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ARTICLE
A recurrent SHANK3 frameshift variant in Autism Spectrum
Disorder

Livia O. Loureiro'?’, Jennifer L. Howe'?’, Miriam S. Reuter @7, Alana laboni?, Kristina Calli@, Delnaz Roshandel ', Iva Prititanac®®,
Alan Moses®, Julie D. Forman-Kay>”’, Brett Trost(®', Mehdi Zarrei', Olivia Rennie @', Lynette Y. S. Lau®, Christian R. Marshall @?°,
Siddharth Srivastava'®, Brianna Godlewski'®, Elizabeth D. Buttermore @', Mustafa Sahin @', Dean Hartley'', Thomas Frazier'?,
Jacob Vorstman @'*', Stelios Georgiades'>, Suzanne M. E. Lewis®, Peter Szatmari'>'*'5, Clarrisa A. (Lisa) Bradley®',

Anne-Claude Tabet®'”'8, Marjolaine Willems'®, Serge Lumbroso®, Amélie Piton?"?*%3, James Lespinasse'?, Richard Delorme'”*,

Thomas Bourgeron'’, Evdokia Anagnostou®?> and Stephen W. Scherer ()" 2%

Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish
more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent
predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying
a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location
[hg38]9.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.
Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it
through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally
tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families.
Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early
intervention.

npj Genomic Medicine (2021)6:91; https://doi.org/10.1038/s41525-021-00254-0

INTRODUCTION

Autism Spectrum Disorder (ASD) is a heterogeneous condition,
both in clinical presentation and in terms of the underlying
etiology. Individuals with ASD are increasingly being seen in
clinical genetics'? More than 100 genetic disorders that can
exhibit features of ASD (e.g., Fragile X, Phelan-McDermid
syndromes, Rett)®* and dozens of rare susceptibility genes (e.g.,
NLGN, NRXN, SHANK family genes), and copy number variation
(CNV) loci (e.g., 1g21.1 duplication,15q11-q13 duplication, 16p11.2
deletion), have been identified, which combined can facilitate a
molecular diagnosis in ~5-40% of ASD cases*”’. The likelihood of
a genetic finding in ASD is dependent on the complexity of the
phenotype (e.g. idiopathic or syndromic, with or without
intellectual disability)®°, the genomic technology used (e.g.
microarrays, exome sequencing, genome sequencing, or combi-
nations thereof)'?, as well as the annotation pipeline and “gene

There are examples of how understanding the genetic subtypes
of ASD can assist early identification enabling earlier behavioral
intervention, and informing prognosis, medical management, and
assessment of familial recurrence risk'>'*. Moreover, genomic
data promise to facilitate pharmacologic-intervention trials
through stratification based on pathway profiles'>'6. To support
these applications, there is a growing interest in performing
robust genetic analyses, often in families and in unique
populations, linked to deep phenotyping’”~'°.

The largest datasets available for genotype/phenotype correla-
tions in ASD studies are based on CNV assessment since
microarrays became the first-tier clinical diagnostic test?*?'. The
most relevant finding from this vast literature is that even for
recurrent CNVs (i.e.,, genomic disorders) involved in ASD, which
typically affect the same genes, there is the variable expression of
phenotypes relevant to the core features in autism, and other

lists” used for interpretation'""2. medical features®*~2>,
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More recently, genotype and phenotype studies of sequence-
level variation (single-nucleotide variants, or SNV, and insertion/
deletion, or indel events) affecting individual genes are starting to
reveal clinical correlations in ASD. For example, loss-of-function
variants in the SCN2A sodium channel gene impair glutamatergic
neuronal excitability, leading to ASD and/or intellectual disability,
while gain of function variants potentiate excitability leading to
infantile-onset  seizure  phenotypes?®.  Different germline
dominant-acting mutations in the phosphatase and tensin
homolog (PTEN) gene found in ASD lead to an increased average
head circumference in children®’. Loss-of-function variants in the
CHD8 chromodomain helicase DNA- binding protein eight gene
are also found in overgrowth and intellectual disability forms of
ASD?. Despite some progress in resolving genotype-phenotype
correlations, the vast genetic complexity and variable expressivity
of genes involved in ASD continue to confound most predictive
studies.

Following a genotype-first approach, here we initially searched
available ASD-specific, controlled access, genome-wide sequence
databases, such as MSSNG (https://research.mss.ng) and Simon'’s
Simplex Collection (SSC) (https://www.sfari.org/resource/sfari-
base) as well as our own in-house data (available in the next
MSSNG data release) to identify recurrent sequence-level dama-
ging variants (de novo loss-of function or missense variants
predicted to be damaging based on the American College of
Medical Genetics guidelines®®) affecting the same site (genomic
location) in the same gene in different families. The database
searches were then followed by a literature survey to identify
additional individuals reported to have the same variant. In our
most compelling finding, we identified a mutational ‘hotspot’ in a
string of 8-Gs in exon 21 (p.Ala1227Glyfs*69) of the SHANK3 gene
that was present in 17 individuals from 15 unrelated families with
ASD, as well as one individual with several autistic features and
Phelan-McDermid Syndrome (but who was not tested for ASD).
The individuals identified in both the ASD-specific databases and
the published manuscripts had various details available describing
the phenotype which we have summarized. We were able to
contact the families that are described for the first time in this
paper to gather additional information. Using these available data,
we assessed the intra- and inter-familial phenotypic variation (as
well as all other genetic information) within these individuals and
discuss the findings in the context of genotype-phenotype
comparison, including variable expression of ASD core symptom
and related features.

RESULTS

Identification of the recurrent p.Ala1227Glyfs*69 variant

To achieve the most comprehensive genomic representation
(difficult to sequence exons, splice site boundaries) for variant
detection, we initially examined the Autism Speaks MSSNG whole-
genome sequencing (WGS) cohort (https://research.mss.ng/), with
11,359 samples, including 5102 affected individuals and 3567 with
family data, typically belonging to trios, or quads (two parents and
two affected children) for recurrent mutations. Secondly, we
tested the Simon Simplex Collection (SSC) WGS collection (https://
www.sfari.org/resource/simons-simplex-collection/), which com-
prises 9,205 samples, including 2419 affected individuals and
2393 with family data (typically two parents, one affected child,
one unaffected child). Previous studies have extensively reported
on MSSNG®'7:3031 and SSC3233, Probands from both cohorts met
the criteria for ASD based on scores from standardized diagnostic
criteria tools, typically the Autism Diagnostic Observation Sche-
dule (ADOS)** and the Autism Diagnostic Interview—Revised
(ADI-R)** and/or was supported by clinical criteria. Many
individuals were also assessed with standardized measures of
intelligence (1.Q.), including verbal and nonverbal ability, language,
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social behavior, adaptive functioning, and physical measure-
ments®3233 All of this phenotype data is available from the
respective databases.

From the genome sequences analyzed, our most interesting
finding identified five probands in MSSNG (four males and one
female) from four families and one proband in SSC (male) carrying
a heterozygous guanine duplication in SHANK3 (NCBI:
NM_033517.1; ENSEMBL: ENST00000262795.5; ¢.3679 or c.3676
depending on the transcript) (Table 1; the reference sequence
NM_033517.1 was selected as the appropriate transcript for this
study as this was the reference sequence used in the original
publication of this variant in Durand et al.>®). We also found other
recurrent sequence-level de novo heterozygous damaging mis-
sense variants in the PTEN, CAMK2A, SPTAN1, MECP2, and CSNKTE
genes, but in each of these instances no more than two unrelated
individuals were found in the combined MSSNG and SSC data
(Supplementary Material; Table S1).

The discovery of this recurrent guanine duplication variant in
SHANK3 was confirmed using Sanger sequencing (Fig. 1). We then
scanned the literature, including using Varicarta®” and found that
this same guanine duplication was reported in 12 probands
affected by ASD*363842 and one proband within the ASD
borderline range, Phelan-McDermid syndrome, significantly
delayed language, and speech and visual-motor deficits®. We
carefully examined all genotypes and found that one was the
same individual in the SSC cohort (14470.p1);*° therefore, we
removed this duplicate individual. Considering the new cases
reported here and the cases reported in the literature, the p.
Ala1227Glyfs*69 variant has been observed in a total of 18 cases
from 16 families, identified using different genome-testing
approaches (Table 2). Nearly all of these probands (17/18) were
ascertained for ASD, although the general phenotype, as
discussed below, varies somewhat among individuals (Table 3;
Fig. 2). We also detected one female individual with ASD (with
mild intellectual disability) carrying a de novo G deletion (7-G's) at
this same site (c.3679del p.Ala1227Profs*57).

Genome annotation of the p.Ala1227Glyfs*69 variant

The SHANK3 guanine duplication is located within a segment of 8-
G's on chromosome 22q13 at genomic location [hg38]
g.50,721,505dup or g.50,721,512dup, depending on the position
that this variant is annotated in the guanines (Table 1; Fig. 2).
Some tools annotate the first G as the duplication, and others
annotate it as the final G (Supplementary Material; Fig. 3). The
sequencing technology might also affect the variant annotation,
with Sanger sequencing conventionally adding the G duplication
at the 3’ end of the gene as the first point of amino acid change,
and Next Generation Sequencing usually left aligning the variant.
Independent of the position of the base insertion in the 8-Gs, the
frameshift starting in exon 21 results in the new reading frame
ending with a stop codon at position 69, causing a truncation
lacking the C-terminal region (Fig. 3). We also confirmed that both
exome sequencing and WGS reliably captured this 8-G string
genomic segment in the short-read sequence (see Methods).

Segregation and population frequency of the recurrent p.
Ala1227Glyfs*69 variant

All the probands identified in this study carried de novo variants
with the exception of five individuals. One family with two
brothers first reported in the initial SHANK3 ASD-discovery paper*®
inherited the variant from their mother, who was found to be
mosaic. Two siblings within the MSSNG cohort (MSSNG00342-003
and MSSNG00342-004) inherited the variant from their father, who
was also shown to be a mosaic (Table 2). In this latter case, the
variant was only present in 8 of 50 reads in the father's WGS data
and was verified using a T.A. clone Kit (Invitrogen cat number
45-0046). Proband 1-1047-003 also seems to have inherited the
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At the time of submission, the most recent RefSeq NM_01372044, which replaces and updates NM_033517, was not available in the Alamut software.
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variant from his mother by somatic mosaicism, in whom the
variant was present in 1 of 32 reads of the WGS data. Exome
sequencing analysis was also performed in this mother, with the
variant being observed in 2 of 110 reads. To search for additional
potential relevant somatic mutations*>, we tested the original
alignment files in both cohorts using DeNovoGear's dng-call
method for the SHANK3 locus** using 0.8 as a posterior probability
of a de novo mutation (ppDNM), but we did not find any other
candidates. Considering the families studied in MSSNG and SSC
(our most trusted datasets) 6/7,521(0.08%) ASD-affected indivi-
duals carried the p.Ala1227Glyfs*69 variant in 5/6,681 (0.07%) of
families. The Fisher’s exact test of the association between the
frequency in heterozygous individuals in ASD cases and control
population databases has a P value of 0.029.

Consequences of p.Ala1227Glyfs*69 on the SHANK3 protein

Nonsense mutations and frameshifts in SHANK3 can lead to
reduced expression, and SHANK3-deficient neurons were found to
have an altered phospho-proteome that may explain their
decreased dendritic spine density*>. However, SHANK3 mRNA is
still expressed in truncation mutant-containing induced pluripo-
tent stem cells (iPSCs)*® and truncated SHANK3 proteins may have
a dominant-negative effects in neurons*“*®, We therefore
explored the consequences of p.Ala1227Glyfs*69 on the SHANK3
protein. We annotated the positions of amino acids to which the
variant is mapped according to ENSEMBL and the UCSC genome
browser. Using the DISOPRED3 predictor*® and the consensus of
eight predictors from MobiDB-lite>°, we identified where the
mutation falls with respect to intrinsically disordered regions
(IDRs) of the protein, which may influence protein folding and
binding®". In both predictors, the position of interest was found to
be embedded within a large IDR, which map to multiple isoforms
(Fig. 3B). Mutations that create frameshifts and stop codons in this
region of SHANK33¢>2 truncate two proline-rich binding sites for
Homer and Cortactin (Fig. 3A) and affect function, including
altering neuronal morphology in cell-based experiments**4’, The
SHANK3 protein serves as a scaffold to connect membrane
receptors to the actin-cytoskeleton in the postsynaptic density
(PSD), a protein-rich sub-compartment considered to be a
biomolecular condensate formed by phase separation®3* due
to multivalent interactions®®. In each of the isoforms, these
truncations are expected to impair canonical PSD formation and
stability.

The variant isoforms were also analyzed using Feature Analysis
of Intrinsically Disordered Regions, a tool that identifies the
presence of consensus protein recognition motifs in IDRs>>>¢ and
using PScore®’, predicts phase separation propensity via IDR
planar pi-contacts (Fig. 3C; Supplementary Material; Fig. S2). A
number of specific short linear interaction motifs were found to be
altered. Of particular interest is the increase in SH3 domain class
I-binding motifs, given that SHANK3 is known to interact with
numerous SH3 domains. The variants significantly increase the
number of arginine-glycine and arginine-arginine dipeptide
instances, which are associated with mRNA binding and phase
separation, and increase the cysteine content of the sequence. A
reduction in SHANK3 protein due to the frameshift (e.g., through
nonsense mediated decay; discussed below) could also affect the
phase separation of the PSD, which is known to be concentration
dependent®®,

p.Ala1227Glyfs*69 as a pathogenic variant

The p.Ala1227Glyfs*69 variant is classified in ClinVar as “Patho-
genic for ASD, NDD, and others” and is exceptionally rare or
absent in control populations (ClinVar; https://www.ncbi.nlm.nih.
gov/clinvar/variation/208759/). In the gnomAD v2.1.1 dataset®®,
which uses the hg37 as reference genome, it has an allele
frequency of 16/160,994 alleles = 0.000099 (0.0099%). In ALFA®C,
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Fig. 1 Pedigrees of MSSNG families reported for the first time in this study and their Sanger sequencing confirmation. A Pedigree
MSSNGO00342; B Pedigree 1-1047 (unaffected sibling was targeted Sanger sequenced but was not the whole-genome sequenced); C Pedigree
2-1774 (unaffected sibling sample was not available); D. Pedigree 7-0574 (will be available in MSSNG DB7). Gray shapes indicate individuals
with an ASD diagnosis and carry the SHANK3 variant.
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Fig. 2 Phenotypic heterogeneity in individuals (X-axis) carrying
the SHANK3 p.Ala1227Glyfs*69 variant reported in the MSSNG®,
$SC3233, and in published papers?3638-4271 Those individuals in
the same family are grouped within the black boxes. Gray spaces
indicate the absence of the phenotype. White spaces indicate that
the phenotype might have not been accessed in the proband.
Phenotypic categories are described in Table 3. Individual S7 was
not formally reported as being formally tested for ASD. *Caution is
needed in the interpretation of these frequencies since some
phenotypes were not assessed for some individuals.

this variant is also reported in 0.02% of control Europeans
samples. However, in gnomAD v3, 1000 Genomes Project (that
uses hg38 as a reference genome), TOPMed®', two unpublished
pediatric controls from our group (INOVA and CHILD), the Personal
Genome Project Canada®® and Medical Genome Reference Bank®
this variant is not present. In combination, this suggests that the
presence of the variant in gnomAD v2.1.1 and ALFA might be due
to low-quality sequencing with the preliminary description being
corrected in gnomAD v3. It is also noteworthy that ~1/100 people
will have ASD, so it would be expected to find p.Ala1227Glyfs*69
variant carriers in control populations. Based on our findings
described here they would likely have ASD, but additional studies
will be required to further assess this.

We have analyzed the genomic conservation of this variant with
GERP®%, UCSC PhyloP, and phastCons for primates, placental
mammals, and 100 vertebrates®®. GERP identifies constrained
elements in multiple alignments by quantifying substitution
deficits. These deficits represent substitutions that would have
occurred if the element were neutral DNA but did not occur
because the element has been under functional constraint. The p.
Ala1227Glyfs*69 variant has a GERP score of 5.2 (p = 0), suggestive
of having a large deleterious effect®. The PhyloP score was 0.6 for
primates, 1.35 for mammals, and 2.13 considering 100 vertebrates,
suggesting high evolutionary conservation. The PhastCon scores
were also higher than 098 for primates, mammals, and
vertebrates, which indicates a strong negative selection on this
variant.

Genotype and phenotype correlation

In all 17 p.Ala1227Glyfs*69 carriers evaluated for ASD, ASD was
confirmed by review of the ASD gold standard diagnostic tests
available in the databases or as reported in the original manu-
scripts, and the majority of participants described are reported to
have an intellectual disability defined as an IQ score below 70 and
impairments in adaptive functioning, although the spectrum of
severity is wide (Table 3; Fig. 2). Four individuals were ascertained
for Phelan-McDermid Syndrome, with three of these being of the
17 receiving a formal ASD diagnosis and one never being assessed
for autism. Language deficits are also prevalent and often severe.
We were cautious about making claims on other associated
conditions as they have not been universally and systematically
ascertained. However, hypotonia and gait abnormalities are
common, also consistent with animal model data®’. Seizures were

npj Genomic Medicine (2021) 91

reported in 3/18 participants. Other neurodevelopmental con-
cerns include ADHD, anxiety, Developmental Coordination Dis-
order, and mood disorders. Gastrointestinal distress and sleep
dysfunction were also reported. Last, both dysmorphia and other
organ anomalies were reported (conductive hearing loss- and
coronary artery fistula). Within pairs of siblings sharing a variant,
there is a similarity of phenotype, with some variability in the
severity of the intellectual disability.

Different de novo mutations in SHANK3 have also been
associated with other developmental/neuropsychiatric disorders
and genetic syndromes such as schizophrenia’%® and Phelan-
McDermid Syndrome (PMS)®°. The majority of children diagnosed
with PMS also have ASD, and both conditions are often associated
with intellectual and language delay, hypotonia, seizures, and
sleep disorders, although children with PMS also often have other
organ involvement. We also examined the whole genomes from
the MSSNG and SSC p.Ala1227Glyfs*69 carriers and assessed for
other clinically relevant variants that could be contributing to the
varying phenotypic presentation, but none were identified.
Additionally, no other clinically relevant variants were highlighted
in those individuals described in the literature36385%-71,

To evaluate if common genetic variants may be contributing to
the ASD phenotype in the p.Ala1227Glyfs*69 SHANK3 variant
carriers, we calculated their ASD polygenic risk score (PRS) for all
accessible individuals from European ancestry in MSSNG (db6) and
SSC. PRS in the probands analyzed in this study varied between
—1.167 and 15.606 (Table 2), showing no clear pattern between
the presence of the clinically significant SHANK3 variant and the
polygenetic risk of common variants. PRS in all subjects with
autism in MSSNG and SSC ranges between —18.580 and 20.626.

DISCUSSION

Our data indicate that 17/17 carriers (from 15 independent
families) of the p.Ala1227Glyfs*69 variant affecting SHANK3 who
have been formally tested carry a diagnosis of ASD. Our analysis
did not identify any other obvious rare or common genetic
variants, or combinations thereof, in the genomes of these
individuals that could be contributing to the phenotypes reported
in these individuals. Given the nature of neurobehavioral
complexity, perhaps not surprisingly, there is phenotypic hetero-
geneity exhibited amongst p.Ala1227Glyfs*69 carriers, which is a
hallmark of autism’?>73, as well as other related brain disorders
that may share overlapping clinical features and contributory
susceptibility genes”*”>, It is instructive for future “genotype-first”
queries that the discovery of this recurrent p.Ala1227Glyfs*69
variant was missed in our early analyses. It was only detected here
upon careful consideration of the different naming schemes of the
various isoforms (and exons within them) in SHANK3, which also
varied between different software tools, as well as the various
genome builds being compared against (Table 1)7577.

In addition, we searched for p.Ala1227Glyfs*69 SHANK3 variants
in unpublished data from the SPARK cohort*'. From 8744 ASD-
affected individuals for which sequencing data from both parents
were available, the variant was detected in two male individuals,
both de novo. The variant was also detected in three out of 13,156
ASD-affected individuals (two males and one female) for which
parental sequences were not available and thus inheritance could
not be determined. As well from a private database we identified a
female teen with ASD which based on the Vineland she would be
described as severe, severe language delay, and severe global
developmental delay. As highlighted on continuous measures of
emotional difficulties (CBCL), she also presents with attention
difficulties. This individual was not included in Table 3 since gold
standard ASD measures were not available and this phenotype
description is based on available assessments. We mention this
data just to demonstrate that the variant is found in other
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Fig. 3

Impact of the SHANK3 p.Ala1227Glyfs*69 variant on the protein. A (top left) Guanine string containing 8 Gs found in non-affected

individuals; (top right) Guanine string containing nine Gs found in ASD-affected individuals and parents with somatic mutations; (bottom)
Location of the frequent guanine duplication in the SHANK3 gene. ANK ankyrin repeats, SH3 SRC homology 3 domain, PDZ postsynaptic
density 95/Discs large/zona occludens, HBS homer binding site, CBS cortactin binding site, SAM sterile alpha motif domain. B Alignment of
wild type protein sequences, for each of three highly expressed splice isoforms, to the protein sequence of the variant around the position of
the mutation; (note, in this figure the first transcript presented is ENST00000262795.5 and the protein change for this is p.Ala1226Glyfs*69 as
shown in Table 1). C Normalized impact of the variant for the three isoforms using FAIDR, a tool that identifies physical features and the

presence of consensus protein recognition motifs in intrinsically disorde

red protein regions>S. (*Note that SCD, sequence charge decoration, a

measure of charge patterning associated with phase separation, has values significantly above 2: 5.4, 7.0, and 10.2 for the three isoform.).

collections, as would be expected, and await the presentation of
more detailed phenotype data from these participants.

Two independently-created murine models with an insertion of
a guanine nucleotide into the analogous mouse base pair position,
which we refer to here as Shank3 InsG3680, have also demon-
strated changes in cellular, circuit, and behavioral phenotypes®”-2
(Supplementary Material; Table S2). Specifically, these Shan-
k3InsG3680 mouse models demonstrated changes to baseline
neurotransmission and/or impairments in long-term depression
(LTD) and long-term potentiation (LTP), the synaptic basis of
learning and memory. Overall homozygous Shank3InsG3680 +/+
mice exhibited more significant changes than heterozygous
Shank3InsG3680 mice, suggesting that functioning of one normal
Shank3 copy maybe sufficient to support some of its function.

Regional differences in synaptic deficits and synaptic composi-
tion were observed, and the extent of the impact may have been
modulated by other Shank family genes. In the adult

Published in partnership with CEGMR, King Abdulaziz University

hippocampus, expression of the reversible Shank3InsG3680
variant cassette®” produced a truncated Shank3 protein and loss
of the major high molecular weight isoforms at the synapse. This
was associated with impaired hippocampal mGIuR dependent
LTD, intact LTP, and changes to baseline NMDA receptor (NMDAR)
mediated synaptic function. In the striatum, Zhou et al.”® showed
a significant decrease of levels of Shank3 mMRNA in the
Shank3InsG3680 strain compared with the wild type, suggesting
a reduced level of mRNA through nonsense-mediated decay. This
finding suggests that the InsG3680 variant results in a near-
complete loss of SHANK3 protein, concomitant with synaptic
transmission deficits in juvenile and adult homozygous mutant
Shank3InsG3680 (+/+) mice. Post-translational modifications,
modulated by nitric oxide, were also found in both young and
adult Shank3InsG3680 +/+mice.

In assessments of general cognitive function, Shan-
k3InsG3680 +/+ mice showed mild spatial learning impairments
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in the Morris Water Maze task and motor learning deficits in the
accelerating rotarod task, while heterozygous mice did not®”. ASD-
associated behaviors in these two models also showed mixed
outcomes in both social interaction impairments and repetitive
behaviors that, similar to human assessments, may be dependent
on age and gender. Speed et al.*” reported statistically different
effects in some of their assessments comparing between male and
female adult mice. This group did not observe social interaction
deficits in the three-chamber task with mixed-sex adult mutant
mice, nor did they observe repetitive behaviors, but instead
suggested aversion to novel objects. However, in large all-male
cohorts, Zhou et al.”® showed deficits in social behaviors in both
juvenile and adult mice. In addition, in adults there was increased
anxiety, repetitive grooming behaviors, and sensory processing
differences’®. On balance, the mouse data seems to generally
recapitulate the learning impairments and behavioral differences
seen in patients with the p.Ala1227Glyfs*69 SHANK3 variant.

Highly penetrant alleles such as p.Ala1227Glyfs*69 in neurode-
velopmental disorders are under severe negative selection and are
constantly being removed from the population’?%°, However,
recurrent mutations are always being added to the gene pool and
while typically occurring randomly, the intrinsic®' and extrinsic
characteristics®?> may also have an influence®. Experimental
investigations have shown that guanine bases can be targets for
oxidative damage in DNA, while mutability in other bases is more
variable®*, Moreover, the locus under study is within 8 guanines,
which constitutes a homopolymer run (HR). HRs are sequences
with six or more identical nucleotides and are associated with
>10-fold enrichment of mutation compared to the genomic
average®. It is noteworthy that there are three other G
homopolymer runs in SHANK3, but no recurrent variants were
found at these sites.

The CpG content of DNA has also been shown to influence the
mutation rate in non-CpG-containing sequences, suggesting that
intrinsic properties of DNA sequences may be more important
than the chromosomal environment in determining mutation
rates and genome integrity. Evidence indicates that because of
the propensity for methyl-CpGs to deaminate and produce
mismatches, it is plausible that error-prone repair mechanisms
may have a role in hypermutability. CpG methylation might also
have epigenetic effects by promoting chromatin states that make
DNA more susceptible to mutations®.

Although exceedingly rare (0.075% frequency in the ASD
families studied by WGS), the finding that this p.Ala1227Glyfs*69
variant in SHANK3 is, so far, concordant with an ASD, and that it
will surely continue to sporadically re-occur in the population, has
important implications for genetic counseling. It will also be
important to continue to search for the p.Ala1227Glyfs*69 variant
in SHANK3 to see if it confers risk in other disorders, including
perhaps under a multiple-variant model®”. Defining a specific
mutational mechanism underlying an ASD outcome, may also
focus strategies for the development of therapeutic interventions.

METHODS
Genome sequence analysis

We searched ASD-specific genomic databases in which the participants
upon recruitment had a diagnosis of ASD, for damaging de novo sequence-
level variants affecting exactly the same genomic location in different
families. A variant was defined to be damaging if it caused loss-of function
(stop gain, frameshift, or canonical splice site-disrupting) or was a
predicted deleterious missense variant based on American College of
Medical Genetics guidelines?. Initially, we examined rare (frequency less
than 0.001 in gnomAD and 1000 g) de novo variants identified from MSSNG
data release DB6 (release date June 24, 2020), which were detected as
previously described®. After identifying this recurrent variant in SHANK3,
we then searched our in-house databases and performed literature
searches for the same variant. Ethical review of these cohort studies was
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approved by institutional review boards and included assessing datasets
through applications to Data Access Committees.

Phenotyping measures

Phenotypic data was extracted either from the original manuscripts, in
which case we attempted to stay close to the original descriptions or from
the reference databases. In the latter case, clinical diagnosis of autism
spectrum disorder was reported in the databases and was supported by
ADI/ADOS. Intellectual disability was reported as a clinical diagnosis and in
most cases formal 1Q testing was available for confirmation. Language
delay was available as a clinical diagnosis, often with characterizations,
such as “minimally verbal” or “nonverbal” and in many cases formal
language measure scores were available for review. Information on
psychiatric/ neurological comorbidities was extracted from the original
manuscripts, or available as a clinician diagnosis or clinical concern based
on continuous measures of such symptomatology available (e.g., CBCL,
RCADS).

Confirming representation of exon 21 in exome and WGS
datasets

Given the high GC-density content of SHANK3, which can influence exon
capture and sequencing®?, we thought it was critical when assessing
mutational frequency to confirm that there were no biases in read-
coverage of the site of the target variant within exon 21 (Supplementary
Material; Fig.1). Using whole-exome sequences from 298 patients and 462
controls from our internal dataset, we ran the Agilent Sureselect Clinical
research exome V1 for exome sequence analysis and show that the
coverage around the G duplication region is at the anticipated 120x
coverage (Supplementary Material; Fig. 1). This analysis also indicates that
diagnostic exome sequencing will more than adequately capture and
accurately genotype this position. WGS analysis of probands from MSSNG
and SSC also confirm that exon 21 in SHANK3 is uniformly covered.

Protein and evolutionary conservation analysis

We used the DISOPRED3 predictor*® and the consensus of eight predictors
from MobiDB-lite>® to map where the p.Ala1227Glyfs*69 variant falls with
respect to intrinsically disordered regions (IDRs) of the protein. The variant
isoforms were also analyzed using Feature Analysis of Intrinsically
Disordered Regions®>>® and using PScore®’. We analyzed the genomic
conservation of the p.Ala1227Glyfs*69 variant with GERP®*, UCSC PhyloP,
and phastCons for primates, placental mammals, and 100 vertebrates®®.
The main text, tables, and figures (including Supplemental) have additional
details relevant to the presentation of the results.

Polygenic risk score analysis (PRS)

PRS was calculated for all individuals from European ancestry in MSSNG
(db6) and SSC merged with 1000 Genomes European population using
GWAS summary statistics derived from the iPSYCH Autism project
including 13,076 cases and 22,664 controls from Denmark®®, This included
probands MSSNG00342-003, MSSNG0342-004, 1-1047-003, 2-1774-003,
and 14470.p1. A total of 25,837 SNPs were included in PRS calculation.
Since the proband 7-0527-003 was part of a later version of the MSSNG
cohort (db7), he was not included in the initial PRS calculation. This
individual’s PRS was calculated separately with his parents (7-0527-001 and
7-0527-002) using the same 25,837 SNPs included in PRS calculations for
the others and centered by the mean in whole MSSNG/SSC/1000 Genomes
European population. However, of 25,837 SNPs, 1496 were missing due to
sample quality in this family, and caution is needed in comparison with the
other subjects. The approach for interpretation of the PRS data was based
on the previous studies'®8882,

Study recruitment

This study has complied with all relevant ethical regulations including
obtaining informed consent from all participants and was approved by the
Research Ethics Board at The Hospital for Sick Children.

Reporting Summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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docs.opendata.aws/1000genomes/readme.html). Access to data through other
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data for the individuals for which whole-genome sequencing data does not exist and
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