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A linearization method based on Lie algebra for
pose estimation in a time horizon

Nicolas TORRES ALBERTO, Lucas JOSEPH, Vincent PADOIS and David DANEY

Abstract In this paper, a strategy for linear pose estimation over a time horizon is
presented. This linearization is crucial for the computationally efficient formulation of
predictive and optimization-based control problems in robotics. The proposed approach
is based on a truncation of the Magnus expansion for the approximation of the exponential
map derivative and employs Lie algebra to represent position and orientation, allowing for
a unified vectorial representation in vector form that can be integrated linearly over time,
offering a convenient formulation for optimization solvers. The method shows promising
results for precision and computation times.

1 Introduction
Collaborative robotics has fueled a growing demand for more complex control schemes [1].
Indeed, during human-robot interactions, robots evolve in a changing environment. Con-
sequently, they are required to adapt reactively to unpredictable events while satisfying a
set of constraints in order to provide safety guarantees.
In this context of complex robotic applications, optimization-based controllers offer a
convenient way to formulate tasks to be achieved under constraints. These problems can
be formulated over one control time step, i.e. reactively [5], but can also lead to much more
robust behaviours when considering control over receding time horizons. Most humanoid
control approaches rely on such a Model Predictive Control (MPC) paradigm [6] but these
type of approaches remain to be proven useful in other complex robotics contexts.
One of the key issues when considering a receding horizon formulation is the ability to
locally predict the evolution of the robot state given a control horizon while maintaining
the computation cost low enough to allow for frequent optimization updates. While recent

Nicolas TORRES ALBERTO
Stellantis, Centre Technique Vélizy, France e-mail: nicolas.torres@stellantis.fr,
Lucas JOSEPH
CNRS, Solvay, Univ. Bordeaux, France e-mail: lucas.joseph-ext@solvay.com,
Vincent PADOIS
Auctus, Inria Bordeaux, Talence, France e-mail: vincent.padois@inria.fr,
David DANEY
Auctus, Inria Bordeaux, Talence, France e-mail: david.daney@inria.fr

1

nicolas.torres@stellantis.fr
lucas.joseph-ext@solvay.com
vincent.padois@inria.fr
david.daney@inria.fr


2 Nicolas TORRES ALBERTO, Lucas JOSEPH, Vincent PADOIS and David DANEY

works have shown the ability to perform such locally optimal computation in a non
linear way [7], linear formulations remain advantageous both from a computational and
control problem formulation point of view. Yet, to the best of our knowledge, an efficient
linearization method for both 3D position + orientation1 while offering a convenient
formulation for optimization algorithms remains to be proposed.
The objective of this paper is to present a way to estimate, at each time step, the robot pose
trajectory in a receding horizon by reconstructing it from the initial pose and a known
input twist horizon.
The proposed method relies on the Lie algebra 𝔰𝔢3 associated to the tangential space of a
pose described in SE3. This method (based on the Magnus Expansion (ME) [4]) leads to
a linear expression of the transformation between two poses, using the logarithmic map.
In its truncated form, it leads to a linear propagation/integration formula which has an
explicit algebraic form and takes a vector form adapted to the writing of recursive state
propagation general formulas.
In Section 2, some fundamentals about Lie groups are presented. Section 3 presents
the linearization strategy. Finally, Section 4 presents a simple kinematic simulation to
showcase the results.

2 Fundamentals
This Section introduces the fundamental modeling aspects underlying the general objec-
tives of this article. Lie groups and their algebras are first presented in vector and matricial
forms. Afterwards, the receding horizon linearized system form pursued in this paper is
presented.

2.1 Lie Groups and Algebras

A pose is composed of a position 𝒑 ∈ R3 and an orientation. For this paper, orientations
are represented as a rotation matrix 𝑹 that belongs to the Special Orthogonal Group (SO3),
a Lie group. The robot pose 𝝌 = (𝑹, 𝒑) is composed of two elements, belonging to the
Special Euclidean Group ( SE3), another Lie group.
Given a Lie group G, there exists a Lie algebra 𝔤 which is the logarithm map of the
Lie group G such that log : G → 𝔤, with an inverse operation exp : 𝔤 → G. This algebra
corresponds to the tangent space of an infinitesimal increments.
In the case of pose, a infinitesimal increment is called a twist 𝑻 ∈ 𝔰𝔢3, composed of an
infinitesimal orientation increment (or rotational speed)𝝎 ∈ 𝔰𝔬3 (that in term corresponds
to the Lie algebra of SO3) and linear component (linear velocity) 𝒗 ∈ R3.
Given 𝝃 = log 𝝌, 𝝃 represents the equivalent pose increment that will produce the same
linear and rotational displacement as the homogenous transformation 𝝌(also referred as
a pose here) when integrated for 1s. By abuse of language, 𝝃 might also be referred as
a pose throughout this paper (as it can be used to retrieve the pose with 𝝌 = 𝑒𝝃 ). Even
though both 𝑻 and 𝝃 both belong in 𝔰𝔢3, only 𝑻 will be used to represent infinitesimal
increments throughout this paper. The same can be said for 𝝓 = log 𝑹, with 𝝎 and 𝝓 both
belonging in 𝔰𝔬3, but only 𝝎 representing an infinitesimal increment.

1 Typically of the robot end-effector.
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It is important to remark that 𝝓 ∈ 𝔰𝔬3 yields a one to one correspondence to 𝑹 ∈ SO3

through the log map as long as | |𝝓| | ≤ 𝜋. This in turn extends to 𝝃 and 𝝌 with 𝔰𝔢3 and SE3.
Due to the skew-symmetric nature of 𝔰𝔬3, 𝝎 admits a vector parametrization in R3

and a matricial form in R3×3. One can go from one to the other through the reciprocal
operations: the hat map ·∧ : R3 → R3×3 and the vee map ·∨ : R3×3 → R3. This extends
to 𝔰𝔢3 between R6 and R4×4 as:

𝑻∧ =

[
𝝎∧ 𝒗
0 0

]
with 𝝎∧ =


0 −𝝎3 𝝎2
𝝎3 0 −𝝎1
−𝝎2 𝝎1 0

 (1)

with: 𝝎 = [𝜔1, 𝜔2, 𝜔3]𝑇 , 𝒗 = [𝑣1, 𝑣2, 𝑣3]𝑇 ,𝑻 = [𝒗𝑇 𝝎𝑇 ]𝑇 (2)

Even though the two forms are equivalent, the vector form is employed in this article2,
unless specified.
The Lie algebra is equipped with the commutation operator [𝑿,𝒀] = 𝑿𝒀 − 𝒀𝑿 = ad𝑿𝒀
for 𝑿,𝒀 ∈ 𝔤. This is also referred as the adjoint action endomorphism, as it is a linear
map onto itself such that ad𝔤 · : [𝔤, 𝔤] → 𝔤.

For the case of: 𝝓 ∈ 𝔰𝔬3 and 𝝃 = [𝝆𝑇 , 𝝓𝑇 ]𝑇 ∈ 𝔰𝔢3 (with 𝝆 ∈ R3, the linear component
of 𝝃), the ad operation is:

for 𝔰𝔬3: ad𝝓1𝝓2 = [𝝓1, 𝝓2] = 𝝓1 × 𝝓2 = 𝝓1
∧.𝝓2 with: ad𝝓1 = 𝝓1

∧ (3)

for 𝔰𝔢3: ad𝝃1𝝃2 = [𝝃1, 𝝃2] =
[
𝝓1 × 𝝆2 + 𝝆1 × 𝝓2

𝝓1 × 𝝓2

]
with: ad𝝃1 =

[
𝝓1

∧ 𝝆1
∧

0 𝝓1
∧

]
(4)

For a more comprehensive introduction into Lie groups, refer to [11].

2.2 Receding horizon
Let us define a dynamic system with vector state 𝒙 and input 𝒖. Discretizing a time
horizon in 𝐻 time steps of duration Δ𝑡, ones obtains 𝒙(𝑡𝑘) = 𝒙𝑘 , 𝒖(𝑡𝑘) = 𝒖𝑘 for 𝑡𝑘 = 𝑘Δ𝑡

where 𝑘 = 0, 1, . . . , 𝐻. Notice 𝑡0 (the starting time of the horizon) can be chosen arbitrarily
without loss of generality.
One can formulate a linear receding horizon expression as:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 for 𝑘 = 0, 1, . . . , 𝐻 − 1 (5)

where 𝑨 and 𝑩 are respectively the state system and input matrix. This linear discrete time
dynamic model expression can straightforwardly be written in a recursive matricial form
over the whole horizon. This form is central to the formulation of MPC as a constrained
Quadratic Progam (QP).

3 Linear pose estimation
In this Section, the propagation of the pose through a manifold is proposed.

2 The log and exp operations are defined for matrices. By abuse of notation, throughout this article
they will also operate on the lie algebra vector form (given the fact that it is easy to retrieve the
matrix form through the hat map). For the same reason, assume the results of the log and exp
operations are expressed in vector form.
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3.1 Pose estimation in a horizon

For a robot pose 𝝌 ∈ SE3, let us reconstruct a pose trajectory 𝝌(𝑡) in time given some
initial horizon state 𝝌(𝑡0) = 𝝌0 and some input twist trajectory 𝑻 (𝑡) ∈ 𝔰𝔢3, consisting of
infinitesimal increments of pose in time.
As described in Sect. 2.1, the robot pose belongs to a Lie group and its twist, to its algebra
(its tangential space).
Discretizing a time horizon in 𝐻 time steps of duration Δ𝑡, we obtain 𝝌(𝑡𝑘) = 𝝌

𝑘 ,
𝑻 (𝑡𝑘) = 𝑻𝑘 for 𝑡𝑘 = 𝑘Δ𝑡 where 𝑘 = 0, 1, . . . , 𝐻. An infinitesimal twist can be integrated
to obtain the next pose as:

𝝌
𝑘+1 = 𝝌

𝑘𝑒
𝑻𝑘Δ𝑡 (6)

This enables expressing any state in the horizon 𝝌
𝑘+1 as a function of 𝝌0 and the

successive 𝑻𝑘 applied:

𝝌
𝑘+1 = 𝝌0

𝑘∏
𝑖=0

𝑒𝑻𝑖Δ𝑡︸    ︷︷    ︸
𝒇 (𝑻0 ,𝑻1 ,...,𝑻𝑘 )

(7)

The focus of this paper is to showcase a linear approximation of 𝝃 (𝑡) (the logarithmic
map of 𝝌(𝑡)), using Eq. 7.

3.2 From the Magnus Expansion to an estimate of the logarithm map
The objective of this Section is to find an approximation of 𝝃 (𝑡) in the form of Eq. 5, with
system state 𝝃 and input 𝑻, by exploiting Eq. 7.
Consider the following differential equation:

𝒀 ′(𝑡) = 𝒀 (𝑡)𝑼(𝑡), with 𝒀 (𝑡0) = 𝒀0 (8)

with 𝒀 (𝑡) ∈ G and 𝑼(𝑡) ∈ 𝔤 (as proposed in [12]). It is possible to find a solution in the
form:

𝒀 (𝑡) = 𝒀0𝑒
𝛀(𝑡) (9)

Consequently,𝒀 ′(𝑡) = 𝒀0𝑒
𝛀(𝑡)dexp𝛀(𝑡)𝛀

′(𝑡) from which, based on Eq. 8, one can identify
𝑼(𝑡) as

𝑼(𝑡) = dexp𝛀(𝑡)𝛀
′(𝑡) (10)

where dexp𝑥 denotes the derivative of the exponential map3 at 𝑥.
Actually, the main interest lies in finding 𝛀(𝑡) that satisfies Eq. 8. We can retrieve 𝛀′(𝑡)
from Eq. 10 by inverting dexp:

𝛀′ = dexp−1
𝛀 𝑼(𝑡) =

∞∑︁
𝑛=0

𝐵𝑛

𝑛!
ad𝑛𝛀𝑼(𝑡) (11)

ad𝑛𝛀 = [𝛀(𝑡), [. . . , [𝛀(𝑡)︸                 ︷︷                 ︸
𝑛−𝑡𝑖𝑚𝑒𝑠

,𝑼(𝑡)]]] (12)

where 𝐵𝑛 are the Bernoulli numbers. The relation between Eq. 11 and dexp−1 is developed
in [10] and [9]. Note that𝛀(𝑡) =

∫ 𝑡

𝑡𝑜
𝑼(𝑥)𝑑𝑥 iif𝑼 is constant or commutes with its primitive

3 The derivative of the exponential map is often presented as 𝑑
𝑑𝑡
𝑒𝑥 (𝑡 ) = 𝑒𝑥

(1−𝑒ad𝑥 )
ad𝑥

𝑑𝑥
𝑑𝑡

or, with a
different notation but equivalently: 𝑑

𝑑𝑡
𝑒𝑥 (𝑡 ) = dexp𝑥 (𝑡 ) 𝑥

′ (𝑡)
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(i.e. [𝑼(𝑡),
∫
𝑼(𝑡)𝑑𝑡] = 0). Otherwise, 𝛀(𝑡) is an infinite series known as the Magnus

expansion [8][3].
The current paper uses a truncated version of Eq. 11 up to 𝑛 = 2, referred as ME2 from
now on. Remembering that 𝐵𝑛 = 0 for all odd 𝑛 > 1 (which implies that ME3 ≡ ME2),
yields:

𝛀′(𝑡) ≈ 𝑼(𝑡) + [𝛀(𝑡),𝑼(𝑡)]
2

+ [𝛀(𝑡), [𝛀(𝑡),𝑼(𝑡)]]
12

(13)

Given Eq. 13, we can now see how Eq. 9 is in fact the time continuous version of Eq. 7.
Furthermore, 𝑼(𝑡) can be interpreted as the time continuous version of the trajectory
twist 𝑻 (𝑡) while 𝛀(𝑡) incorporates its cumulative effects in time over the initial pose 𝝌0.
Note that 𝒀 (𝑡) and 𝑼(𝑡) do not necessarily commute: this means that 𝒀0𝑼0𝑼1 ≠ 𝒀0𝑼1𝑼0
(or for any other order for that matter). This is exactly why 𝛀(𝑡) cannot be found via a
trivial integration and why the Magnus expansion is required.
By discretizing 𝛀𝑘 , we can construct an equivalent for Eq. 7:

𝝌
𝑘+1 = 𝝌0𝑒

𝛀𝑘 (𝑻0 ,𝑻1 ,...,𝑻𝑘 ) (14)

and computing the logarithm map of the pose as 𝝃𝑘+1 = log(𝝌𝑘+1), we arrive at:
𝝃𝑘+1 = 𝑲 +𝛀𝑘 (𝑻0,𝑻1, . . . ,𝑻𝑘) (15)

where 𝑲 ∈ 𝔰𝔢3 corresponds to some initial conditions that will satisfy for 𝝌0.
Finally, linearizing Eq. 15 at the start of the horizon 𝝃0 yields:

𝝃𝑘+1 = 𝝃0 + Δ𝑡.dexp−1
𝝃0
.(𝑻0 + 𝑻1 + . . . + 𝑻𝑘) (16)

Two remarkable properties about this equation are:

• 𝝃 is a 6-vector in 𝔰𝔢3, a more space-efficient (equivalent) representation of pose, com-
pared to a 4 × 4 matrix in SE3, allowing to be more easily embedded in optimization
problems.

• because the commutator is an 𝔰𝔢3 operation (refer to Sect. 2.1), the result of Eq. 16
also lies in 𝔰𝔢3 (for small enough Δ𝑡).

This linear approximation implies the assumption that dexp𝝃0
does not change much

during the horizon, which is an accepted compromise for any linearization approach and
is also why the approximation gets worse with longer horizons.
It can be seen that equation Eq. 16 resembles Eq. 5, enabling its use in linear MPC.This
equation constitutes the main contribution of this paper.

4 Results
The goal is to estimate, at each time step, the robot pose trajectory in a receding horizon 𝝌𝑘

by reconstructing it from the initial horizon pose 𝝌0 and a perfectly known input twist 𝑻𝑘 .
The objective is not to estimate 𝝌𝑘 directly in a matricial form. Instead, one can estimate 𝝃𝑘
using Eq. 16. The pose can be retrieved from 𝝌

𝑘 = 𝑒𝝃𝑘 .
Let the starting and ending poses of a robot end-effector path be 𝝌0, 𝝌 𝑓 ∈ SE3 as
depicted in Fig. 1. In this experiment, to represent a typical movement of a Franka Emika
Panda in its workspace, two paths with different positional and rotational displacement
were generated. For trajectory 1:| | 𝒑 𝑓 − 𝒑0 | | = 0.71m and | |𝑎𝑛𝑔(𝛿) | | = 0.94rad ; while for
trajectory 2:| | 𝒑 𝑓 − 𝒑0 | | = 0.32m and | |𝑎𝑛𝑔(𝛿) | | = 0.90rad . The rotational displacement
(the norm of the angular component 𝑎𝑛𝑔(𝛿)) is computed from 𝛿 = log(𝝌−1

0
𝝌

𝑓 ).
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Defining 𝛼 ∈ [0, 1] to discretize the path between both poses as: 𝝌∗
𝑘 = 𝝌0𝑒

𝛼𝑘 𝛿 yields a

ground truth reference velocity twist 𝑻∗
𝑘
=

log(𝝌∗−1
𝑘
𝝌∗

𝑘+1)
Δ𝑡

.
This implies that the reference trajectory can be reconstructed with:

𝝌
𝑘+1 = 𝝌

𝑘𝑒
Δ𝑡𝑻 ∗

𝑘 (17)
where: log(𝝌𝑘) = 𝝃𝑘 (18)

The Ruckig library [2] is used4 to compute a normalized 𝛼(𝑡) in time to find the time-
optimal trajectory, following a trapezoidal trajectory (in velocity), as shown in Fig. 2.
We showcase the precision of linear integration of a robot’s end-effector pose by us-
ing Eq. 16 throughout an H-step horizon and comparing it against Eq. 17, the ground
truth. Fig. 3 depicts the obtained errors with respect to the perfect propagation.
Assuming a receding horizon approach where only horizon estimation matters, the pose
is reset back to ground truth at the end of each horizon (every 300ms) to showcase the
maximum error obtained with the method and to exemplify how the precision worsens
towards the end of the horizon.

Fig. 1: Depiction of the path taken taking the end-effector of a Franka Emika Panda
from a starting to the ending poses 𝝌0, 𝝌 𝑓 ∈ SE3.

(a) 𝛼(𝑡) (b) ¤𝛼(𝑡) (c) ¥𝛼(𝑡)

Fig. 2: Normalized 𝛼(𝑡) for a time-optimal trajectory generated with a trapezoidal
profile (in velocity).

4 The code used for experiments in this paper is publicly available at:
https://gitlab.inria.fr/auctus-team/publications/shared-paper-code/ark2022-lin

https://gitlab.inria.fr/auctus-team/publications/shared-paper-code/ark2022-lin
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(a) Norm of linear error (b) Norm of angular error

Fig. 3: Variable speed integration using ME2 for a 300ms horizon.

Trajectory Compute Time Linear Error Angular Error
Avg Rel Max Avg Max Std Avg Max Std

ref-1 0.23𝜇s 100.0% 1.57𝜇s
traj-1 0.15𝜇s 62.4% 3.74𝜇s 1.09mm 6.15mm ±1.47mm 0.05° 0.27° ±0.06°
ref-2 0.18𝜇s 100.0% 0.82𝜇s
traj-2 0.13𝜇s 72.3% 0.23𝜇s 2.26mm 12.74mm ±2.99mm 0.10° 0.57° ±0.13°

Table 1: Shows the average compute time and error for the horizons shown in Fig. 3.
To showcase the trade off between precision and computation time, this comparison shows the error
between the ground truth reference (Eq. 17) and the proposed ME-based method (Eq. 16). The
results are showed for 2 generated trajectories with their respective references.
Compute time refers to the average for each Δ𝑡 step. Relative computation time is calculated with
respect to each reference average computation time.

In table 1, the computation time and error averages obtained for the ME2 approxima-
tion are presented. The method achieves a linear and angular error of 1.09 ± 6.1mm
and 0.048 ± 0.27°(for the longest trajectory), respectively. This is done in about two
thirds of the time it takes to do it with the exponential (exact but non linear). ME2 offers
not only a precision level practical for many purposes but it could offer a speed improve-
ment when both methods of integration are possible (the exponential integration method
cannot be embedded in a QP, which is the focus of this paper). This computational time
improvement could also be exploited on robots with limited resources.
To further illustrate the effects of enlarging the horizon duration, we show in Fig. 4 the
same experiment run multiple times for different values of H (number of time steps). It
can be seen that the longer the horizon, the greater the error is. Thus, a compromise must
be made in order to define a horizon that allows to predict further enough in time without
compromising precision.

5 Conclusions
Lie algebras offer a convenient framework for pose description and system linearization
on manifolds, allowing for vector expressions that can be embedded in a linear MPC
problem, unlike their matricial forms.
The variety of strategies available offers an opportunity for the community to develop
the tools required for more intelligent robotics applications that can optimize through
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(a) Norm of linear error (b) Norm of angular error

Fig. 4: Average error for different horizon lengths.
predicted horizons to solve complex problems like safety in human-robot interactions,
energy efficiency and trajectory feasibility of dynamically constrained systems.
In future research, we would like to employ this algorithm for the dynamic replanification
(based on acceleration increments instead of velocity) of end-effector trajectories subject
to kino-dynamic constraints.
The estimation of a bound on the maximum error induced by the proposed linear approx-
imation is also part of the future work.
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