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Abstract: Fibrin-Type I collagen composite gels have been widely studied as biomaterials, in which
both networks are usually formed simultaneously at a neutral pH. Here, we describe a new protocol
in which mixed concentrated solutions of collagen and fibrinogen were first incubated at acidic
pH to induce fibrinogen gel formation, followed by a pH change to neutral inducing collagen fiber
formation. Thrombin was then added to form fibrin-collagen networks. Using this protocol, mixed
gels containing 20 mg.mL−1 fibrin and up to 10 mg.mL−1 collagen could be prepared. Macroscopic
observations evidenced that increasing the content of collagen increases the turbidity of the gels
and decreases their shrinkage during the fibrinogen-to-fibrin conversion. The presence of collagen
had a minor influence on the rheological properties of the gels. Electron microscopy allowed for
observation of collagen fibers within the fibrin network. 2D cultures of C2C12 myoblasts on mixed
gels revealed that the presence of collagen favors proliferation and local alignment of the cells.
However, it interferes with cell differentiation and myotube formation, suggesting that further control
of in-gel collagen self-assembly is required to elaborate fully functional biomaterials.

Keywords: hydrogels; fibrin; collagen

1. Introduction

After injury, the vascular wall is ruptured, and fibrinogen reacts with thrombin to form
a fibrin clot that entraps red blood cells and activated platelets [1]. There are many factors
influencing the formation of fibrin clots, such as protein and enzyme concentration, pH,
temperature, ionic strength and calcium amount [2,3]. Factor XIII provides covalent bonds
between chains of adjacent fibrin molecules, which increase the fiber thickness, promote
red blood cell retention and slows down clot lysis [4]. In vitro, in the absence of factor XIII,
fibrin hydrogels usually show fast biodegradability and low storage modulus values [5,6].
There are many approaches to solve these problems, such as increasing fibrinogen and
thrombin concentration [7,8], adding chemical cross-linkers [9,10] or mixing fibrinogen
with particles or other polymers to form composite hydrogels [11–16].

Type I collagen is the major component of most extracellular matrices and plays an
important role in the design of biomaterials [17–20]. Its mechanical properties and rate
of biodegradation can be tuned to optimize its application in tissue engineering [21–24].
Fibrin-type I collagen hydrogels have already been well studied and have shown promising
applications in tissue engineering, especially in the cardiovascular area [25–29]. Several
methods have been developed to prepare fibrin-collagen hydrogels starting from protein
mixtures [30]. In most cases, collagen, fibrinogen and thrombin are mixed at low tem-
perature in the presence of a neutralizing medium (a base or a buffer), and gel formation
is achieved after incubation at 37 ◦C. However, the two protein networks grow almost
independently and establish only weak interactions within the mixed structure [31]. More-
over, such a protocol is not compatible with the use of solutions of high concentrations
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of collagen that are very viscous and, therefore, difficult to neutralize homogeneously by
solution routes [32].

Here, looking for an alternative synthetic route to such mixed fibrin-collagen hydrogels,
we turned our attention to the reported ability of fibrinogen alone (i.e., without thrombin
addition) to form transparent gels at acidic pH and 37 ◦C [33]. It was shown that these
gels could be further converted into fibrin gels after neutralization and the addition of
thrombin [33]. On this basis, we decided to take advantage of this process to design fibrin-
collagen hydrogels through a new protocol in which collagen and fibrinogen are first mixed
and incubated in acidic pH to allow fibrinogen gel formation, and then a change of pH to
neutral is used to induce collagen gel formation. Finally, fibrinogen to fibrin conversion is
achieved upon thrombin addition. We show that the resulting composite hydrogels consist
of a porous fibrin network incorporating collagen fibers, which have a minor influence on
the rheological properties of the gels. 2D cultures of C2C12 myoblasts suggest that these
cells are able to respond to the presence of collagen domains, favoring their local alignment
and overall proliferation. However, the mixed gels show poor ability to promote myotube
formation, calling for better control of collagen self-assembly within the fibrinogen matrix.

2. Results

Macroscopic images of gel morphology at the different stages of the process are shown
in Figure 1. In the first step, fibrinogen solutions (final concentration = 20 mg.mL−1) mixed
with collagen solutions (final concentration 2.5, 5, or 10 mg.mL−1) or acetic acid buffer at
pH 3.6 were prepared and left at 37 ◦C overnight. All samples formed gels whose turbidity
increased with collagen content (Figure 1a). After washing with citrate buffer (pH 7.2),
fibrin-collagen gels became even whiter (Figure 1b). After incubation in the presence
of thrombin at 37 ◦C overnight, all gels underwent a significant shrinkage, as shown in
Figure 1c. Noticeably, such a shrinkage decreased as collagen concentration increased.

Figure 1. Macroscopic images of at the different stages of the synthetic process: (a) acidic mix-
ture (pH 3.6) left at 37 ◦C overnight, (b) after washing with citrate solution (pH 7.2) to neutral
pH and (c) after incubation with thrombin in citrate at 37 ◦C overnight. Final concentrations:
fibrinogen = 20 mg.mL−1, collagen (from left to right) = 0, 2.5, 5, 10 mg.mL−1.
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Rheological properties of hydrogels were measured using frequency sweep from
0.01 to 100 rad.s−1 with 1% amplitude. All gels exhibited an increase in storage mod-
ulus with increasing frequency (Figure 2). In the presence of thrombin, the addition of
2.5 mg.mL−1 collagen decreased the storage modulus G′ compared to pure fibrin. There
was no obvious difference between pure fibrin and after 5 mg.mL−1 collagen addition,
while 10 mg.mL−1 collagen slightly increased the G′ value compared to pure fibrin. The
loss modulus G′ ′ showed similar evolution as G′.

Figure 2. Variation of storage modulus G′ and loss modulus G′ ′ with angular frequency of the final
fibrin and fibrin-collagen hydrogels.

The structure of hydrogels was studied by scanning electron microscopy (SEM)
(Figure 3) and transmission electron microscopy (Figure 4). From SEM images, the network
obtained for pure fibrin solution looked compact (Figure 3a). Upon collagen addition,
the network became porous, and collagen fibers were easily evidenced at 5 mg.mL−1 and
10 mg.mL−1 collagen concentrations (Figure 3b–d).

TEM images showed that, in the absence of collagen, the gel obtained for pure fibrin
consisted of well-distributed, closely packed small fibers (Figure 4a). With an increasing
amount of collagen, the background network became more and more porous, and the
observation of large fibers exhibiting the characteristic D-banding patterns of collagen were
clearly observed for the highest collagen content (Figure 4b–d).

The first evaluation of the impact of collagen on the ability of fibrin gels to act as a
2D substrate for muscular cell development was performed. C2C12 myoblast cells were
seeded on fibrin and fibrin-collagen gels, and their proliferation was followed by an Alamar
Blue test. Cells grew rapidly in the first four days on all hydrogels, but proliferation was
the highest for fibrin-collagen gels containing 5 and 10 mg.mL−1 collagen and the lowest in
the absence of collagen, with an intermediate value for 2.5 mg.mL−1 collagen (Figure 5).
For the two first samples, a plateau was reached on the sixth day as all the Alamar Blue
reagent had been reduced. For the two other samples, growth continued over 1 week but
was always greater on gels containing 2.5 mg.mL−1 collagen than on pure fibrin gels.

In order to study cell morphology and distribution on the gel surface, cells were
stained with 4′,6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 488 Phalloidin for
visualization of nuclei and actin, respectively, on day 6 (Figure 6). Cells were evenly
distributed on the pure fibrin gel surface (Figure 6a). In the presence of collagen, adhering
cells were distributed into two distinct populations, one reminiscent of the pure fibrin
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substrate (Figure 6b,d,f) while the other adopted a fiber-like organization (Figure 6c,e,g).
With increasing collagen content, these fibers grew in diameter and then exhibited a
branched organization.

Figure 3. SEM images of the fibrin and fibrin-collagen hydrogels: (a) pure fibrin at 20 mg.mL−1;
(b) fibrin 20 mg.mL−1:collagen 2.5 mg.mL−1; (c) fibrin 20 mg.mL−1:collagen 5 mg.mL−1; (d) fibrino-
gen 20 mg.mL−1:collagen 10 mg.mL−1. (scale bar = 2 µm).

Figure 4. TEM images of the fibrin and fibrin-collagen hydrogels: (a) pure fibrin at 20 mg.mL−1;
(b) fibrin 20 mg.mL−1:collagen 2.5 mg.mL−1; (c) fibrin 20 mg.mL−1:collagen 5 mg.mL−1; (d) fibrinogen
20 mg.mL−1:collagen 10 mg.mL−1. (Scale bar = 500 nm). Red arrows indicate collagen fibrils.
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Figure 5. Proliferation of C2C12 cells on fibrin and fibrin-collagen composite gels as monitored by
Alamar Blue test.
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Finally, the differentiation of C2C12 cells growing on the hydrogels was evaluated. 
Myotubes were evidenced by MF20 staining. For pure fibrin gels, myotubes could be ob-
served, but they were rather few and short. In the presence of 10 mg.mL−1 collagen, myo-
tubes were only sparingly identified (Figure 7). 

Figure 6. Fluorescence images of C2C12 cells cultured for 6 days in serum-rich medium on
(a) 20 mg.mL−1 fibrin; (b,c) 20 mg.mL−1 fibrin with 2.5 mg.mL−1 collagen (d,e) 20 mg.mL−1 fibrin
and 5 mg.mL−1 collagen; (f,g) 20 mg.mL−1 fibrin with 10 mg.mL−1 collagen. (Blue: DAPI, green:
Alexa Fluor 488 Phalloidin). (Scale bar = 100 µm).

Finally, the differentiation of C2C12 cells growing on the hydrogels was evaluated.
Myotubes were evidenced by MF20 staining. For pure fibrin gels, myotubes could be
observed, but they were rather few and short. In the presence of 10 mg.mL−1 collagen,
myotubes were only sparingly identified (Figure 7).
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Figure 7. Fluorescence images of C2C12 cells cultured for 4 days in serum-rich and 7 days in low-
serum DMEM on (a) 20 mg.mL−1 fibrin; (b) 20 mg.mL−1 fibrin with 10 mg.mL−1 collagen (Blue:
DAPI, green: Alexa Fluor 488 Phalloidin, red: MF20- Alexa Fluor 546).

3. Discussion

Biopolymer-based hydrogels have found a wide range of applications, especially in
the medical, food and analytical fields [34–36]. In particular, fibrin and type I collagen
are two key proteins in the human body and have therefore been widely used for the
design of biomaterials [6,20]. Their combination within mixed hydrogels has also been
well-described as these two proteins exhibit some complimentary properties [30]. Among
the described protocols, the most common is based on the mixing of collagen, thrombin
and fibrinogen in acidic conditions at 4 ◦C, followed by neutralization and incubation at
37 ◦C [25–27]. However, such protocols were so far used for relatively low concentrated
protein solutions (i.e., <10 mg.mL−1) [30], most likely because of the high viscosities of
concentrated collagen solutions at low temperatures [32]. The recently-reported protocol
that forms fibrinogen gels in acidic conditions and without thrombin addition seemed more
amenable to the prepared mixed gels with high contents of both proteins [33].

The different steps of our new synthetic pathway to elaborate fibrin-collagen mixed
hydrogels are shown in Scheme 1. Fibrinogen and collagen acidic solutions were mixed
first. Upon incubation at 37 ◦C, a fibrinogen gel was formed, whereas collagen should
remain in a triple helix form. Rinsing with a neutral buffer should further allow for
collagen self-assembly. Finally, the addition of thrombin would lead to fibrinogen to
fibrin conversion without impacting the collagen network. Macroscopic images are in
good agreement with this process. In particular, the transition from transparent to turbid
gels upon neutralization, which is all the more marked as collagen concentration is high,
supports the hypothesis that collagen self-assembly occurs within the fibrinogen network.
Moreover, the observed shrinkage upon thrombin addition confirms that fibrinogen is still
able to react with this enzyme.

Scheme 1. Overview of the synthetic pathway to fibrin-collagen hydrogels.
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SEM and TEM images both confirm that collagen fibers were formed within the fibrin
gels. However, they also demonstrate that the presence of collagen impacts the fibrin
network, increasing the average pore size from ca. 100 nm in the absence of collagen to
more than 500 nm in the presence of 5 mg.mL−1 collagen. This agrees with the observation
that gel shrinkage is the highest in the absence of collagen and decreases as collagen
content increases. Whereas a decrease in rheological properties would have been expected
with increasing porosity (i.e., decreasing density), only the smallest collagen concentration
(2.5 mg.mL−1) led to a decrease in the G′ and G′ ′ values compared to pure fibrin gels,
whereas a higher content (5 and 10 mg.mL−1) led to a small but quantifiable increase of these
properties. The most plausible explanation is that collagen fibers may act as reinforcing
elements for the fibrin network and can compensate for increasing porosity when present
in sufficient amounts. The collagen-induced increase in the fibrin network porosity is
difficult to explain at this time. However, it must be noticed that the initial fibrinogen
gel structure is formed in the presence of collagen triple helices. Since both proteins are
positively charged in acidic conditions, it is very likely that collagen molecules are located
within the porosity of the gel, following a phase separation model. Upon neutralization,
collagen molecules must diffuse through the porous network and assemble collectively
to form fibrils, leaving empty (i.e., collagen-free) pores. This hypothesis is strengthened
by the TEM image of the gels containing 10 mg.mL−1 collagen (Figure 4d), showing that
collagen fibers tend to be clustered together rather individually dispersed in the fibrin
network porosity. Noticeably, although the process by which such a clustering occurs is
different, this result is reminiscent of the formation of collagen domains dispersed in fibrin
matrices observed upon neutralization of collagen-fibrinogen-thrombin mixtures [27,31].

To obtain a first evaluation of the potentialities of these mixed hydrogels as biomateri-
als, they were used as substrates for the 2D culture of C2C12 myoblasts. These cells were
selected because type I collagen, as the major component of the extracellular matrix in the
perimysium and epimysium of muscle tissue, plays a significant role in the regulation of
myoblast behaviors [37]. In particular, hydroxyprolyl-glycine, a collagen-derived dipep-
tide, promotes C2C12 myoblast fusion and myotube hypertrophy [38]. In line with our
expectations, the growth rate of the seeded C2C12 increased with collagen content in the
hydrogels. In addition, fluorescence imaging revealed that these cells could locally grow
following a fiber-like organization. Indeed, it is not possible to make a direct correlation
between the collagen fibers observed by SEM, that are below 1 µm in diameter, and the
extent of these cell structures over several microns. However, it is possible to assume that
the alignment of the C2C12 reflects the presence of collagen-rich domains on the gel surface,
as already observed on collagen threads [39]. It must also be pointed out that variations in
pore size should also impact cell adhesion and proliferation [40].

In a further step, the ability of seeded cells to differentiate and form myotubes was
studied. It was noticed that pure fibrin gel obtained by the acidic route yields to fewer and
shorter myotubes compared to fibrin gels obtained using the common neutral pH route,
although C2C12 proliferation rates were similar for both types of gels [13]. This points out
that, although the acidic pathway does allow obtaining fibrin networks, they have distinct
structures and properties from common ones [33]. These differences may impact the ability
of myoblasts to contract and remodel the fibrin network, a key requirement for myotube
formation [41]. Furthermore, the presence of collagen seems not to be beneficial to myotube
formation. Attempts to evaluate the myotube fusion index, i.e., the fraction of nuclei
incorporated in myotubes [42], for mixed gels were unsuccessful due to the low occurrence
of MF20-stained cells. The influence of type I collagen on myoblasts differentiation has
been reported on several occasions, pointing out that it can have either an inhibitory or
a promoting effect, depending strongly on collagen organization and fiber size [43–45].
In particular, it was reported that myoblasts grown on fibrin-collagen hydrogels could form
myotubes on flat substrates but not on threads, evidencing the key role of structure and
topology of such mixed systems [46].
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In summary, we have explored here a new strategy to prepare fibrin-type I collagen
hydrogels at high contents of both proteins. We could successfully achieve collagen fibril-
logenesis within a fibrinogen network and use thrombin to obtain fibrin-based materials.
However, our preliminary cellular studies indicate that a better tuning of collagen self-
assembly is required to obtain mixed hydrogels with controlled architecture. The use of
alternative neutralization pathways, such as using other buffers or an ammonia vapor
treatment [47] or modification of the ionic strength conditions, are promising perspectives
in this direction [48]. Beyond the two specific proteins investigated here, many other
mixed biopolymer materials associating two gelling systems, such as gelatin-agarose [49]
or collagen-chitosan [50], could benefit from the exploration of similar in-gel protocols.

4. Materials and Methods
4.1. Formation of Fibrin-Type I Collagen Hydrogels

Collagen I was extracted from young rat tail tendons, and the final concentration
was estimated by hydroxyproline titration, following published protocols [47,51]. The
formation of mixed hydrogels went through three steps: (a) 500 µL of fibrinogen solution
(40 mg.mL−1) at pH = 3.6 mixed with 500 µL collagen solutions (5, 10, 20 mg.mL−1)
(pH = 3.6) were dispensed in 12 well-plates at 37 ◦C overnight to form the gels; 500 µL of
fibrinogen solution (40 mg.mL−1) at pH = 3.6 was mixed with 500 µL acetic acid (0.5 mM)
was used as control. (b) Citrate buffer solution (20 mM, sodium citrate-HCl, pH 7.2) was
used to wash the gels until a neutral pH was achieved. (c) One milliliter of citrate solution
containing 8 µL of 200 U thrombin was added to each well, and they were further kept at
37 ◦C overnight.

4.2. Rheological Studies

Gels were tested using an MCR 302 rheometer from Anton Paar with a subsequent
frequency sweep from 0.1 to 100 rad.s −1 with 1% amplitude at room temperature. In order
to test all matrices under similar conditions, the gap between the base and the geometry
was chosen before each run so that a slight positive normal force was exerted on the gel
during the measurement.

4.3. Scanning Electron Microscopy (SEM) Analysis

Hydrogels were fixed with 4% paraformaldehyde for 1 h and with 2.5% glutaralde-
hyde in cacodylate buffer for 1 h at 4 ◦C. Progressive dehydration was performed via
successive water/ethanol baths with increasing ethanol content. After drying in supercriti-
cal CO2, samples were coated with a 10 nm gold layer and imaged using a Hitachi S-3400N
microscope operating at 6–10 kV.

4.4. Transmission Electron Microscopy (TEM)

Paraformaldehyde, glutaraldehyde (see above) and osmium tetroxide 4 wt% were used
in sequence to fix the hydrogels. Hydrogels were then dehydrated using water/ethanol
baths with increasing ethanol concentration, progressively impregnated with propylene
oxide and incorporated in araldite resin prior to sectioning (Leica microtome) [52]. Sections
were imaged by TEM on a Tecnai Spirit G2 operating at 120 kV (FEI Company, Eindhoven,
The Netherlands). Images were recorded on a Gatan CCD Orius camera.

4.5. Cell Studies

C2C12 cells were grown in DMEM medium supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin at 37 ◦C in a humidified incubator with 5% CO2
and passaged every 2 days; 1 mL of cell suspension at passage 14 containing 40,000 C2C12
cells were seeded on the pure fibrin and composite hydrogels prepared in 12-well plates.
After 4, 5, 6 and 7 days, the medium was discarded and the Alamar Blue reagent (800 µL of
a 0.1 mg.mL−1 solution, from Thermo Fisher) was added to the wells. After 4 h incubation
at 37 ◦C, absorbance values at 570 nm and 600 nm were measured to obtain the reduction
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percentage of Alamar Blue. After 6 days of culture, gels were fixed with 4% PFA and
cells permeabilized with 0.5% Triton X-100 for 15 min. After several rinsings with PBS
solution, actin filaments were stained with Alexa Fluor 488 phalloidin and nuclei with
4′,6′-Diamidino-2-phenylindole (DAPI) solution.

For differentiation studies, after 4 days of culture, the growth medium (DMEM
medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin)
was replaced by 1 mL of differentiation medium (DMEM supplemented with 2% donor
equine serum, 1% penicillin/streptomycin). After 7 additional days, gel fixation was per-
formed as described above. Staining of myosin heavy chain was performed with MF-20
hybridoma mouse IgG2B primary antibody and Alexa Fluor 546 goat anti-mouse IgG2B
secondary antibody (Invitrogen, Waltham, MA, USA).

Gels were imaged with a fluorescence microscope (Axio Imager D.1, Zeiss, Jena, Germany)
and processed using Image J software (Version 2.1.0/1.53c).
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