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ABSTRACT

Conventional ontology matching systems are not well-tailored to 
ensure sufficient quality alignments for large ontology matching 
tasks. In this paper, we propose a local matching learning strat-
egy to align large and complex biomedical ontologies. We define 
a novel partitioning approach that breakups large ontology align-
ment task into a set of local sub-matching tasks. We perform a 
machine learning approach for each local sub-matching task. We 
build a local machine learning model for each sub-matching task 
without any user involvement. Each local matching learning model 
automatically provides adequate matching settings for each local 
sub-matching task. Our results show that : (i) partitioning approach 
outperforms existing techniques, (ii) local matching while using a 
specific machine learning model for each sub-matching task yields 
to promising results and (iii) the combination between partitioning 
and machine learning increases the overall result.

KEYWORDS
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Learning

1 INTRODUCTION

Ontologies are the backbone of the semantic web. They enable 
sharing, reusing and accessing the knowledge resources. Hundreds 
of large biomedical ontologies such as SNOMED CT, the National 
Cancer Institute Thesaurus (NCI), and the Foundational Model of

https://doi.org/10.1145/3297280.3297507

Anatomy (FMA) are extensively employed in the biomedical do-

main [30]. These ontologies are based on diverse modeling views

and vocabularies. Mapping these ontologies enables interoperabil-

ity to share valuable data. The integration of knowledge bases

requires efficient matching systems supporting the complex on-

tologies [9, 18–20, 29]. For instance, the cartesian product between

the entities of NCI and SNOMED ontologies results in more than

45 billion comparisons. An agile solution is required, like divide

and conquer or parallelization [10]. Ontology mapping becomes

a challenging and time-consuming task due to the large volume

of ontologies. To cope with these challenges, the traditional all-

against-all ontology alignment methods are giving way to more

efficient strategies (e.g. the divide and conquer approach) [9]. This

approach decomposes a large matching problem into a set of smaller

sub-matching tasks or partitions. Each partition focuses on a spe-

cific sub-topic of interest. Each partitioning approach is guided by

the requirements of the target application domain [4]. The ontology

alignment process consists of aligning similar partition-pairs from

the two input ontologies. The partitioning process aims to decrease

the matching complexity. However, several existing partitioning

work result in a low coverage ratio coupled with isolated partitions.

Moreover, the state-of-the-art partitioning approaches apply global

matching settings (eg. matchers choice, thresholds, weights, etc.)

for all extracted partitions. Consequently, these approaches do not

consider the characteristics of each local sub-matching context.

Therefore, they do not maximize the matching accuracy gain after

performing the partitioning process.

In this paper, we take advantage of the partitioning process by de-

livering an automated local matching tuning for each sub-matching

task. Tuning refers to the process of adjusting a matcher for a bet-

ter functioning in terms of better quality of matching results and

better performance [9]. We propose a partitioning approach, based

on the hierarchical agglomerative clustering [22]. This approach

produces a set of partition-pairs with a sufficient coverage ratio

and without producing any isolated partitions. We automatically

define the local matching tuning for each partition-pair by leverag-

ing machine learning techniques. The existing approaches define

a global machine learning model for the entire ontology match-

ing task. Moreover, they employ the reference mappings to train

the machine learning model. Nevertheless, these mappings are not



available and difficult to determine. Hence, we automatically derive

for each sub-matching task the corresponding training set to build

its machine learning model. The training sets are generated without

any gold standard or user involvement. In addition, we align each

sub-matching-task through its specific local matching parameters

defined by its local machine learning model. Thus, every learning

model takes into account the local matching context. As far as we

know, there is a lack of approaches that perform the local matching

learning.

The remainder of this paper is organized as follows. Next section

presents the relevant related work. Section 3 introduces the set of

formal foundations employed in our approach. Section 4 details

our approach for large ontology partitioning and local matching

learning. We report and discuss the evaluation results in Section 5.

Finally, Section 6 presents our conclusions and perspectives.

2 RELATEDWORK

In this section, we review the existing approaches related to ontol-

ogy partitioning andmatching learning. Matching learning refers to

the use of machine learning techniques for ontology matching [9].

To the best of our knowledge, there is a lack of approaches that

associate partitioning with matching learning to generate local

matching learning.

Ontology Partitioning A line of work matching systems per-

form an all-against-all comparison between the entities of the input

ontologies [10]. However, this strategy is not suitable for dealing

with large and complex ontologies. The divide and conquer ap-

proach reduces the search space of pairwise ontology matching.

Therefore, the matching process is applied to the set of similar

partition-pairs between the input ontologies. Some approaches

perform the partitioning process to ease the maintenance and the

re-usability of a single large ontology [30]. Other lines of work

xperform the partitioning process of pairwise ontologies to align

the set of identified similar partitions (e.g., [2, 5, 7, 12–14, 27, 32]).

Commonly, the partition-based matching strategies follow three

tasks:

(1) The extraction of partition sets form the input pairwise on-

tologies.

(2) The identification of similar partitions between the set of

extracted partitions of the input ontologies.

(3) The alignment between the set of identified similar partitions

using a global matching tuning.

Recently, Jimenez-Ruiz et al. [16] proposed a divide and conquer

approach that partition large ontologies into a set of sub-matching

tasks. Jimenez-Ruiz et al. followed two clustering strategies: Naive

strategy and neural embedding strategy. COMA++ [5] was one

of the first matching systems proposing an ontology partitioning

approach. Falcon-AO [13] and Hu et al. [14] employed an agglom-

erative structural clustering algorithm to divide an ontology into a

set of disjoint partitions. Nonetheless, this approach is evaluated

through only one pair of ontologies from the web directories match-

ing task of the Ontology Alignment Evaluation Initiative (OAEI1).

SeeCOnt [2] analyzed each input ontology to derive the root of

each partition. SeeCOnt employed a ranking function that assigns

each entity of an ontology to a single partition root. However, the

1http://oaei.ontologymatching.org/

number of roots is manually defined. Most of the existing work

suffer from the low coverage value of the generated partitions [27].

For instance, the partitioning methods PBM, PAP, and APP obtained

a coverage value of 80%, 34%, and 48%, respectively for the FMA-

NCI matching task of OAEI [27]. To the best of our knowledge,

most of the existing approaches apply the same manual tuning over

all the extracted partitions. However, each partition represents a

single sub-topic of interest. This sub-topic of interest has its own

context and characteristics, which should be taken into account.

In this paper, we divide a large ontology alignment to a set of

sub-matching tasks called partitions. We align each sub-matching

task using its local settings. We automatically determine the local

matching settings using a specific machine learning model for each

sub-matching task.

Matching Learning There have been some remarkable work

on supervised matching learning, such as [8, 15, 24, 25]. Machine

learning approaches for ontology alignment usually follow two

phases [9]:

(1) The training phase: the machine learning algorithm learns

the matching settings from a training set.

(2) The classification phase: the global learned matching config-

uration is applied over the input ontologies to classify the

candidate mappings.

A matching learning approach can explore instance, structural, syn-

tactic and semantic features [9]. Eckert et al. [8] built a meta-learner

strategy to combine multiple learners. Malform-SVM [15] defines

the ontology matching task like a machine learning problem. The

training set is built from the reference alignment through a set of

element level and structural level features. Nezhadi et al. [24] pre-

sented a machine learning approach to aggregate different types of

similarity measures. This approach is evaluated through a relatively

small bibliographic matching track provided by the OAEI campaign.

Yam ++ [25] defined a decision tree model based on a training set

that uses different similarity measures. The decision tree model

is built from the reference alignment and applied over the match-

ing tasks. However, each matching task has its specificities and

a single global model cannot fit the characteristics of every map-

ping task. State-of-the-art matching learning approaches build a

machine learning model from the reference alignment or manually

derived for a particular matching task. The reference alignments

are not always available. The generated machine learning model

align every new matching task. However, each matching task has

its characteristics and should be aligned through its adequate model

and features. Hence, the generated machine learning model repre-

sents a single context that does not fit every new matching context.

To maximize the accuracy for aligning partition-pairs, we propose

to create a local learning model for each sub matching task rather

than using a global model for the whole alignment problem. More-

over, we automatically generate the local training set for each sub

matching task. We do not use any reference alignments or user

interaction to build the local training sets. Each local training set

represents the input of its local machine learning model, which

provide adequate settings for each local matching context. To the

best of our knowledge, there is a lack of approaches that provide

automated local matching learning.



3 FORMAL FOUNDATIONS

In the following, we present a set of definitions that we employ

throughout this paper.

Definition 3.1 (Ontology). We encode an ontologyOi as a directed

acyclic graph (DAG), denoted by Gi= (Vi ,Ei ), where:

• Vi =
{

ei,1,...,ei,ni
}

.Vi is a finite set of classes of an ontology.

• Ei =
{

(ei,k ,ei,l ) | ei,k , ei,l ∈ Vi
}

. Ei is a finite set of edges,

where an edge encode the relationship between two classes

of an ontology.

Definition 3.2 (Ontology partition). An ontology partition pi,k
of an ontology Oi is a sub-ontology denoted by pi,k = (Vi,k ,Ei,k )

such as :

• Vi,k =
{

ei,k,1,...,ei,k,mk

}

,Vi,k ⊆ Vi .

• Ei,k = {(ei,k,x ,ei,k,y ) | (ei,k,x ,ei,k,y ) ∈ Vi,k ∃ (ei,k,x ,ei,k,y )

∈ Ei,k }, Ei,k ⊆ Ei .

Definition 3.3 (Set of ontology partitions). An ontology Oi can be

divided into a set of ontology partitions Pi ={pi,1,..,pi,si }.

• ∀k ∈ [1..si ],Vi,k , ∅

•
⋃si
k=1
Vi,k =Vi

• ∀ k ∈ [1..si ], ∀ l ∈ [1..si ], k , l ,Vi,k ∩ Vi,l = ∅

Definition 3.4 (Global matching). The global matching GMi j

between two ontologies Oi and Oj consists in matching learning

between the entities of Vi and Vj . The global matching GMi j

requires a single machine learning model Gmli j generated from

one global training set Gtsi j . The resulted mappingsMi j from the

global matching GMi j are denoted asMi j= {(ei,s ,ej,t , r , c)} where:

• ei,s ∈ Vi and ej,t ∈ Vj
• the relationship r ∈ {≡, ⊆, ⊇}

• the confidence value c ∈ [0, 1]

Definition 3.5 (Local matching). The local matching LMi j be-

tween two ontologiesOi andOj is denoted byLMi j={lmi j,1,...,lmi j,n }.

A single local matching task lmi j,q is computed byVi,k × Vi,l re-

spectively from pi,k and pj,l , where pi,k ⊆ Pi and pj,l ⊆ Pj .

4 BIOMEDICAL ONTOLOGIES
PARTITIONING AND LOCAL MATCHING
LEARNING

As depicted in Figure 1, the local matching architecture contains

four modules: (i) input ontologies indexing and loading, (ii) input

ontologies partitioning, (iii) local matching learning and (iv) output

alignment generation and evaluation.

4.1 Input Ontologies Indexing and Loading

The first step of the ontology indexation and loading module is the

pre-processing task. During this task, we pre-process the lexical

annotations of the input ontologies. Thus, we apply the Porter

stemming [28] as well as the stop word removal process over the

extracted lexical annotations. The structural indexing is responsible

for storing all the relationships between entities. The third step is

responsible for loading the indexed data structures.

4.2 Input Ontologies Partitioning

The novel ontology partitioning approach follows mainly three

stages: the ontology partitioning pre-processing, the partitioning

algorithm and the identification of similar partition pairs.

4.2.1 Ontology Partitioning Pre-processing. We employ the hier-

archical agglomerative clustering technique to divide an ontology

into a set of partitions. This approach does not expect prior informa-

tion regarding the number of required partitions. The hierarchical

agglomerative clustering algorithm takes as input a list of pairwise

structural similarity scores between all the entities of an input ontol-

ogy. Based on Definition 4.1, we compute the structural relatedness

between the entities of one ontology. Definition 4.1 is inspired by

Wu and Palmer [31] similarity measure.

Definition 4.1 (Relatedness between entities). To compute the de-

gree of relatedness between all the entities in one ontology, we

measure their structural similarity. As depicted in Equation 1, for a

Figure 1: Architecture Overview



given two entities ei,x and ei,y , lca is their lowest common ances-

tor. Dist(ei,x ,lca) represents the shortest distance between ei,x and

lca in terms of number of edges. Dist(ei,y ,lca) denote the distance

between ei,y and lca. Dist(ri ,lca) is the distance between the root

ri and lca.

StrcSim(ei,x , ei,y ) =
Dist (ri , lca) × 2

Dist (ei,x , lca) + Dist (ei,y, lca) + Dist (ri , lca) × 2
(1)

According to this structural similarity measure, when two enti-

ties are structurally close in one ontology, they are likely belonging

to the same partition. Some ontologies do not contain any root

element. Therefore, we search for all high-level entities of an ontol-

ogy. We link these entities to a newly created root entity using a

subsumption relationship. Consequently, we solve the issue of the

lack of the root element.

Algorithm 1 Ontology partitioning Algorithm

1: Input Gi= (Vi , Ei ), SplitSize ⊲ (1) Input

2: D ← ∅, Pi ← ∅, Lv ← 0 ⊲ (2) Initialization

3: for x ← 1 to |Vi | do

4: pi,x ← ({ei , x }, ∅)

5: Pi ←
⋃

pi,x

6: end for

7: while (Lv <= |Vi |) do ⊲ (3) Dendrogram Construction

8: (pi,l ,pi,k ) ← дetMaxSimilarPart(Pi )

9: Pi ← Pi \ pi,l \ pi,k + Merдe(pi,l ,pi,k )

10: D ← D + < pi,l ,pi,k >

11: Lv ← Lv + 1

12: end while

13: Pinit ← дetInitCutPartitions(D) ⊲ (4)Dendrogram Multi-cut

14: Pi ← ∅

15: for each pi,l o f Pinit do

16: if (|Vi,l | > SplitSize) then

17: Pi ← Pi
⋃

дetIterativeCutPartitions(D,Pi , l )

18: else

19: Pi ← Pi
⋃

{pi,l }

20: end if

21: end for

22: Return Pi ⊲ Result

4.2.2 Partitioning Algorithm. Algorithm 1 describes the different

steps required for partitioning an input ontology Oi . Algorithm 1

takes as input an ontology Oi as the graph Gi . The partitioning

algorithm splits a single ontology into a set of partitions Pi . As

mentioned in Algorithm 1, the partitioning algorithm follows the

following four steps:

(1) Input The different variables are initialized such as the Den-

drogram D and the Partitions Pi . The Dendrogram D represents

the hierarchical relationship between the partitions of an ontology

Oi .

(2) Initialization Each entity ofVi is initially considered as a

single partition pi,x belonging to the set of partitions Pi (line 3

to 6). Therefore, Pi initially contains a set of partitions having a

single entity for each one.

(3) Dendrogram constructionThe Dendrogram D of each in-

put ontology is generated following the hierarchical agloromative

approach [22] (line 7 to 12). This approach iteratively identify the

two partitions (pi,l ,pi,k ) with the maximum structural similarity

(line 8). The maximum structural similarity is computed using the

relatedness formula (Definition 4.1) associated with the average

linkage clustering technique. The identified partitions pi,l and pi,k
are then removed from the set of initial partitions Pi (line 9). We

also merge the partitions pi,l and pi,k into a new partition contain-

ing (pi,l ,pi,k ), wish is added to the set of initial partitions Pi (line

9). Every merged partitions are added to the Dendrogram hierarchy

(line 10). The steps from line 7 to line 12 are repeated until building

a dendrogram D with a number Lv of levels equal to the number

of entities ofVi .

(4) Dendrogram multi-cut The generated dendrogram should

be cut at a certain level to result in a set of non-isolated partitions

Pi . Partitions with only one entity are considered as isolated. These

isolated partitions affect the matching accuracy result. For instance,

the partitioning of FMA-SNOMED matching task of OAEI using

Falcon [13] results in 3352 isolated partitions with an F-Measure

0.485 [27]. A single cut of a dendrogram can either result in a set of

isolated partitions or a set of large partitions. To cope with this issue,

we perform a multi-cut strategy of the resulted dendrogram (line 13

to 21). Therefore, the non-isolated partitions are derived based on

two steps: an initial dendrogram cut (line 13) and a set of iterative

cuts (line 14 to 21). The initial cut result in a set of partitionsPi ni t .

This first cut is defined at a level of the dendrogram D, which do

not result in any isolated partitions. To perform this cut, we perform

all the possible cuts over the dendrogram until finding the first cut

returning non-isolated partitions. This initial cut result in a set of

partitions Pi with no isolated ones. The initially returned partitions

Pi ni t may contain large ones. A large partition is identified through

its size (SplitSize) in terms of the number of entities (line 16). The

SplitSize is set as an input. We iteratively compare the size of the

initial partitionsPi ni t to the SplitSize (line 16). If an initial partition

pi,l is large, we split this partition into smaller ones. These partitions

are cutted based on the same strategy of Algorithm 1 (line 8). The

identified partitions are added to the final partition set Pi (line 17).

If the partition pi,l of Pi ni t is smaller than the SplitSize, we add

it directly to the final partition set Pi (line 19). The result of the

multi-cut strategy is a set of partitions Pi for each input ontology

Oi . In order to demonstrate the multi-cut strategy, we draw in

Figure 2 a dendrogram example. This dendrogram is resulted by

the hierarchical clustering of an ontology containing 13 entities (x

axis). The initial cut is represented by the top dashed line. This cut

result in two partitions Pi ni t : the black partition (5 entities) and

the partition with the grey colors (9 entities). The initial cut does

not result in any isolated partitions. For this example, we adopt a

SplitSize of 7 entities. Therefore, the partition with the grey colors

should be cut in a level that results in no isolated partition while

the maximum size of the resulted partition should be below the

SplitSize. Consequently, we perform the second cut which results in

the two partitions: the dark grey color (5 entities) and the light grey

color (4 entities). Consequently, the multi-cut of the dendrogram

result in three partitions depicted with the following three colors:

Black (5 entities), light grey (4 entities) and dark grey (5 entities).



In the next step, we determine similar partition-pairs between two

sets of ontology partitions.

Figure 2: Multi-cut example

4.2.3 Finding Similar Ontology Partitions. Algorithm 2 takes as

input the two sets of partitions Pi and Pj of the input ontologies

Oi and Oj with a set of anchors Ai j (line 1). Algorithm 2 results

in the local matching LMi j . The anchors are denoted as: Ai j =

{(ei,x ,ej,y ) | ei,x ∈ Vi , ej,y ∈ Vj }. The anchors Ai j are defined

to identify the set of local matching lmi j,q of LMi j . Since we

are dealing with biomedical ontologies, anchors are extracted by

cross-searching the input ontologies with the available external

biomedical knowledge bases (KB) such as the Unified Medical Lan-

guage System (UMLS) Metathesaurus [6], Medical Subject Headings

(MeSH) [21], Uberon [23], and BioPortal [26]. For instance, UMLS

integrates more than 160 biomedical ontologies. In our case, we

cross-search the two input ontologies with the Uberon ontology

to derive the set anchors Ai j . We expand these anchors with a

set of exact mappings between the input ontologies using a fast

hash-based search method [11]. One generated partition pi,k of

Pi can have multiple anchors with different partitions of Pj . Also

one partition pj,k of Pj can have multiple anchors with different

partitions of Pi . Therefore, we iteratively merge the partitions of

Pi having anchors with more than one partition of Pj (line 3 to 6).

We also merge the partitions of Pj having anchors with partitions

of Pi (line 7 to 10). Hence, we guarantee that there is no anchors

overlap between the partitions of Pi and Pj . Consequently, a sin-

gle partition of Pi has anchors with only a single partition of Pj .

Therefore, we are able to identify the local matching tasks lmi j,q of

LMi j between the partitions Pi and Pj based on the anchorsAi j

(line 11 to 17). This technique guarantees a good coverage ratio.

Figure 3 shows the proposed approach for partitions merging. As

depicted in the example of Figure 3 each ontology has 6 ontology

partitions. Each partition contains a set of entities illustrated as

nodes. The dashed lines represent the set of anchors between the

ontology partitions of the two ontologies Oi and Oj . We iteratively

merge the ontology partitions of one ontology having anchors with

one partition of the other ontology. For example, the ontology par-

titions P1 and P2 of the ontology Oi are merged into one ontology

partition. This merge is illustrated in Figure by a hashed circle. Thus,

we are able to identify the set of local matchings LMi j between

the two ontologies. For instance, in Figure 3, we identify four local

matchings: LMi j={lmi j,1,lmi j,2,lmi j,3,lmi j,4}.

Algorithm 2 Finding Similar Partitions Algorithm

1: Input Pi ,Pj ,Ai j ⊲ Input

2: Qi ← ∅,Q j ← ∅,LMi j ← ∅ ⊲ Initialization

3: for each pj,l of Pj do ⊲ Pi partitions merging

4: Qi =
⋃

∀(ei k x ,ej l y )∈Ai j pi ,k
5: Pi ← Pi \ Qi + Merдe(Qi )

6: end for

7: for each pi,k of Pi do ⊲ Pj partitions merging

8: Qj =
⋃

∀(ei k x ,ej l y )∈Ai j
pj ,l

9: Pj ← Pj \ Qj + Merдe(Qj )

10: end for

11: for each pi,k of Pi do⊲ Finding similar partitions between Pi
and Pj

12: for each pj,l of Pj do

13: if (∃(ei k x , ej ly ) ∈ Ai j ) then

14: LMi j ← LMi j
⋃

{

(pi,k ,pj,l )}

15: end if

16: end for

17: end for

18: Return LMi j ⊲ Result

Figure 3: Partitions merging

4.3 Local Matching Learning

The high complexity of the large biomedical ontologies decreases

the matching accuracy. No single similarity measure can effectively

treat all the syntactic heterogeneity aspects of a matching task.



Therefore, for each local matching task, we construct its specific

machine learning model. The training set of every local learning

model is not based on any reference alignments. In the following,

we detail the required steps for building the local training sets.

4.3.1 Building Local Training Sets from External Knowledge Bases.

We automatically construct a supervised training set tsi j,q for each

local matching task lmi j,q ofLMi j . These training sets serve as the

input for each local machine learning model. Every local training

set tsi j,qcontains a set of features associated with a class attribute

denoted by: tsi j,q = {fi 1,..., fniq , cqi }. Since we are dealing with

a supervised binary classification task, the class label cqi ∈ {0,1}.

We employ the-state-of-the art syntactic similarity measures2 as

features. Table 1 represents an example of a local matching train-

ing set tsi j,q for the ontologies Oi and Oj . The labeled data of the

training set is usually hard to acquire. The existing works retrieve

labeled data either from the reference alignment or by creating it

manually. However, the reference alignment commonly does not

exist. We automatically generate the local training sets without the

manual involvement of the user or any gold standard. We derive

the positive mappings samples of cqi by cross-searching the enti-

ties of a local matching with the existing biomedical knowledge

bases like Uberon. For a given local matching lmi j,q , we denote

the extracted positive samples by PSi j ,q = {(ei ,q, x ,ej ,q,y )}. We

deduce the negative samples from the retrieved positive samples.

The negative samples NSi j ,q are determined by computing the

difference between the extracted positive sample PSi j q and the

cartesian product of the entities of a local matching lmi j,q . Thus,

NSi j q = (Vi,q ×Vj,q ) \PSi j q . Therefore, we result in m negative

samples NSi j q , where m = n(n-1) and n = |PSi j q |. Consequently,

the training set is not balanced since the number of the negative

samples m is higher than the number of positive samples n. We

undersample the training set by removing all the negative sam-

ples having at least one feature with a similarity score equal to

zero. Then, we randomly sample the extracted negative samples.

Therefore, the training set became balanced (n=m). The output of

this step is a local training set tsi j,q for each local matching task

lmi j,q . This local training set captures the characteristics of the

local matching context.

Local entities pairs Feature 1 ... Feature n Class

(ei ,q, 1,ej ,q, 1) 0.61 ... 0.75 1

(ei ,q, 2,ej ,q, 2) 0.45 ... 0.5 0

... ... ... ... ...

(ei ,q, x ,ej ,q,y ) ... ... ... ...

Table 1: An example of a local matching training set.

4.3.2 Feature Selection. Weapply thewrapper feature selection [17]

method over the resulted local training sets. This technique selects

the subset of the most effective and suitable features for each local

training set. Therefore, each local matching task has its specific sim-

ilarity measures. This method overcomes the issue of the manual

choice of similarity measures.

2https://git.io/fNvqt

4.3.3 Building Local Machine Learning Models. We build a local

machine learning model for each local matching task. The purpose

of the learning models is to determine the thresholds of the se-

lected similarity measure. Moreover, every learning model defines

a weight for each similarity measure. Therefore, every single local

matching task has its specific tuning.

4.3.4 Local Matching of Similar Partition-pairs . The entities of

each local matching task are classified using their specific machine

learning model. This local learning model aligns the input entities

based on the adequate matching parameters.

4.4 Alignments Generation and Evaluation

The generated correspondences for every local matching task lmi j,q

are unified to generate the final alignment file for the whole ontol-

ogy matching task. The alignment file is compared to the reference

alignment to evaluate the overall result accuracy.

5 EVALUATION

We evaluated the proposed approach according to three different

experiments. In Section 5.2, we compare the defined partitioning

approach to the existing state-of-the-art works. In Section 5.3, we

asses the novel local matching approach while using different ma-

chine learning algorithms. In Section 5.4, we compare the results

of the global matching to the novel local matching learning ap-

proach. Since we are dealing with biomedical ontologies, we are

based on the datasets provided by the OAEI of 2017, in particular,

the biomedical ontologies matching tracks: Anatomy and LargeBio.

All experiments have been implemented in Java using a MacOs

operating system with 2.8 GHz Intel I7-7700HQ and 16 GB of inter-

nal memory. The runnable Java jar file of the matching system is

available upon (request3).

5.1 Partitioning Approach Evaluation

We evaluated the proposed partitioning approach according to the

current partitioning strategies SeeCOnt [2], Falcon [13], Alsayed et

al. [3] and Ernesto et al. [16]. All these approaches are evaluated

using the biomedical anatomy track of OAEI. Therefore, in Table

2, using the same dataset, our partitioning strategy outperforms

the existing state of the art approaches. We achieved an F-Measure

of 89% with a coverage ratio of 98.3%. The recall value is signifi-

cantly higher than most of the existing works due to the achieved

coverage ratio. The precision value is lower than Seecont [2], Fal-

con [13] and Alsayed et al. [3] due to the additional number of

wrong alignments discovered compared to the later approaches.

The good coverage ratio is achieved because of the performed parti-

tions merging strategy of Algorithm 2. The number of the resulted

partitions for the two ontologies of the anatomy track is 57 due

to the proposed merging strategy. SeeCOnt did not mention the

number of generated partitions for the anatomy dataset. Moreover,

the other existing approaches did not define (n/d) the achieved

coverage ratio. The partitioning coverage and its ratio are defined

respectively in Definition 5.1 and 5.2.

3https://goo.gl/FjZGh6



Approach F-Measure Precision Recall Partitions number Coverage Ratio Run time (mn)

Proposed approach 0.896 0.915 0.877 57/57 98.3 8.13

SeeCOnt [2] 0.863 0.951 0.789 n/d n/d n/d

Ernesto et al. [16] 0.850 0.880 0.820 5/10 n/d 42

Falcon [13] 0.730 0.964 0.591 139/119 n/d 10

Alsayed et al. [3] 0.753 0.975 0.613 84/80 n/d 0.98

Table 2: Anatomy track partitioning results

Definition 5.1 (Partitioning coverage). An alignmentMi j is the

set of correspondences between two ontologies Oi and Oj .Mi j

can be either retrieved from the reference alignment. We state that

a single mapping ofMi j is covered by the set of local matching

tasks LMi j , if the later mapping is discovered by at least one local

matching task lmi j,q . The partitioning coverage ratio is defined in

the following Definition 5.2.

Definition 5.2 (Partitioning coverage ratio). The partitioning cov-

erage ratio of a set of Local matching LMi j defines the percentage

of mappings that cannot be discovered after performing the parti-

tioning process. Consequently, a low coverage ratio leads to a low

matching accuracy. Cд(lmi j,q ,Mi j ) denotes the set of mappings

Mi j covered by the lmi j,q . In the following Equation 2, we present

the partitioning coverage ratio between the set of local matchings

and the reference mappingsMi j .

CдRatio(LMi j , Mi j ) =
|Cд(lmi j,q ,Mi j ))|

|Mi j |
(2)

5.2 Matching Learning Results

In Figure 4, we compared the accuracy of local matching while

employing different machine learning algorithms for building the

set of local learning models. Since we are performing a supervised

classification strategy, we draw the results of the top performing

machine learning algorithm for each classification algorithm type.

Therefore, we report the achieved results by SVM (function), Naive

Bayes (bayes), JRip (decision rules) and C4.5 (decision tree). In Fig-

ure 4, we depict the resulted accuracy based on the OAEI 2017

biomedical matching tasks: the Anatomy dataset and the Largebio

dataset fragments of FMA-NCI, FMA-SNOMED and SNOMED-NCI.

SVM achieved a better accuracy for the local matching learning

than the other algorithms. For every local matching task lmi j,q ,

we generated a local training set tsi j,q by cross-searching the lo-

cal entities with UBERON as an external knowledge base. We are

based on the extracted positive samples PSi j q from UBERON to

automatically infer the negative samples NSi j q . We mention that

different knowledge bases can be employed to enrich the positive

samples of the local training sets. We are based on the wrapper

feature selection method to identify the adequate similarity mea-

sures for each local matching task lmi j,q . Therefore, each local

matching task is aligned through a local machine learning model,

which defines the local matching tuning.
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Figure 4: Comparing different machine learning algorithms

for local matching

5.3 Comparing Local Matching to Global
Matching

As shown in Figure 5, we conducted a set of experiments in or-

der to compare the proposed local matching learning to the global

matching. The global matching GMi j is the alignment between

two input ontologies using a single global machine learning model.

This model is generated using one global training set. We auto-

matically build the training set by cross-searching the two input

ontologies with UBERON as an external biomedical knowledge base

(KB). Then we perform the wrapper feature selection method to

select the adequate similarity measures The local matching models

are applied locally over the set of similar partition pairs. Global

matching and local matching are evaluated using the same refer-

ence alignments provided by OAEI. In order to compare our local

matching approach to the existing ontology matching systems, we

employ the 2017 version of AgreementMakerLight (AML) [11] as a

baseline. AML has been consistently the top OAEI matching system

for biomedical tracks since the OAEI of 2012. For a fair comparison,

we turn on the element level matchers of AML since the local match-

ing learning is based on the element level. Moreover, we compared

our approach to the 2017 version of LogMap [1], which has been

one of the top matching systems. As depicted in Figure 5, the local

matching significantly outperforms the global matching as well

as AML. We achieved comparable results to LogMap. We mention

that our approach employs only syntactic similarity measures as

features for the local matching learning. AML manually defines

the employed similarity measure and their associated thresholds.

However, our proposed approach is completely automated for local

matching of biomedical ontologies. For instance, AML chooses a

global syntactic threshold of 0.6 for all the matching task. Nonethe-

less, our proposed approach derives automatically the adequate

threshold value for every employed syntactic similarity measure



in every local matching task context. Thus, we take advantage of

the partitioning process to maximize the matching accuracy gain.

The automatically generated local matching tuning takes into con-

sideration the matching context in order to increases the overall

obtained result.
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Figure 5: Comparing local matching to global matching

6 CONCLUSION AND FUTUREWORK

Ontology matching is the key interoperability enabler for the Se-

mantic Web. We have proposed a novel approach for ontology

partitioning to deal with large ontology matching tasks. We target

not only the reduction of search space but especially the increase of

the matching quality using the local matching learning approach.

We break down an ontology matching task into a set of local match-

ing tasks. We have proposed a novel approach that performs an

automated local matching learning process. This local matching

learning combines ontology partitioning with machine learning

techniques. The proposed local machine learning model automati-

cally defines the matching tuning of each sub-matching task. Every

local machine learning model receives as an input a local training

set without employing any gold standard or user involvement. The

existing approaches generate a global machine learning model by

using the reference alignments. However, the reference alignment

usually does not exist and the manual approach is time consuming.

We automatically generate the local training sets by exploring the

external biomedical knowledge bases. Therefore, the proposed local

matching learning model defines the adequate matching tuning pa-

rameters for every sub-matching task context. We have shown that

the local matching of partitions-pairs outperforms the global match-

ing approach. However, our local matching learning approach is

limited to the biomedical domain. In future work, we tend to per-

form the local matching learning for different domains. We also

intend to incorporate structure level features into the local matching

learning strategy.
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