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Seizure Onset Detection in EEG Signals Based 
on Entropy from Generalized Gaussian PDF 
Modeling and Ensemble Bagging Classifier

Antonio Quintero-Rincón, Carlos D’Giano, and Hadj Batatia

Abstract This paper proposes a new algorithm for epileptic seizure onset detection

in EEG signals. The algorithm relies on the measure of the entropy of observed

data sequences. Precisely, the data is decomposed into different brain rhythms

using wavelet multi-scale transformation. The resulting coefficients are represented

using their generalized Gaussian distribution. The proposed algorithm estimates

the parameters of the distribution and the associated entropy. Next, an ensemble

bagging classifier is used to performs the seizure onset detection using the entropy of

each brain rhythm, by discriminating between seizure and non-seizure. Preliminary

experiments with 105 epileptic events suggest that the proposed methodology is a

powerful tool for detecting seizures in epileptic signals in terms of classification

accuracy, sensitivity and specificity.
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1 Introduction

Epilepsy is a chronic disorder resulting from disturbed brain activity of nerve cells,

causing seizures. Electroencephalography (EEG) is the predominant modality to

study and diagnose epilepsy. The amplitude of the EEG epileptic signal strongly

depends on how synchronous or asynchronous is the activity of the underlying

neurons, because small electric signals sum to generate one larger surface signal

when a group of cells are excited simultaneously. This excitation is related to

seizures and it may exhibit abrupt intermittent transitions between highly ordered

and disordered states [12], allowing its features quantification to study the seizure

onset detection (SOD). The literature abounds with EEG signal processing methods

to detect brain seizures. Many existing methods rely on feature extraction and clas-

sification approaches using various techniques, such as time-frequency descriptors

[8, 15, 16, 30, 35], component analysis or common spatial patterns [1, 11, 23],

entropy [5, 7, 14, 17, 21, 22, 32, 42] or supervised machine learning, such as support

vector machines (SVM) [15, 36], discriminant analysis [19] or k-Nearest Neighbors

[1, 13, 39]. See [24, 28] for more details of the state of the art on EEG seizure onset

detection.

Ensemble machine learning methods have been developed to enhance the

performance of individual classifiers [43]. The underlying principle is to combine a

collection of weak classifiers in a suitable manner. The most popular combination

schemes are arithmetic or geometric averaging, stacking and majority voting rules

[37]. Ensemble bagging (standing for Bootstrap Aggregating) relies on bootstrap

replicates of the training set [4]. The classifier outputs are combined by the plurality

vote. This technique allows increasing the size of the training set, decreasing the

variance, and increasing the accuracy and narrowly tuning the prediction to expected

outcome [43]. Such classifiers can be optimal in terms of stability and predictive

accuracy for datasets with imbalanced class distributions, unstable models or for

data mining [33, 34, 38]. Ensemble bagging is widely used in bioinformatics,

particularly in protein prediction [2, 41] and recently was used in automatic

detection of iEEG bad channels [38].

In this work, we study the Shannon entropy of brain rhythms, based on the

generalized Gaussian distribution (GGD). The brain rhythms are obtained through

wavelet decomposition. An ensemble bagging method is used to classify EEG

signals as seizure or non-seizure. The classification parameters use the entropy and

the scale and shape parameters from the GGD. The motivation relates to the fact

that averaging measurements can lead to a more stable and reliable estimate, as the

influence of random fluctuations in single measurements is reduced. By building

an ensemble of slightly different models from the same training data, we can be

able to similarly reduce the influence of random fluctuations in single models [9].

The random fluctuations in epilepsy, consisting mainly of spontaneous (or chaotic)

neural activity, can be assessed using the entropy. The idea is to characterize the

dynamic EEG signal by determining the sudden changes in the epileptic signals

[31, 40]. Therefore, the random fluctuations that are typical of the variation of the



uncertainty can be determined when the entropy is used [20]. In this study, we

train decision trees having low bias and high variances to discriminate between

seizure and non-seizure [3, 9]. To accurately predict responses, we combine these

tree by an ensemble technique in order to reduce the variance and maintain the bias

interchangeably low.

The remainder of the paper is structured as follows. Section 2 presents the

proposed method, with its three main steps detailed in Sect. 2.1 a statistical model

is introduced, next in Sect. 2.2 an entropy estimation is presented and in Sect. 2.3 an

ensemble bagging classifier is proposed. Section 3 presents a range of experimental

results with EEG recordings from the Children’s Hospital Boston database and

reports detection performance in terms of sensitivity, specificity, and accuracy.

Advantages, limitations, conclusions and perspectives for future work are finally

reported in Sect. 4.

2 Methodology

Let X ∈ R
N×M denote an EEG signal composed of M channels at N discrete

time instants. The original signal X is divided into a set of 2-s segments with

an overlap of 50%. The proposed method proceeds through four successive steps.

First, a multi-resolution wavelet decomposition using a Dauchebies (Db4) wavelet

filter bank is performed on the signals to extract spectral bands representing

brain rhythms (δ (0–4 Hz), θ (4–8 Hz), α (8–16 Hz), β (16–32 Hz), and γ (32–

64 Hz) frequency bands). Second, the resulting coefficients are represented using

a parameterized GGD statistical model where a couple of parameters [σ, τ ] are

estimated for each rhythm. Third, the Shannon entropy [ε] is then calculated using

these two parameters. Finally, in stage four, an ensemble bagging classifier is used to

discriminate between seizure and non-seizure signals, through the feature predictor

vector p = [σ, τ, ε] ∈ R
3 associated with each 2-s segments of the EEG signal. The

following sections introduce the generalized Gaussian statistical model, the entropy

estimation and the ensemble bagging classifier.

2.1 Statistical Modeling

The signals are transformed using a Daubechies wavelet (dB4) transform at 6 scales.

The resulting wavelet coefficients have been grouped into separate spectral bands.

A generalized Gaussian distribution is fitted to the histogram of wavelet coefficients

of each segment in a given spectral band, where the probability density function

(PDF) is

f (x; σ, τ) =
τ
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where σ ∈ R
+ is a scale parameter, τ ∈ R

+ is a shape parameter that controls the

density tail, and Γ (·) is the Gamma function. The maximum likelihood method has

been used to estimate the parameters σ and τ associated with each spectral band (see

[25–28] for more details). The entropy calculated using these parameters is used to

discriminate between seizure and non-seizure signals.

2.2 Entropy Estimation

Rényi entropy for the PDF from Eq. (1) is defined by

JR(ζ ) =
1

1 − ζ
log

{∫

f ζ (x; σ, τ)dx

}

(2)

where ζ > 0 and ζ �= 1, then solving the integral of equation (2) for the PDF from

Eq. (1) one obtains
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Thus, Eq. (2) takes the expression

JR(ζ ) =
log ζ

τ(1 − ζ )
− log

{

τ

2σΓ (τ−1)

}

(4)

Shannon entropy defined by E[− log f (X)] is the particular case of Eq. (4) for ζ →

1. Then limiting in (4) and using L’Hopital’s rule, one obtains the entropy for the

generalized Gaussian Distribution PDF

ε = E[− log f (X)] = τ−1 − log

{

τ

2σΓ (τ−1)

}

(5)

We refer the reader to [6, 18] for a comprehensive treatment of the statistical

theory.



2.3 Ensemble Bagging Classifier

Let Mt : C → {0, 1} be the binary class for the weak tree classifier tth for

t = 1, · · · , T , with 0 being the non-seizure event and 1 the seizure event; and

p = [σ, τ, ε] ∈ C the parameters to be classified. Then to combine the outputs

M1(p), · · ·MT (p) into a single class prediction, a weighted linear combination

of the outputs of the weak classifiers, can be used through an ensemble prediction

function M : C → {0, 1} such that

M(p) = sign





T
∑

t=1

ωtMt (p)



 (6)

where ω1, · · · , ωT is a set of weights, according the majority vote results.

Consider a dataset D = {d1, d2, .., dN } with di = (pi, ci), where ci is a class

label. The bagging algorithm (see Algorithm 1) returns the ensemble as a set of

models. The predictions T from the different models are combined by voting, and

the predicted class corresponds to the majority vote.

Algorithm 1: Bagging(D,T ,A) train an ensemble of models from bootstrap

samples, adapted from [9]

Data: data set D; ensemble size T ; learning algorithm A

Result: ensemble of models whose predictions are to be combined by voting

or averaging.

for t=1 to T do
build a bootstrap sample Dt from D by sampling |D| data points with

replacement;

run A on Dt to produce a model Mt ;

end

We refer the reader to [4, 43] for a comprehensive treatment of the properties of

ensemble bagging classifier.

3 Results

In this section, we evaluate the proposed method using the Children Hospital

Boston database. This dataset consists of 22 bipolar 256 Hz EEG recordings from

paediatrics subjects suffering from intractable seizures [10, 35]. In this work, we

have used 105 events from 11 different subjects that have the same 23 channels

montage. Each recording contains a seizure event, whose onset time has been

labeled by an expert neurologist. Here we used the expert annotations to extract

a short epoch from each recording such that it is focused on the seizure and that it



contains both seizure and non-seizure signals. The neurologist annotated each signal

to indicate the beginning and end of the seizure epochs and, in addition, two adjacent

non-seizure signal segments. For each subject, three epochs of the same length were

selected. They are used as ground truth. Figure 1 shows the discrimination properties

of the proposed vector representation p = [σ, τ, ε] ∈ R
3, obtained from the wavelet

coefficients. We can see the direct relation between σ and ε; both increase as they

grow in the scale of their values for the seizure events (yellow circles) with respect

to non-seizure events (blue circles). Figure 2 shows the different ranges in the box

plots for the entropy. For each brain rhythm, the maximum an minimum values of

each box together with the quartiles can be used to set a threshold that differentiates

between seizure or non-seizure events.
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Fig. 1 Scatter plots from vector p = [σ, τ, ε] observed through all brain rhythms using 105

events: 35 seizures (yellow dots) and 70 non-seizures (blue dots). We can see how the seizure

event concentrates on high values of σ and ǫ. (a) Delta band. (b) Theta band. (c) Alpha band. (d)

Beta band. (e) Gamma band
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Fig. 2 Box plots of Shannon Entropy observed through all brain rhythms using 105 events (35

seizures and 70 non-seizures). The maximum an minimum values for each box together with the

quartiles can help to classify based on a thresholding approach. (a) Delta band. (b) Theta band. (c)

Alpha band. (d) Beta band. (e) Gamma band

Table 1 reports the mean and standard deviation of the entropy for all signals

showing a clear difference between a seizure and non-seizure events. The 95%

confidence interval (IC95%) permits to set a threshold for detecting the seizure. This

can help to determine the duration, amplitude, and classification between seizure

events and non-seizure events [29].

To assess the performance of the proposed method, we adopted a supervised

testing approach and used the 105 events described above to train and test the

method with a 10-fold cross-validation technique of the vector p = [σ, τ, ε] ∈

R
3. Table 2 reports the percentage of good classification in terms of: TPR = True

Positives Rate or Sensitivity; TNR = True Negative Rate or specificity; FPR = False

Positive Rate; FNR = False Negative Rate; Error Rate; and ACC = Accuracy (ACC).



Table 1 Comparison between means, standard deviations of the entropy and 95% confidence

interval (IC95%) of seizure and non-seizure, using 105 events (35 seizures and 70 non-seizures)

for each brain rhythm. We can see how one can set a threshold for detecting the seizure

Non-seizure Seizure

Bands Mean Std IC95% Mean Std IC95%

Delta 106.23 75.09 [102.28, 110.17] 202.78 122.53 [193.68, 211.89]

Theta 25.84 19.60 [24.81, 26.87] 85.55 67.49 [80.54, 90.56]

Alpha 22.08 14.15 [21.34,22.83] 75.11 67.32 [70.10, 80.11]

Beta 11.96 6.95 [11.59, 12.32] 37.44 44.05 [34.16, 40.71]

Gamma 6.83 6.21 [6.50, 7.15] 35.01 43.57 [31.78, 37.30]

Table 2 Ensemble bagged seizure detection performance for all brain rhythm in 105 events (35

seizure and 70 non-seizure) from the Children’s Hospital Boston database, in terms of: TPR = True

Positives Rate or Sensitivity; TNR = True Negative Rate or specificity; FPR = False Positive Rate;

FNR = False Negative Rate; Error Rate; and ACC = Accuracy, expressed as the percentage of good

classification

Metric TPR TNR FNR FPR Error rate ACC

Brain rhythms 85.06 96.02 14.94 3.98 7.23 92.77

4 Conclusions

This paper presented a new algorithm for epileptic seizure onset detection and

classification in EEG signals. The algorithm relies on the estimation of the entropy

in the time-frequency domain of the data. Precisely, the data is projected into

5 different brain rhythms using wavelet decomposition. The distribution of the

coefficients in each brain rhythm is approximated by a generalized Gaussian law.

The algorithm estimates the parameters of the distribution and its Shannon entropy,

at each brain rhythm. Next, an ensemble bagging classifier is used to discriminating

between seizure and non-seizure. The proposed method was demonstrated on 105

epileptic events of the Children’s Hospital Boston database. The results achieve

a classification with high accuracy (92.77%), sensitivity (85.06%) and specificity

(96.02%). The advantage of the proposed algorithm requires only estimating and

classifying two scalar parameters. This sets the way to implementing powerful soft-

real-time tools for detecting seizures in epileptic signals.

However, the main limitation relates to defining the sliding time-window and the

overlap of epochs due to the very high dynamics of epileptic signals.

Future work will focus on an extensive evaluation of the proposed approach in

order to implement deep learning techniques to handle unstable dynamic epileptic

EEG signals.



References

1. Acharya U, Oh SL, Hagiwara Y, Tan J, Adeli H (2018) Deep convolutional neural network

for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med

100:270–278

2. Ashtawy H, Mahapatra N (2015) BGN-score and BSN-score: bagging and boosting based

ensemble neural networks scoring functions for accurate binding affinity prediction of protein-

ligand complexes. BMC Bioinf 4:S8

3. Bishop CM (2006) Pattern recognition and machine learning. Information science and

statistics. Springer, Secaucus

4. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

5. Bruzzo A, Gesierich B, Santi M, Tassinari C, Birbaumer N, Rubboli G (2008) Permutation

entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A

preliminary study. Neurol Sci 29(1):3–9

6. Cover TM, Thomas JA (2006) Elements of information theory. Wiley, Hoboken

7. Diambra L, de Figueiredo JB, Malta C (1999) Epileptic activity recognition in EEG recording.

Phys A 273(3):495–505

8. Direito B, Teixeira C, Ribeiro B, Castelo-Branco M, Sales F, Dourado A (2012) Modeling

epileptic brain states using EEG spectral analysis and topographic mapping. J Neurosci

Methods 210(2):220–229

9. Flach P (2012) Machine learning: the art and science of algorithms that make sense of data.

Cambridge University Press, New York

10. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng

CK, Stanley H (2000) Physiobank, physiotoolkit, and physionet: components of a new research

resource for complex physiologic signals. Circulation 101(23):215–220

11. Hosseini M, Pompili D, Elisevich K, Soltanian-Zadeh H (2018) Random ensemble learning

for EEG classification. Artif Intell Med 84:146–158

12. Iasemidis LD, Sackellares JC (1996) Chaos theory and epilepsy. Neuroscientist 2:118–126

13. Kumar TS, Kanhanga V, Pachori RB (2015) Classification of seizure and seizure-free EEG

signals using local binary patterns. Biomed Signal Process Control 15:33–40

14. Li P, Yan C, Karmakar C, Liu C (2015) Distribution entropy analysis of epileptic EEG signals.

In: Conference of the IEEE Engineering in Medicine and Biology, pp 4170–4173

15. Liang SF, Wang HC, Chang WL (2010) Combination of EEG complexity and spectral analysis

for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:853434

16. Meng L, Frei MG, Osorio I, Strang G, Nguyen TQ (2004) Gaussian mixture models of ECoG

signal features for improved detection of epileptic seizures. Med Eng Phys 26(5):379–393

17. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and

winding road. Brain 130:314–333

18. Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7):685–694

19. Nasehi S, Pourghassem H (2013) A novel fast epileptic seizure onset detection algorithm using

general tensor discriminant analysis. J Clin Neurophysiol 30(4):362–370

20. Niedermeyer E, da Silva FL (2010) Electroencephalography basic principles and clinical

applications and related fields. Lippincott Williams and Wilkins, Philadelphia

21. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet

transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

22. Paivinen N, Lammi S, Pitkanen A, Nissinen J, Penttonen M, Gronfors T (2005) Epileptic

seizure detection: a nonlinear viewpoint. Comput Methods Prog Biomed 79(2):151–159

23. Qaraqe M, Ismail M, Serpedin E (2015) Band-sensitive seizure onset detection via CSP-

enhanced EEG features. Epilepsy Behav 50:77–87

24. Quintero-Rincón A, Pereyra M, D’Giano C, Batatia H, Risk M (2016) A new algorithm for

epilepsy seizure onset detection and spread estimation from EEG signals. J Phys Conf Ser

705(1):012–032



25. Quintero-Rincón A, Prendes J, Pereyra M, Batatia H, Risk M (2016) Multivariate Bayesian

classification of epilepsy EEG signals. In: 2016 IEEE 12th Image, Video, and Multidimen-

sional Signal Processing Workshop (IVMSP), pp 1–5

26. Quintero-Rincón A, Pereyra M, D’giano C, Batatia H, Risk M (2017) A visual EEG epilepsy

detection method based on a wavelet statistical representation and the Kullback-Leibler

divergence. IFMBE Proc 60:13–16

27. Quintero-Rincón A, D’Giano C, Risk M (2018) Epileptic seizure prediction using Pearson’s

product-moment correlation coefficient of a linear classifier from generalized Gaussian

modeling. Neurología Argentina 10(4):201–217

28. Quintero-Rincón A, Pereyra M, D’Giano C, Risk M, Batatia H (2018) Fast statistical model-

based classification of epileptic EEG signals. Biocybern Biomed Eng 4(38):877–889

29. Quyen MLV, Bragin A (2007) Analysis of dynamic brain oscillations methodological advances.

Trends Neurosci 30(7):365–373

30. Rabbi AF, Fazel-Rezai R (2012) A fuzzy logic system for seizure onset detection in intracranial

EEG. Comput Intell Neurosci 2012:705140

31. Rapp PE, Zimmerman ID, Albano AM, de Guzman GC, Greenbaun NN, Bashore TR (1986)

Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic

signals. In: Springer, vol 66, pp 175–205. Springer, Berlin/Heidelberg

32. Rosso O, Martin M, Figliola A, Keller K, Plastino A (2006) EEG analysis using wavelet-based

information tools. J Neurosci Methods 153(2):163–182

33. Sammut C, Webb GI (2017) Encyclopedia of machine learning and data mining. Springer, New

York

34. Seni G, Elder J (2010) Ensemble methods in data mining improving accuracy through

combining predictions. Morgan and Claypool Publishers, California

35. Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttagf J (2004) Patient-specific

seizure onset detection. Epilepsy Behav 5:483–498

36. Sorensen TL, Olsen UL, Conradsen I, Henriksen J, Kjaer TW, Thomsen CE, Sorensen HBD

(2010) Automatic epileptic seizure onset detection using matching pursuit: a case study. In:

32nd Annual International Conference of the IEEE EMB, pp 3277–3280

37. Theodoridis S (2015) Machine learning: a Bayesian and optimizationp perspective. Academic

Press, London

38. Tuyisenge V, Trebaul L, Bhattacharjee M, Chanteloup-Foret B, Saubat-Guigui C, Mîndruta

I, Rheims S, Maillard L, Kahane P, Taussig D, David O (2018) Automatic bad channel

detection in intracranial electroencephalographic recordings using ensemble machine learning.

Clin Neurophysiol 129(3):548–554

39. Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure

detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy

19:222

40. West BJ (2013) Fractal physiology and chaos in medicine. World Scientific Publishing

Company, Singapore/London

41. Yu Z, Deng Z, Wong H, Tan L (2010) Identifying protein-kinase-specific phosphorylation sites

based on the bagging-adaboost ensemble approach. IEEE Trans NanoBiosci 9(2):132–143

42. Zandi A, Dumont G, Javidan M, Tafreshi R (2009) An entropy-based approach to predict

seizures in temporal lobe epilepsy using scalp EEG. In: Annual International Conference of

the IEEE Engineering in Medicine and Biology, pp 228–231

43. Zhou ZH (2012) Ensemble methods foundations and algorithms. Chapman and Hall/CRC,

London




