 

a collection of projections all along the different directions. In Fig. 6a, we illustrate the 

appearance of two drusens in a macula image, where the drusens and the macula are 

respectively simulated with light and dark colors. Thereafter, three radon projections are 
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applied to the sub-images with angles equal to 90°, 45° and 0°, in order to investigate the 

correlation between the radon projection angle and the drusen detection, as shown in Fig. 

6.  

Fig. 6 Radon projection at angles 0°, 45° and 90°.

For the radon projection at the 90° angle, the drusen boundaries are defined as peaks in 

the radon vector. For the projection at the angle 45°, the drusens are aligned to the radon 

crossbars. Hence, the radon projection contains a large peak, which reflects the summation 

of the intensity of two drusens. This projection allows detecting the presence of drusens 

that can be obscured when presented separately. For the radon projection at angle 0°, the 

drusens appear as a large lesion with respect to the horizontal axis. They lead to a stationary 

value in the radon vector. Hence, the 0° projection fails to distinguish between the drusens 

and the background of macula. 

In addition, we can see that both projections at 0° and 2° angles reflect radon vectors 

having stationary values. Thus, like the first projection 0°, projection 2° does not allow 

representing the drusen, as shown in Fig.7a. We can also see that the intensity variation is 

maintained even if we change the projection angle from 90° to 92°, where both illustrate 

the same drusen shapes, as depicted in Fig. 7b. At most angles that are too close together, 

the RT produces a similar projection, hence leading the higher excessive redundancy. 

Furthermore, a single radon projection involves covering all the macula image pixels with 

resolution n × n, which requires O(n�)[45]. For that reason, the RT projection processing 

requires a complexity equal to O(ω. n�), where ω is the number of projections. 

Consequently, performing the RT in all directions of a circle requires a higher 

computational complexity of the generation of all radon projections[46]. 

In fact, we deduce that applying the RT with different projections provides 

complementary shape modeling of drusens. In order to achieve a reduced complexity, it is 

sufficient to apply the transformation only along a small set of different directions. At the 

same time, it is necessary to select angles while fixing the step values, in order to consider 

the distribution of drusens in various directions. Therefore, we investigate the correlation 

between the different numbers of radon projection and the AMD screening performances, 

as proceeded in related work [41, 47]. We experimentally derive the optimal number of 

radon projections, which provides maximal screening performance in reduced time, where 

the screening outcome is reported in the experimented results, indicated in sub-section 

5.4.1. Then, all projections are concatenated and stored on a matrix called the radon space. 
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The radon space permits to model the global structure of the image not just a single pixel 

where a macula image and its correspondent radon space,as illustrated in Fig. 8.  

(a) (b) 

Fig. 7Radon projection with close angles: (a) angles 0° and 2° ;(c) angles 90° and 92° 

3.3 Proposed approach of feature extraction based upon Radon Transform 

The radon space representations of the radon transformation are studied to identify the 

morphological properties of drusens in order to distinguish between healthy and AMD-

affected macula images. Table 2 lists the different levels of AMD properties in terms of 

"irregularity distribution", "intensity growth" and "circular shape distortion" according to 

the AMD classification. In fact, retinal ganglia cells condense continuously, with the 

highest concentration in a radial direction towards the fovea, which involves a steady 

decrease in the intensity. As a result, a regular variation in the intensity is represented in 

the radon projection. However, a dispatched drusen in the macula image leads to the 

appearance of a greater irregular variation in the Radon projection [33], as depicted in the 

third column of Table 2 , entitled "irregularity Distribution". 

(a) (b)  (c) (d)  

Fig.8 (a) Healthy macula; (b) Radon space of healthy macula ; (c) AMD affected macula; (d) 

Radon space of AMD affected macula 

Furthermore, a healthy macula appears as a dark spot, where the fovea is the central part 

that provides the lowest pixel intensity compared to other regions. As a consequence, a 

radon projection has a downward slope followed by an upward one, with a main optimum 

in the macula center. However, drusens are characterized by a higher intensity compared 

to the other regions in the macula sub-image [48], which corresponds to a higher peak in 

the radon projection.  

Due to the round shape of the macula and the centric position of the fovea [36], all radon 

projections have similar shapes [37, 49]. However, drusen presence destroys the circular 

formed shape of the macula, involving a valley in the radon projection. Since the radon 

projections are applied at different angles, the valley is expressed inside each radon 
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projection with a varied position, thus affecting the similarity between them. These three 

identified AMD properties can be used to distinguish AMD affected fundus images from 

healthy ones. 

Table 2 AMD properties in terms of AMD grading

AMD grading Radon space  
Irregularity 

distribution

Intensity 

growth 

Circular shape 

distortion 

Low Low Low 

Early 

High Low Low 

Intermediate 

High High High 

Late 

Low High Low 

Nevertheless, as shown in the second line of Table 2, we can see that the drusens in 

early stages are represented by low peaks that avoid their detection and do not alter the 

similarity between the radon projections. Drusens in the late stage also expand to coalesce 

and appear as large drusens, which implies the restoration of the regular distribution in the 

radon projection, as shown in the last row of the column “Irregularity distribution” of  Table 

2. Besides, the circular shape of the drusen in a late stage produces similar radon projections 

at different angles, as depicted in the last line of the column “Circular shape distortion”

Table 2, leading to confusion between AMD images and healthy ones.A single individual 

property is not sufficient to detect drusens whatever the AMD stage is. To avoid those 

problems, the three identified properties should be combined, to complement each other 

and so produce the best distinction between healthy and AMD affected image.  

Accordingly, we proceed to reflect each identified property with a single, robust and 

efficient feature. Those features are selected to reflect all AMD properties in order to ensure 

higher accuracy, as indicated in the following sub-sections. We focus on carrying out each 

feature processing with lower complexities in order to achieve a higher computational 

performance. 

3.3.1 Irregularity distribution: Sample entropy 

The texture of a healthy macula leads to a regular variation in the radon projection. The 

presence of drusens in the macula sub-image involves a higher irregular distribution in the 
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radon projection, with several optimal values. For that, we consider the radon projection 

variation to deduce AMD disease [1]. Usually, the entropy allows quantifying the signal 

regularity, such as the Kolmogorov–Sinai entropy [50], the approximate entropy [51], the 

Sample Entropy (SE) [52] and the spectral entropy [53]. In fact, the SE processing principle 

is based on computing a ratio between the number of successive values having the same 

direction and the number of successive values leading to inversing the direction [54]. The 

advantages of this entropy is the robustness to noise [55] and its independence of the signal 

length[56]. Therefore, the SE processing is chosen to deduce the radon projection 

irregularity. 

The first step of the SE processing proceeds to identify a set S1 containing all sequences 

of consecutive points whether having growing or decreasing directions. Two Radon 

projections for a healthy and AMD affected macula are respectively shown in Fig. 9a and 

Fig. 9b, where the point sequences are modeled by boxes containing red and blue points. 

The second step consists in testing the following point of each sequence whether it follows 

a similar direction or not. For the direction conserved, the sequence is added to a set S2 of 

successive points. The following points of all sequences are represented by the green color, 

where sequences belonging to S2 are modeled by black boxes in both radon projections of 

Fig. 9. Then, a ratio between the sequence number in set S2 and set S1 is computed. 

Thereafter, the SE is computed by applying the natural logarithm of this ratio, as given in 

Eq. (2)[52, 57].  

SE(m, r) = −ln (
�(���,�)

�(�,�)
)    (2) 

where m is the length of sequences, and r is the minimal difference to be considered when 

identifying the direction. With regard to optimal values for m and r, a developed tests of 

parameters for sample entropy [57] suggested that selecting m between 2 and 3 and r 

between 0.3 and 0.4 would give optimal classification results. Accordingly, in our work we 

proceeded to select m at 2 and r at 0.3 in order to have the optimal classification results. 

(a) (b)

Fig.9 Radon projection with successive value location of : (a) Healthy macula, (b) AMD 

affected Macula

Therefore, a radon projection to a healthy macula has a regular variation with a single 

curvature in the middle of the radon vector. Hence, the sequence numbers in both S1 and 

S2 sets are very close, which are respectively equal to 6 and 5 in the case of Fig. 9a. 

Consequently, a healthy macula corresponds to a ratio near to 1, and so a SE value near 

zero. Contrary, a radon projection to an AMD affected macula has a higher variation, where 

the S2 set size is significantly smaller than S1 one. For Fig. 9b, S2 contains only two 

sequences, while S1 contains six, thus leading to a ratio close to 0. As a consequence, AMD 

affected macula results in a higher positive SE value. 
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As noted in sub-section 3.2, we deduced that modeling drusens in radon vectors depends 

on the projection angle. It can be seen that the stationary value of the radon projection at 

0° does not allow modeling the intensity variation, which leads to a small SE value. In 

contrast, in case the projection angle is equal 90°, the radon vector contains ascending 

slopes followed by a descending one, which correspond to the intensity variation, hence 

the higher SE value. To avoid this problem, we computed the average Avg�� of SE over 

different radon vectors with various angles, as indicated in Eq. (3).  

���	
 =
∑ 	
(�,�)ωω

ω
     (3) 

where ω is the projection number. For an input RT vector having a size of √2 × n, the SE 

repeats the comparison over all possible sets, where the computational complexity is equal 

to O(n²)[58, 59]. Thus, while the SE is applied to all TR projections, the SE feature requires 

a complexity of O(ω × n�), and so leads to a higher computational complexity. To reduce 

the complexity, we aim to identify the minimal set of radon projections, which are selected 

to apply the SE that allows reducing execution time while expecting a maximal screening 

performance. Within this objective, we investigate the correlation between SE computing 

and the AMD screening performance, where the required set of radon projections is 

reported in the experimented section, indicated in the sub-section 5.4. 

3.3.2 Intensity growth: dynamic threshold based intensity rate 

Radon projection to a healthy image leads to provide a monotone signal. On the other 

hand, the radon projection of an AMD-affected image represents a higher peak that 

corresponds to the drusens. Accordingly, a threshold must be performed in order to 

efficiently separate needed peaks from background structures. In this way, many existing 

thresholding techniques [60], such as Otsu’s local thresholding and the static threshold, can 

be chosen for this presented task. Nevertheless, we notice that Otsu’s method does not 

provide an adequate threshold, if the number of peaks is small compared to the background 

or if the radon projection is severely corrupted by an additive noise [61, 62]. In addition, 

the uneven illumination used in the acquisition process results in different intensities for 

all captured fundus images, which leads to various values in the radon projection. Thus, a 

static threshold is not adequate to identify drusens based on their intensity peaks. For 

example, Fig. 10a and Fig. 10b correspond to the radon projection applied to dark macula 

sub-images, while Fig. 10c and Fig. 10d correspond to the radon projection applied to 

brightness ones. The static threshold modeled by red lines avoids the extraction of peaks. 

It extracts the value border of the radon projection as peaks in Fig. 10c, which leads to false 

positive screening of AMD. Moreover in Fig. 10d, the static threshold fails to extract peaks 

relative to drusen lesions due to the low values of the radon projection. 

To avoid this problem, we apply a dynamic threshold based on the intensity rate for the 

radon space where level �ℎ is identified with respect to the radon projection values, as 

modeled by green lines in Fig. 10. Thus, all the points of the radon projection having values 

greater than 0.9 times the difference between the maximal and minimal values are 

extracted, as depicted in Eq. 4.  

�ℎ = 0.9 ∗ (max $(%, &) − min $(%, &)) (4)

where �ℎ is the threshold level, $ is the radon space and (%, &)are the radon value indexes. 

We noted that the optimal threshold is adopted experimentally to 0.9, where the drusens 

having peaks greater than �ℎ were examined, as proceeded in previous research [63]. This 

experimental approach allowed us to deduce that if such threshold is applied with a value 

below 0.9, some noise peaks or light leakage of the smartphone capture some noises has 
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been identified as lesions. In addition, we noticed that that if such a threshold applied with 

value greater than 0.9, some lesion were missed in the dark AMD affected macula. 

(a) (b) 

(c) (d)

Fig. 10 Radon projections with static and dynamic threshold: (a) Dark healthy macula (b) Dark 

AMD affected macula, (c) Bright healthy macula (d) Bright AMD affected macula 

Subsequently, we study the impact of the extracted values in the neighboring regions. 

Therefore, an average value of the radon projection �������� is computed, as given in Eq. 

(5). Then, we derive an average values of the extract peaks ���	
� , as provided in Eq. (6). 

�������� =


�∗	
∑ ∑ �(�, �)

	


�
     (5) 

���	
� =


����

∑ ∑ �(�, �)
	


�
  ; �ℎ����(�, �) ≥ !ℎ   (6) 

where w is the projection number, p is the radon projection size, and"	
�  is the number of 

radon values �(�, �) ≥ !ℎ.

In fact, all values of the radon projection of a healthy macula are so close together that, 

the gap, between the maximal and minimal values, is small. Hence, ���	
�  will be so close 

to the average of the radon projection ��������, as illustrated in Fig 10a and Fig. 10c.By 

way of contrast, for an affected macula representation, the values of the radon projection 

are so spaced, where the peaks relative to the drusens are characterized by higher values. 

Thus, a full appreciable gap between the ���	
�  and �������� values is produced, as 

presented in Fig 9b and Fig. 10d.The idea is to deduce, the drusens presence  based upon  

the image background, as proceeded in [63, 64]. To achieve this aim , we proceed to 

compute the ratio intensity growth feature �
�#$�%
#& between the average of peaks ���	
�

and the average of the radon space �������� , as highlighted in Eq. (7)[64] 

�
�#$�%
#& =  ���	
�  / ��������    (7) 

As a result, the ratio of the intensity growth feature �
�#$�%
#&of the healthy macula 

always tends towards 1. On the other hand, an AMD affected macula leads to a higher 

positive value of�
�#$�%
#&. For the intensity growth feature, a threshold is applied to the 
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RT space projection with a size of (� × �). Then, a mean value of all peaks, within the 

entire RT space projection, is computed. Thus, it requires �(� × �) to be done.

3.3.3 Similarity: MSE 

The radon projections to the healthy macula are characterized by a curvature shape 

formed by the degraded intensity variation, where the vertex of each radon projection 

corresponds to the fovea location[65]. Due to the round shape of the macula and the centric 

position of the fovea, all radon projections have a similar shape[37, 49], as illustrated in 

Fig. 11a. However, the radon projections of an AMD affected image involve the 

representation of valleys that are relative to drusens, and so distort the convex form. Since 

the drusens are located randomly in the macula region, and radon projections are applied 

with various angles, the valleys are expressed inside each radon projection with different 

positions as depicted in Fig. 11b. As a result, a big difference between radon vectors is 

distinguished. 

(a) (b)

Fig. 11 Radon projection with 0◦, 45°, 90° and 180◦ angles applied to: (a) Healthy macula; (b) 

AMD affected macula

Accordingly, we aim to quantify the difference between all radon projections to reflect 

the AMD disease. In fact, the measure of the dissimilarity between several models is 

attributed by the value of the distance from a universal model for all. For that, we compute 

the average vector R	(N)of all projections, which is the average of the radon space ��(N)

along all directions ω, as indicated in Eq (8). 

R	(N) =
�

�
∑ ��(N)�

���      (8) 

For a healthy macula, the average vector has a similar curvature to the original radon 

projections, as modeled by the red curvature in the radon projections at different angles, as 

represented in Fig. 12. Consequently, a minimal gap between the projections and the 

average projection curvature is provided. 



16 

(a) (b) 

(c) (d)

Fig. 12 Radon projections and projection averages for healthy macula with: (a) Angle 0°, (b) 

Angle 45°, (c) Angle 90°, (d) Angle135° 

Contrarily, the average vector has an important difference with the radon projection, as 

modeled by the red curvature in Fig. 13. Thus, a full appreciable gap between the profiles 

of projections and the average projection curvature is provided.  

Accordingly, we quantify the distance between the average vector and all radon vectors. 

Hence, a reduced difference corresponds to a healthy macula where a greater distance is 

supposed to cause a greater dissimilarity which corresponds to an AMD affected one. 

Various similarity processing can be used, such as the Mean Square Error (MSE) [37], the 

M-S similarity[66] and C-LTM[67], which are based on the classical method to calculate 

the distance vector. In this work, we compute the similarity between the radon projections 

through the calculation of the MSE between projections, as indicated in Eq. (9). Here, the 

MSE consists in computing the difference between each radon projection and the average 

radon space based on the Minkowski distance method [68], as proceeded in [37].  

MSE =
�

�.�
∑ ∑ (��(N) − R�(N))²

�
���

�
���     (9) 

where ��(N) refers to the (N, ω) component of the radon space, and N and ω are the length 

of the RT Radon projection and the number of projections respectively.  

Thus, for a healthy macula, radon projections have a similar curvature as their average 

profile, which leads to a lower MSE. In contrast, the drusens involve a differentiated radon 

projection which leads to a higher MSE. A � comparison between each RT projection of 

size n and the mean projection is generated. The, the time complexity of the MSE feature 

is equal to �(� × �)[37]. 



17 

(a) (b)

(c) (d)

Fig.13 Radon projections and projection averages for AMD affected macula with: (a) Angle 0°, 

(b) Angle 45°, (c) Angle 90°, (d) Angle135°

To sum up, different RT projection angles are generated for each sub-image to offer an 

explicit intensity representation. Then, from the provided radon space, only three adequacy 

AMD features are identified to reflect all AMD proprieties which are the sample entropy, 

the dynamic threshold and the MSE. In addition, those features are characterized with lower 

complexities to achieve a higher computational performance in low execution time. The 

feature vector will be provided to a classifier to screen the AMD disease, as described in 

the next sub-section. 

3.4 Classification 

At this stage, the objective of our method is to combine of the three features of 

morphological properties to a classifier so as to guarantee an efficient screening in reduced 

time. To achieve this required classification between healthy and AMD-affected images, 

several techniques have been used by existing ocular pathology screening methods using 

different classifiers such as DTs, Naive Bayes, probabilistic neural networks and KNNs[5]. 

Among those classifiers, the SVM which is  a supervised learning machine [69] that 

demonstrates a higher performance in several ocular pathology classifications, such as the 

neovascularization detection [70] and the hard exudate detection [71]. The SVM is also 

reported to be the best performing classifier for AMD screening and AMD severity 

detection [5, 19, 21]. The work proposed in [72] reported a specificity of 100%, a sensitivity 

of 99.4% and accuracy of 99.6% using the SVM to classify the testing images. In [19], the 

authors used an SVM to classify fundus images into healthy/AMD categories and obtained 

92.16% accuracy. In [1, 2, 20], it was deduced from the experimentations that the SVM 

provided better AMD screening performances among different other classifiers. In 

addition, with respect to the problem of a higher data requirement, the SVM classifier 

showed a good performance when the training dataset was limited. Moreover, the SVM 

complexity was between to � × � and �²[73], where� was the number of support vectors 

which depended on the data set size, and �was the dimensionality of the feature vector, 
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which was equal to three ones in our case. Hence, a constant time complexity equal to �(1)
is required. It is considered as a suitable solution with respect to real-time classification 

constraints [74]. Consequently, we can infer that the SVM classifier presents an ideal 

choice for our automated method for AMD screening. Furthermore, the performance of the 

SVM classifier depends on the kernel type used during the training process. For this 

purpose, a comparative study is presented in the sub-section 5.2.2 to select an adequate 

kernel. 

In summary, we have proposed in this section a novel method for AMD screening. First 

of all, we focused on enhancing the contrast in order to properly distinguish between the 

AMD lesions and the macula background. Then, we have applied the RT at the macula 

region offering an explicitly intensity representation. Furthermore, we chose the adequacy 

AMD features for image classification that reflected all AMD properties and we have 

chosen the SVM in order to ensure the best distinction between healthy and AMD affected 

images. Table 3 present the complexity of the different step processing and the different 

features processing used to describe the AMD morphological properties in term of  

“Irregularity distribution”, “Intensity growth” and “Circular shape distortion”. We focused 

on carrying out each step processing with lower complexities, which requires a total 

complexity of �(	 × 
�), where 
 × 
 is the input image size and 	 is the radon projection 

number, hence making it adaptable to a mobile implementation. 

Table 3 Complexities of AMD Screening steps. 

AMD screening steps Complexity 

ROI enhancement �(
²)
Radon processing �(	. 
²)
AMD morphological 

properties related 

features 

SE �(	. 
²)
Average intensity  �(	. 
)
MSE �(	. 
)

SVM Classification �(1)

Total steps of AMD screening method �(	. 
²)

4. Smartphone-based AMD screening CAD system  

The present work is mainly aimed at deploying a mobile computer-aided system for 

AMD screening. In this context, the above processing pipeline is running on smartphones 

as an application.

4.1 Software environment  

The entire method is carried out on Android smartphones using the Android Software 

Development Kit (SDK). The coding for the AMD classification algorithm is performed 

by combining the Open Computer Vision (OpenCV) library and JAVA programming 

languages, in order to guarantee computationally efficient execution. OpenCV is an open 

source computer vision library which can be used with several programming languages 

such as C, C++ and Python [62]. The OpenCV library contains over than 2,500 optimized 

image processing functions and is used in a lot of areas as medical imaging, security and 

multimedia. The OpenCV library also includes a full, general-purpose Machine Learning 

Library (MLL).  

Creating an Android application on the Android platform requires an Android software 

Native Development Kit (NDK). The NDK is a toolset to work with the Android SDK, 

which allows compiling the native-code languages such as C and C++ proposed in the 

OpenCV library. The Android NDK provides the native API compiler system and packages 
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the native codes into Android Package Kit (APKs) by the integrating Java Native Interface 

(JNI) with Android SDK. The JNI is used here to enable the JAVA application to embed 

other language codes, as modeled in Fig. 14. 

Fig. 14 Android software environment with OpenCV library[75] 

4.2 Mobile CAD system for AMD screening 

At first, the green channel is extracted and is processed to enhance the contrast using the 

predefined method in the OpenCV library “CLAHE.apply()”, where the image is separated 

into different regions with a size of 8×8 pixels, which defineds using the function 

“CLAHE.setTilesGridSize()”. Thereafter, the RT consists in performing a plane rotation 

followed by an horizontal and vertical projections [46], where they are applied respectively 

using predefined functions called "imrotate()" and "core.reduce()"with parameter 

“Core.REDUCE_AVG”. Then, the three features are implemented using a combination 

between JAVA trough the Android Studio integrated development environment and native 

codes defined in OpenCV library. The use of OpenCV enables the useof an SVM classifier 

on the Android development kit. Accordingly, the SVM classifier is trained with the 

features extracted from the STARE data base, using predefined function in the Opencv 

library "SVM.train()". After generating the classification model, it is deployed into mobile 

CAD system Android smartphones. To do that, the trained model is saved into a check 

point file. Thereafter, the model is loaded by the mobile CAD system and used for 

prediction, which allows generation of the classification results. The OpenCV predefined 

function "SVM.predict()" is used to assure AMD screening results. 

The graphical user interface illustrated in Fig. 15 allows the selection of the fundus image 

from the smartphone gallery through the button entitled "Fundus Image Selection". 

Afterwards, the second button leads to detect the macula, as indicated by a square added to 

the fundus images shown in the interfaces of Fig. 15. Next, our proposed method is run 

through the "AMD Diagnosis" button, where the classification result is provided on the 

bottom of the graphical interface, as shown in Fig. 15b and Fig. 15c. The application of the 

entire system is installed on different types of devices where the evaluation time results are 

described in sub-section 5.4. 
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(b) (c) (d) 

Fig.15 Smartphone graphical interface of AMD classification: (a) Fundus image loading; (b) 

AMD detection; (c) Healthy image deducing

5. Experiments and results 

5.1 Database and evaluation metrics 

5.1.1 Databases 

To evaluate our proposed method we use the three STARE, REFUGE and RFMiD

databases. STARE is a public dataset [74]where images were acquired using a topCon 

fundus camera at a 35-degree FOV with a size of 700×605 pixels. Each retinal image in 

STARE dataset was diagnosed as associated to one or more of thirteen different 

abnormalities. Among several ocular pathologies, the dataset contains fundus affected by 

AMD which belong to different AMD stages and images corresponding to healthy 

retinas[19], as indicated in Table 4. A second database "REFUGE dataset" [77], is a public 

database of 400 fundus images acquired using  Zeiss Visucam with a resolution of 1440 × 

1440 pixels.  Typical signs of AMD that can be found in AMD images are drusen, 

exudations, hemorrhages, etc. A third database “RFMiD dataset” [78] contains fundus 

images taken with three different cameras with a resolution of 2144x1424, 4288x2848, 

2048x1536 pixels respectively.  

We select a fundus image subset from each database containing AMD-affected-fundus 

images and healthy fundus images, where the labelling was carried out by an expert 

ophthalmologist. Table 4 shows the number of images in the No AMD and AMD classes 

and describe the image resolution in each used data set. 

Table 4 Image level data base description. 

Data bases Resolution
Number of images per class

AMD No AMD

STARE  700x605 37 27 

REFUGE  1440x1440 81 266 

RFMiD  

2144x1424 

4288x2848 

2048x 1536 

169 425 

5.1.2 Evaluation metrics 

The metrics to measure the performance of our method are respectively the True Positive 

(TP), the True Negative (TN), the False Positive (FP) and the False Negative (FN).The TP 
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(resp. TN) defines that a macula image is correctly screened as AMD affected (resp. 

healthy). On the other hand, the FP (resp. FN) consists in classifying a healthy macula 

(resp. AMD affected macula) asan AMD affected image (resp. healthy image). 

Thereafter, we computed the Specificity (Sp) which presents the proportion of correctly-

classified healthy macula images among all actual healthy ones, as indicated in Eq.(10). 

Then, we computed the sensitivity, which indicated the proportion of correctly-classified 

affected macula images among the actual affected ones, as given in Eq.(11). Likewise, we 

computed the overall Accuracy (Acc), which presented the proportion of correctly 

classified macula images among all images (healthy and AMD-affected images), as 

provided in Eq.(12).The Positive predictive value (PPV), also called precision, denotes the 

proportion of correctly-classified the AMD affected image among the labeled –affected 

image and it can be expressed as indicated in Eq. (13).The negative predictive value (NPV) 

denotes the proportion of correctly-classified healthy subjects among the labeled-healthy 

ones, as provided in Eq. (14). 

Specificity = TN/((TN+FP))    (10) 

Sensitivity = TP/((TP+FN))    (11) 

Accuracy = ((TP+TN))/((TP+TN+FN+FP))    (12) 

PPV=TP/(TP+FP)        (13) 

NPV = TN/(TN + FN)      (14) 

5.2 Feature evaluation 

In this section, we evaluate the ability of each feature to distinguish between healthy and 

AMD-affected images. For this purpose, we study the correlation between the value of each 

feature and the different classes. Within this objective, we ran our method for the chosen 

dataset described in the previous sub-section. For each fundus image, we retrieved the three 

extracted features and the classification result. The SE, dynamic threshold and MSE 

features are respectively illustrated in Fig 16a, Fig 16b and Fig 16c, where features of a 

healthy class are represented in a blue color and the features of AMD class are plotted in 

red. 

Fig. 16 Feature distribution of healthy and AMD affected maculas: (a) Sample entropy feature, 

(b) Dynamic threshold based intensity rate feature, (c) MSE feature

It is easy to deduce that the features are effective for reflecting the AMD disease in the 

fundus images. The three features raise values in most of AMD affected images related 

respectively to the high variation in the radon projection, the presence of the high peaks 

and the dissimilarity between the radon projections caused by the presence of drusens.  
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The overlapped values of features between a healthy and an affected macula are reported, 

like the exceptional cases mentioned in the sub-section 3.3. However, the features seem 

complementary in order to provide a performing AMD classification. For example, the 

drusens of the late AMD stage, represented by images 17 and 22, are expanded to gather 

and appear as a large one in a circular form. Consequently, low SE and MSE values are 

reported. In this case, the dynamic threshold based intensity rate proposes a complementary 

feature, where the coalesced of multi-drusens provides high intensity values, hence 

producing a good classification performance. 

5.3 Evaluation of AMD screening method on unbalanced datasets 

In this section, we choose the SVM kernel that allows achieving a higher detection 

performance. In order to efficiently evaluate our proposed method, we put forward a 4-fold 

cross validation approach, which consists in partitioning the retinal images of each dataset 

into four subsets in order to perform four experiments for each dataset. For each 

experiment, three subsets are conducted for the training process and one subset for testing. 

We extract the features of all fundus image datasets, to be used for training and test 

processes.  Then, we experimentally test the classifier with three different kernels that are 

respectively the linear, the RBF and the polynomial, where the achieved accuracy using 

STARE data set, REFUGE data set and RFMD data set. Table 5 lists the average results of 

the SVM classifier measures for 4-fold cross validation.  

We note that  classifier parameters offering the better performance are chosen through the 

SVM auto-train algorithm [79], which is widely used and considered by the most accurate 

optimization technique.  

Table 5 SVM classifier measure for 4-fold cross validation for imbalanced STARE, REFUGE and 

RFMiD datasets using various SVM kernels. 

Data bases Classifiers 
Metrics 

Accuracy Specificity Sensitivity PPV NPV 

STARE 

SVM with RBF 

kernel 
100% 100% 100% 100% 100% 

SVM 

with linear kernel 
96.2% 90.9% 100% 93.75% 93.75% 

SVM with 

polynomial kernel 
100% 100% 100% 100% 100% 

REFUGE 

SVM with RBF 

kernel 
85.7% 89,36% 66,66% 54,54% 93,33% 

SVM 

with linear kernel 
84.3% 86,20% 75,0% 52,94% 94,33% 

SVM with 

polynomial kernel 
84.3% 85.71% 80% 47% 96,22% 

RFMiD 

SVM with RBF 

kernel 
85.7% 83.16% 100% 51.42 100 

SVM 

with linear kernel 
84.9% 82.35% 100% 48.57% 100 

SVM with 

polynomial kernel 
85.7% 83.83% 95% 54.28% 98.80 

We can see that the accuracy values provided by the validation of STARE database are 

very close in the different kernel, as highlighted by the average performance values in table 

5. It is deduced that the RBF kernel allow achieving the highest performance rate in average 

fold cross of REFUGE and RFMiD datasets, which will be chosen for our method. 

However, large gap are deduced between classification performances of the REFUGE and 

RFMiD databases, which are unbalanced, with minority classes having fewer fundus 

images. Several studies have affirmed that unbalanced dataset affects the classification and 

decreases the accuracy  rate [21, 80]. 
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5.4 Oversampling techniques for unbalanced dataset issue 

To address unbalanced dataset problem, an oversampling preprocessing technique should 

be applied to unbalanced datasets before the classification process. Several resampling 

techniques have been proposed in the literature to overcome this problem before the 

classification process [21, 80–85]. Those oversampling techniques differ, according to their 

principle of dealing with class imbalance or adding new synthetic minority instances. To 

this end, we proceed to evaluate different techniques. Then, the Friedman signed rank test 

is applied, in order to select the best performing oversampling technique.  

5.4.1 Evaluation of AMD screening method with oversampling technique 

This experimentation was applied on each dataset, where the different techniques used were 

compared. In order to avoid overfitting, 20% of the generated data is used as test set. Figure 

17 summarizes the performance accuracy on the three datasets without any resampling and 

by applying the five previous oversampling techniques, where NONE denotes the 

experimental results without oversampling. In all the tests, the datasets have been balanced, 

decreasing the final imbalance until the same number of samples for both classes is 

obtained. In order to demonstrate the efficiency of the proposed method, the classification 

performances of SVM classifier kernels are compared. The training of the classifiers is 

performed by using the obtained resampled dataset generated by the different oversampling 

techniques.  

(a) 

(b) 
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(c) 

Fig. 17: The performance measurements using various SVM classifier kernels on (a) STARE dataset without 

any resampling and by  applying oversampling techniques (b) REFUGE dataset without any resampling and 

by  applying oversampling techniques, and (c) RFMiD dataset without any resampling and by  applying 

oversampling techniques. 

This result shows that by balancing the number of samples in the different classes, the 

classification error is minimized, thus allowing us to increase the classification 

performance. From Figure 17, we can see that the majority oversampling algorithms 

enhance accuracy. Knowing that oversampling techniques provide different results, the 

Friedman signed rank test [86] was applied based on the accuracy performance as presented 

in Table 6.  

Table 6 : Results of Friedman’s rank test between the different oversampling techniques.  

Techniques SVM-Linear SVM-RBF SVM-Poly 

None 4.3333 4.33333 4

SMOTE 4 2 3

SMOTE ROS 2 2.6666 1.3333

SMOTE KNN 2.3333 3.6666 3

SMOTE SVM 2.3333 2.3333 2.3333

ADASYN 2 1 2.3333

We can observe that the average ranks of the majority oversampling algorithms are 

obviously lower than NONE. In addition, we note that there are significant differences 

among oversampling technique, which prove that the influence of resampling depends 

strongly on the resampling technique. We deduce that "ADASYN" technique always has 

the best average rankings using the linear and RBF SVM classifiers. Further, the training 

of the SVM-RBF classifiers with the obtained from “ADASYN” technique, leads to 

achieve the highest performances using the different data sets. Accordingly, the 

“ADASYN” over sampling technique coupled with SVM-RBF classifier are the adequate 

ones to solve the nonlinear boundary classification problems of our extracted features. 

5.5 Performance evaluation of AMD screening method with respect to the state-

of-the-art methods 

In this step, we aim to compare the performance of our method to the existing ones. In this 

comparison, the STARE, REFUGE and RFMid databases were balanced with "ADASYN" 
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technique and were classified by SVM-RBF. This comparison is ensured based on the 

sensitivity, specificity and accuracy metrics. Table 7 highlights the performance validation 

of our proposed method to state-of-art approaches using same dataset, where the best results 

are shown in bold. 

First, recent works, whose evaluation has been based on the STARE database, are selected. 

Despite having used the same dataset, we obtained the highest classification accuracy of 

100, sensitivity of 100 and specificity of 100, among some previous work [2, 19, 20] that 

reported accuracy of 93.60, 92.15 and 82.92 respectively. It is important to highlight that 

our method uses 3 significant features to obtain an average accuracy of 100, whereas the 

literature [1] and [17] used 1262 and 30 features respectively and used the ranking test and 

feature selection algorithm to obtain the same accuracy. We use the box plots to present 

the performance of these experiments, as shown in Figure 18A. These box plots 

demonstrate high performances in terms of accuracy, sensitivity and specificity. 

Table 7 Performance detection of AMD screening in terms of existing methods 

Data base Works 
Metrics 

Accuracy Sensitivity Specificity NPV PPV 

STARE 

Mookiah et al., 

2014a[20]
82.92 88 71.67 NA 86.10 

Mookiah et al., 

2015b[2]
93.6 98.00 97.50 NA 97.87 

Mookiah et al., 

2015a[1]
100 100 100 NA 97.8 

Acharya et al., 

2016[17]
100 100 100 NA 100

García-Floriano 

et al., 2019[19]
92.15 88.2 NA NA 93.2 

Samina Khalid 

et al 2021[87]
95.45 97.5 95 98 91 

Our proposed 

work 
100 100 100 100 100 

REFUGE 

V. Rajinikanth 

et al  2021 [88]
93.67 93.33 94.00 93.38 93.96 

Our proposed 

work 
95.2 100 88.23 100 92.59 

RFMiD 

Wang Heyang 

[89]  
72.55 -- -- -- -- 

Our proposed 

work 
94.3 95,18 93,47 95,55 92,94 

Subsequently, our method is evaluated using the REFUGE dataset, and achieves a 

classification accuracy of 95.2%, a sensitivity of 93.33% and a specificity of 100%. As 

indicated in table 7, the performance measures are not high as compared to Stare dataset. 

The reason of the variations in accuracy may be due to the presence of different abnormal 

lesions. As described in section 5.1.1, lesions in the REFUGE data set are large as 

compared to STARE dataset. In addition, the non-AMD images in the REFUGE dataset 

contained healthy images and images with different anomalies. Even through this 

challenged data base, the success rates of our method are compared with those of other 

methods [88] which used the same data set and clearly indicate the high performance of the 

proposed method. The different performances are modeled through the box plots illustrated 

in Fig. 18B. The sensitivity of 100% presented in the fourth column of table 7 indicates a 

successful discriminating power while separating AMD affected image from the normal 

images.  

Finally, our method is evaluated using the RFMiD database. To our knowledge, we are the 

first paper to have evaluated the proposed method with this challenged database for AMD 

prediction, and achieve a classification accuracy of 94.3%, a sensitivity of 95.18% and a 
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specificity of 93.47%, as presented in the last line of table 7. The different performances 

are modeled through the box plots illustrated in Figure 18.C. The performance measures 

are not high as compared to STARE dataset. The reason of the variations in accuracy may 

be due to the presence of different abnormal lesions in the AMD fundus image, as described 

in section 5.1.1.A success rates of our method are compared with other method [89], based 

on deep Learning for different pathologies recognition, which used the same dataset. The 

proposed method clearly shows the high performance. The results also show that the 

proposed method has significant features that well describe the properties of drusen 

compared to other retinal regions. 

(a) (b) (c) 

Fig. 18 Performance visualization using box plots: (a), Stare fundus images dataset; (b), REFUGE fundus 

image dataset, (C), RFMID fundus image dataset 

5.6 Robustness evaluation of AMD screening method 

At this stage, we aim to prove the robustness of our method, even the moderate quality of 

SCFIs. In fact, the capture of fundus images using smartphones leads to a light leakage, 

which produces noises in fundus images. Moreover, the handled aspect of smartphones 

decreases the image quality and produces a blur in fundus images. Thus, the main idea is 

to apply a processing to the classical fundus image in order to reproduce degraded fundus 

images similar to the ones captured with smartphones. Within this framework, we generate 

a new dataset through applying data augmentation to the dataset described in the sub-

section 5.1. For each fundus image, blurring and noising using respectively a Gaussian blur 

and a Gaussian noise were applied. Accordingly, a second dataset was provided which was 

composed of 35 blurred and 35 noised AMD affected images, and 27 blurred and 27 noised 

healthy images. 

In figure Fig.19, we investigated the correlation between quality degradation and the ability 

of the radon space to reflect the macula image. The experimentation consists of generating 

the radon space using the 180 radon projection, to healthy and AMD-affected macula 

image. The macula depicted in Fig19 (b) and Fig19 (c) are provided after applying the 

motion blur filter and Gaussian noise filter respectively, in the macula showed in Fig19 

(A). We can highlight that despite the loss of information caused by the blurred filter, the 

meaningful preprocessing that we put forward succeeded in avoiding the unbalanced 

contrast problem of the macula image. Added to that, the RT robustness to noise enables 

us to overcome the problem of a degraded quality of fundus images. We can see that the 

Radon Projection leads to reflect explicitly the macula texture with a higher precision. The 

radon spaces maintain reflecting the drusens properties through the valleys inside the radon 

space and the higher irregular distribution of intensity. In the case of healthy macula, we 

can see that the semi-cylindrical shape all radon spaces are conserved, as well as the regular 

variation of contrast.  

(a) (b) (c)
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AMD 

Image

Radon 
projection

Image 

Healthy

Radon 

projection

Fig .19 Radon space with different view of healthy and AMD affected macula; (a) original image, (b) Blurred 

image, (c) Noised image. 

Following this, the proposed method was evaluated using the second dataset which 

included original, noisy and blurred images, the performance of which is shown in Table 

8. In this experimentation, we put forward a 5-fold cross validation approach, which 

consists in partitioning the retinal images of original and degraded Stare database into five 

subsets in order to perform five experiments. The goal of these experiments is to efficiently 

evaluate the robustness of the suggested method. In each experiment, three subsets, subsets 

that are indicated in green in Fig 20, are conducted for the training process and two subsets 

for testing. Fig. 20 shows the dispatching of subsets between training and testing of each 

experiment. 
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Fig . 20 Dispatching of subsets for 5-fold cross validation.

As a result, our methods maintained the same accurate accuracy of 100% for the original 

STARE data base for 5-fold cross validation, even with the reduced number of images used 

for the training process, as illustrated in Fig 21. Consequently, the proposed method 

confirms a higher performance whatever the number of image used for the training or 

testing procedure. 

Fig. 21 Performance visualization for 5-fold cross validation using box plots: (a), Stare fundus images 

dataset; (b), Stare dataset with degraded quality fundus image 

 Table 8 carried out the mean of the evaluation measures obtained on five different test subsets. A 

productive performance are achieved, where the average accuracy, sensitivity, specificity 

are respectively in the order of 95.2%, 97.9% and 93.8%, for the degraded quality of fundus 

images. These results prove the robustness of our method and confirm its ability to predict 

the AMD affected image even with an original or degraded image. Furthermore, this aspect 

proves the performance of our method, which is suitable for clinical use, and confirms its 

ability to be used on a mobile CAD system.

Table 8 Average performance measures for 5-fold cross validation of suggested method in terms 

of original and degraded quality of fundus images. 

Databases 
Metrics   

Accuracy Sensitivity Specificity 

Original STARE dataset 100% 100% 100% 

Degraded quality fundus image dataset 95.2% 97.9% 93.8% 

5.7 Real time implementation of AMD detection on mobile devices 

The CAD system is designed to run on different types of devices, in order to prove the 

standalone capability in different computing power and memory resources. For that, we 

implemented our method on two different smartphone devices, where their hardware 

features are listed in Table 9.

Table 9 Hardware features of implementation platforms. 
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Model Samsung Galaxy S7-edge Samsung Galaxy S9 

CPU architecture Samsung Exynos 8890 Samsung Exynos 9810 

CPU number 8 core 8 core 

CPU frequency 2.3GHz 2.7 GHz 

RAM 4Go 4Go 

OS Android v6.0 (Marshmallow) Android v8.0 (Oreo) 

5.7.1 Execution time evaluation  

In this section, we investigate the execution time of each processing step of the proposed 

method. Table 10 figured out separately the execution time of all method steps with RT 

projection with step values equal to 1° on the S7-edge and S9 smartphone. We deduce that 

the whole method implementation is run on 68 ms and 100 ms respectively in "Samsung 

S9" and "Samsung S7-edge".  

As highlighted in Table 3, the processing of "ROI enhancement", “average intensity”, 

“MSE” and “SVM-RBF prediction” have a complexity of �(	. 
). Similarly, their low 

processing workload leads to low execution times not exceeding 2 ms for each of them for 

both Smartphone S7-Edge and S9. However, it can be noted that the two processes "Radon 

projection" and "SE" represent a large complexity of O(ω.n²). Furthermore, they achieve 

higher execution time equal to 41ms and 54 ms (resp. 35 and 29) for S7-Edge (resp. S9).  

Table 10 AMD screening execution time with RT projection with step values equal to 1°: (a) on 

S7-edge ; (b) on S9

Method of AMD screening steps
Execution Time (ms) 

Samsung Galaxy S7-edge Samsung Galaxy S9 

ROI enhancement 2 1 

Radon processing 41 35 

AMD morphological 
property related features 

SE 54 29 

Average intensity  1 1 

MSE 1 1 

Classification SVM-RBF 1 1 

Whole method of AMD screening 100 68 

Indeed, both “radon projection” and “SE” require an iterative processing in terms of 

projection number w, which explains their higher execution time. Elsewhere, the size 

growth of input images leads to a similar growth on computational time. This rise cannot 

be resolved through the evolution of smartphones in terms of processing power and 

memory capacities. Hence, those processings are impeding the use of AMD screening 

methods in a clinical context.

5.7.2 Optimization of AMD screening Algorithm  

The objective of the optimization approach is to reduce the execution time of the proposed 

method in order to achieve a real-time implementation. To consider the distribution of 

drusens in all directions, the radon spaces of healthy and AMD-affected images are 

generated using a maximal number of radon projections, performed from 0◦ to 179◦ with 

step values equal to 1°. However, with respect to the time complexities illustrated in Table 

3, the complexity of both "Radon projection" and "SE" processes depends on the radon 

projection number. As a consequence, a higher projection number, ω=180, involves a 

similar risein the execution time.  

As deduced in the sub-section 3.2, generating a radon space where projection angles are 

too close produces a similar projection. This aspect is confirmed when observing Fig. 22a 

and Fig. 22b which contains projections of an AMD-affected image where the radon 
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vectors have the same shape. Hence, higher excessive redundancy features are extracted 

based on the generation of the radon space with an angle step equal to 1°. 

Fig. 22 Radon projectionsof AMD affected macula: (a) at angles 0◦,1° and 2° ;(b) at angles 

90°,91° and 92°

Thus, we aim to reduce the number of radon projections w and evaluate the correlation 

between the number to of radon projections and the ability detect AMD. Within this scope, 

we propose an optimization approach where the number of radon projections w of both 

"Radon projection" and "SE" processes is reduced iteratively, while maintaining an optimal 

performance of 100%, as depicted in Fig. 23. 

In the first part modeled by a red square in Fig. 23, the approach consists in reducing the 

radon projection number ω required in the whole method. Thereby, the optimal radon space 

was generated using a maximal number of radon projections equal to 180. Then, the method 

implementation was performed and evaluated using the STARE fundus image set. 

Thereafter, we reduced the number of projections, 	 iteratively and investigated the 

performance of the AMD detection in each one. The provided 	 is the last one maintaining 

the higher 100% accuracy. 

The second part, illustrated in a blue square in Fig. 23, aims to reduce the radon projection 

number taking into account to compute the SE computation, called 	��. Within this 

objective, we iteratively varied 	�� in terms of selected number of radon projections	. In 

each variation, we adopted new SE measures and evaluated the accuracy of the AMD 

screening method. Similarly, the provided 	�� is the last one maintaining the higher 100% 

accuracy.  
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Fig. 23 Optimization approach for identifying optimal number of radon projection

5.7.3 Optimization of number of radon projection for whole method 

It can be deduced that even with a reduced radon projection number the radon spaces 

maintain the reflecting properties of drusens. Table 11 (resp Table 12) present some 

accuracy and execution time of processing steps “Radon processing” and “Sample entropy” 

in terms of Radon projection number � on the S7-edge (resp S9) smartphone. It was 

observed that 100% accuracy was maintained while reducing the radon projection number 

until achieving � = 45. However, we noted that the AMD screening accuracy decreased 

continuously to achieve 98.8% when � = 36.  

Table 11 Impact of reducing RP number of radon projection processing execution time on 

Smartphone S7-edge  

Method of AMD screening steps S7-edge

Radon projection number  ω = 180 ω = 120 ω = 90 ω = 60 ω = 45 ω = 36

Execution time 

(millisecond) 

Radon processing 41 28 21 14 11 7 

Sample entropy 54 38 26 18 14 11 

Whole method 100 71 50 35 30 23 

Accuracy (%) 100 100 100 100 100 98.8 

A decreasing projection number ω leads to a linear fall in the execution time for the whole 

method. In fact, the ROI enhancement, the “average intensity”, the “MSE” and the “SVM-

RBF prediction” processing are characterized by a low processing workload that results in 

an insignificant modification on their execution time. Nevertheless, the execution time of 

the radon and SE processing were reduced from 41 and 54 (resp. 35 and 29) to 11 and 14 

(resp. 9 and 8) for the S7-Edge (resp. S9), as presented in Table 11 (resp Table12). 

Consequently, real time AMD screening was achieved where the execution time of 30 and 

21 milliseconds is registered in S7-Edge and S9, which was optimized as described in the 

following sub-section. 
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Table 122 Impact of reducing RP number of radon projection processing execution time on 

Smartphone S9 

Method of AMD screening steps S9

Radon projection number  ω = 180 ω = 120 ω = 90 ω = 60 ω = 45 ω = 36

Execution time 

(millisecond) 

Radon processing 35 21 17 12 9 6 

Sample entropy 29 20 11 10 8 6 

Whole method 68 49 32 26 21 16 

Accuracy (%) 100 100 100 100 100 98.8 

5.7.4 Optimization of selected radon projection for sample entropy extraction 

In the second experiment, we iteratively varied�� in terms of selected number of radon 

projection � = 45. This variation was performed within the division of the radon 

projection iteratively. The AMD detection accuracy and the execution time of the SE 

processing and the whole method are illustrated in Fig. 24. 

Fig. 24  Execution time of the SE processing and the AMD screening method in terms of radon 

projection number and mobile devices

We deduce that reducing �� when computing the SE feature ensures adequately reflecting 

the irregularity of the radon space. Moreover, it leads to a significant decrease in the 

execution time, achieving 2 and 3 milliseconds respectively in S7-Edge and S9, where it is 

more stable for �� = �/10. Knowing that the SE processing has a complexity of O(ω.n²), 

similar to the whole method complexity, the execution time decrease in the SE processing 

implies a similar fall in the whole execution time, confirmed through the curve slopes. 

Similarly, a slight reduction in �� relies on the decreased execution time. Table 13 shows 

the provided execution time, speed up and Fps of the selecting number of radon projections 

� and�� on the S7-edge and S9 smartphone. We can observed that the execution time of 

AMD screening achieved 19 and 15 milliseconds in S7-Edge and S9, which corresponds 

to speedups of 5.26 and 4.53. Hence, AMD screening can be performed through 52 Fps 

and 66 Fps, respectively, which allows a higher quality of real time detection through a 

video stream. 

Table 13 Computational performance of proposed method with optimal radon projection number.

 S7-edge S9 

 (ω = 45)

(ω� = ω)

(ω = 45)

(ω� = ω/10)

 (ω = 45)

(ω� = ω)

(ω = 45)

(ω� = ω/10)

Execution time (ms) 30 19 21 15 

Speedup 3.33 5.26 3.24 4.5 

Frame per second ( Fps) 33 52 47 66 
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6 Conclusion 

Regular eye screening helps diagnose AMD and may prevent vision loss in the elderly. As 
part of this work, a method for the detection of drusen using fundus images is suggested to 
assist ophthalmologists in the prevention of AMD. This method consists in enclosing the 
macula in a ROI. Then, the intensity of the macula is modeled using RT. Three features are 
then extracted from the radon representation based on the properties of AMD. The reduced 
number of features allows this algorithm to run efficiently on Android smartphones. In 
order to achieve the higher performance of the classification, a synthetic oversampling 
technique is used to balance the number of features between classes, where it is selected 
based on non-parametric statistically test named Friedman’s. The proposed method was 
implemented on android smartphone and achieved an average accuracy of 100%, 95.2% 
and 94.3% respectively for STARE, REFUGE and RFMiID databases using an SVM-RBF 
classifier coupled with the ADASYN oversampling technique. Thus, the implementation 
proved its robustness using a degraded image quality. Moreover, the method was 
implemented in S7-edge and S9 smartphone devices where the execution time of 19 and 
15 milliseconds were achieved. 

This work can be provided as a CAD system for ophthalmology to take advantage of its 
mobility, cost-effective, detection performance and reduced execution time. It can be used 
worldwide to decrease the overload of ophthalmologists. It can also be used in rural areas 
where ophthalmology care is limited. Although the suggested method proves its robustness 
for degraded image quality, it is necessary to enrich the learning of SVM classifiers with 
smartphone captured images. For that, future work will focus on exploring the detection of 
AMD on other databases which contain smartphone captured images. 
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