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O’Grady conjectured that the Chow group of 0-cycles of the generic fiber of the universal

family over the moduli space of polarized K3 surfaces of genus g is cyclic. This so-

called generalized Franchetta conjecture has been solved only for low genera where

there is a Mukai model (precisely, when g ≤ 10 and g = 12, 13, 16, 18, 20), by the work of

Pavic–Shen–Yin. In this paper, as a non-commutative analogue, we study the Franchetta

property for families of special cubic four-folds (in the sense of Hassett) and relate it

to O’Grady’s conjecture for K3 surfaces. Most notably, by using special cubic four-folds

of discriminant 26, we prove O’Grady’s generalized Franchetta conjecture for g = 14,

providing the first evidence beyond Mukai models.

1 Introduction

For an integer g ≥ 2, let Mg be the moduli stack of genus g curves and π : C → Mg the

universal curve. Franchetta conjectured in [21] that the Picard group of the generic fiber

of π is free cyclic and generated by the relative canonical bundle ωπ . The conjecture can

be equivalently formulated as follows: for any line bundle L on C, the restriction of L to

a fiber Ct := π−1(t), for any t ∈ Mg, is a power of the canonical bundle:

L|Ct
� ω⊗m

Ct
, for some m ∈ Z.
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2 L. Fu and R. Laterveer

Franchetta’s conjecture was proved by Harer [27] (see also [2] and [38]).

1.1 Franchetta for K3 surfaces

In the end of [46], O’Grady proposed an analogue of Franchetta’s conjecture for K3

surfaces. In order to state his conjecture, let us first recall the following seminal result

of Beauville and Voisin [8]. Let CH∗(−) denote the Chow ring.

Theorem 1.1 (Beauville–Voisin). Let S be a projective K3 surface. There exists a

canonical 0-cycle oS ∈ CH2(S), defined as the class of any point lying on some rational

curve in S, satisfying the following properties:

(i) Im
(
CH1(S) ⊗ CH1(S)

·−→ CH2(S)
)

⊂ ZoS.

(ii) c2(TS) = 24oS in CH2(S).

We call the canonical 0-cycle oS the Beauville–Voisin class of the K3 surface S.

The existence of such a canonical class is remarkable, as Mumford proved in [44] that

CH2(S) is infinite dimensional, in the sense that it cannot be parameterized by a scheme

of finite type. The insight of O’Grady is that to generalize Franchetta’s conjecture, the

Beauville–Voisin class for a K3 surface should play the role of the canonical class for a

curve.

Now let us state O’Grady’s conjecture in [46, page 717] precisely. Throughout the

paper, for an integer g ≥ 2, we denote by Fg the moduli stack of primitively polarized

K3 surfaces of genus g, that is, a pair (S, H) of a K3 surface S and a primitive ample line

bundle H on it with degree (H2) = 2g − 2. Let π : S → Fg be the universal family (S is

sometimes denoted by Fg,1 in the literature). For any closed point b ∈ Fg, we denote by

Sb the fiber of π over b. Rational Chow groups of algebraic stacks are defined in [54].

Conjecture 1.2 (O’Grady). For any b ∈ Fg, the Gysin restriction of any cycle

z ∈ CH2(S)Q to the fiber Sb is a multiple of the Beauville–Voisin class, that is,

Im
(
CH2(S)Q → CH2(Sb)Q

)
= QoSb

.

We will refer to this conjecture as the generalized Franchetta conjecture. Note

that by the standard argument of “spreading out” (see e.g., [57, Section 1.1.2]), it is

equivalent to requiring the same property only for a very general point b in Fg.

Conjecture 1.2 is largely open at present. Let us first mention some closely

related results:
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Cubic Fourfolds, K3 and Franchetta Property 3

• Bergeron and Li [10, Theorem 1.2.1] established a cohomological version of

the conjecture: for any z ∈ CH2(S)Q, if it is cohomologically trivial on each

fiber of π , then its cohomology class [z] vanishes on the preimage of a Zariski

open subset of Fg.

• Beauville recently proved in [6] that for any g, there exists a hypersurface

in Fg such that the restricted universal family satisfies the Franchetta

property, in the sense of Definition 2.1 below.

• In a series of joint work with Vial [22–24], we formulated and investigated

the natural extension of Conjecture 1.2 for higher-dimensional hyper-Kähler

varieties, which is proved most notably in the cases of Beauville–Donagi

four-folds [7] and Lehn–Lehn–Sorger–van Straten eight-folds [37] associated

with the universal family of cubic four-folds.

As for Conjecture 1.2 itself, the only known result so far is the following:

Theorem 1.3 (Pavic–Shen–Yin [47]). Conjecture 1.2 is true for 2 ≤ g ≤ 10 and for

g ∈ {12, 13, 16, 18, 20}.

The values of g appearing in the statement are exactly the ones where a so-

called Mukai model is available, and indeed, Theorem 1.3 is proven by exploiting the

projective geometry of those Mukai models. Here, a Mukai model refers to a description

of a general genus g polarized K3 surface as the zero locus of a general section of some

globally generated homogeneous vector bundle over a homogeneous variety. Examples

are double covers of P2 ramified along a sextic curve (for g = 2), quartic surfaces in

P3 (for g = 3), complete intersections of a hyperquadric and a cubic hypersurface in P4

(for g = 4), complete intersections of three hyperquadrics in P5 (for g = 5), complete

intersections of three hyperplanes and a hyperquadric with Gr(2, 5) embedded in P9 via

Plücker (for g = 6), and so on. For more details on the geometric constructions, we refer

to the original papers of Mukai [39, 40, 42, 43], and also to [47, Section 2] for a summary.

Our main result is the following, which provides the first instance of the

generalized Franchetta conjecture 1.2 beyond Mukai models:

Theorem 1.4. Conjecture 1.2 holds for g = 14.

What is probably more interesting than the result is our approach to establish-

ing it. Theorem 1.4 is implied by the combination of Theorem 1.5 and Theorem 1.7 below.

Let us now give a brief account.
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4 L. Fu and R. Laterveer

1.2 Franchetta for special cubic four-folds

Special cubic four-folds were first introduced and studied by Hassett [28]. These are

cubic four-folds X containing a surface R whose class is not proportional to h2, the

square of the hyperplane class. Special cubic four-folds come in families enumerated by

the discriminant d of the sublattice of H4(X,Z) generated by R and h2. The moduli space

of special cubic four-folds of discriminant d is denoted by Cd, which is non-empty and

irreducible when d ≡ 0, 2 (mod 6). For d satisfying an extra numerical condition (∗∗)

(see Section 3.2), a special cubic four-fold X of discriminant d has an associated K3

surface S, such that X and S are related Hodge theoretically ([28]), and it turns out there

are also strong relations between their derived categories [33] [1] and algebraic cycles

(or motives) [14]. All the above is explained in more detail in Section 3.

The proof of Theorem 1.4, which uses special cubic four-folds of discriminant

26, can be summarized as follows. Sending such a cubic four-fold to its (Hodge

theoretically) associated K3 surface gives a birational isomorphism between F14 and

the moduli space C26. Let U be a common Zariski open subset and denote by S and X the

universal families of K3 surfaces and of cubic four-folds, respectively. Our proof splits

into two parts:

Step 1. Produce a relative correspondence over U between S and X and show

that Conjecture 1.2 for S → F14 is equivalent to the Franchetta property (Definition 2.1)

for X → C26.

Step 2. Establish the Franchetta property for X → C26 by using the concrete

geometric characterization of such cubic four-folds due to Farkas–Verra [19] as the ones

containing certain type of scrolls.

The upshot is that although there is no Mukai model for K3 surfaces of genus

14 at our disposal, we have the following replacement that is almost as good: a generic

K3 surface of genus 14 is a moduli space of Bridgeland-stable objects, with certain

isotropic Mukai vector, in the Kuznetsov component of a cubic four-fold that contains

a 3-nodal septic rational scroll.

In this paper, both of the above steps are treated in greater generality. For

Step 1, which is accomplished in Section 3.3, we actually give a strong link between the

Franchetta properties for special cubic four-folds and for the associated K3 surfaces.

Let us state here only the non-technical version. See Theorem 3.4 for a stronger form.

Theorem 1.5. Let d be an integer satisfying the condition (∗∗) (see Section 3.2). Let

g = d
2 +1. If d ≡ 2 (mod 6), then the Franchetta property (Definition 2.1) for the universal

family over Cd is equivalent to the Franchetta property for the universal family over Fg.
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Cubic Fourfolds, K3 and Franchetta Property 5

In view of Step 2, we are led to ask the following question. As cubic four-folds

are considered as non-commutative analogues of K3 surfaces [33], the following can be

seen as a non-commutative version of O’Grady’s generalized Franchetta conjecture 1.2.

Question 1.6. Let d > 6 be an integer ≡ 0 or 2 (mod 6). Does the universal family

X → Cd of special cubic four-folds of discriminant d satisfy the Franchetta property

(Definition 2.1)? That is, for any b ∈ Cd,

Im
(
CH3(X )Q → CH3(Xb)Q

)
?= Qh3. (1)

The left-hand side is often denoted by GDCH3
B(Xb) in this paper.

We answer this question affirmatively in a few cases:

Theorem 1.7. The Franchetta property (1) holds for the universal family of special

cubic four-folds Cd with discriminant d = 8, 14, 20, 26, 38.

Remark 1.8 (Relation with previous results). In Theorem 1.7, the case d = 8 provides a

new proof of Conjecture 1.2 for g = 2; the case d = 14 gives a new proof of Conjecture 1.2

for g = 8 using Theorem 1.5; the case d = 20 has been proven using different methods in

our previous joint work with Vial [24, Lemma 6.3]; the case d = 26 is the principal case,

yielding Theorem 1.4; the case d = 38 is proven using Theorem 1.5 and the g = 20 case of

Conjecture 1.2, demonstrating the flow of information in the reverse direction. Finally,

note that the Franchetta property for the universal family over the whole moduli space

of cubic four-folds can be easily checked (see however [23, Theorem 2] for stronger and

more interesting results).

Potential and limits

Cubic four-folds are instances of the so-called varieties of K3 type (see [24]), which

means an even-dimensional smooth projective variety X whose Hodge numbers

hp,q(X) = 0 for all p �= q except for hm−1,m+1(X) = hm+1,m−1(X) = 1 where 2m = dim(X).

The terminology is justified by the observation that its middle cohomology group

H2m(X,Z), up to a Tate twist, carries a weight-2 Hodge structure of K3 type. Examples

of varieties of K3 type include cubic four-folds, Gushel–Mukai four-folds and six-folds

[15, 16, 34, 39], Debarre–Voisin twenty-folds [17], etc.; see [11] for a recent updated list.

We expect that our approach will lead to further progress on Conjecture 1.2:

whenever a concrete geometric description is discovered for a family of varieties of K3

type whose generic member has an associated K3 surface that is generic in the moduli
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6 L. Fu and R. Laterveer

space Fg, our argument gives access to the generalized Franchetta conjecture for this g.

We view Theorem 1.4 for g = 14, as well as our new proofs for g = 2 and 8 without using

Mukai models (Remark 1.8), merely as the first examples of this approach.

In the past few years, we witnessed a rapid development on the projective

geometry of special cubic four-folds [12, 19, 20, 35, 45, 49], Gushel–Mukai four-folds

[15, 30], and Debarre–Voisin twenty-folds [9]. These achievements will certainly shed

light on the geometry of K3 surfaces in the future.

An initial motivation to construct Mukai models was to prove the unirationality

of the moduli spaces Fg for g taking values as in Theorem 1.3. Recent progress in

this direction is due to Farkas–Verra [19] (for g = 14), Farkas–Verra [20] (for g = 22),

and Hoff–Staglianò [31] (a new proof for g = 11, originally due to Mukai [41]).

Both the arguments in [47] and in the present paper require “parameterizing” K3

surfaces by a flag variety, which in practice always takes the form of a unirational

parameterization.

However, Gritsenko–Hulek–Sankaran [26] showed that Fg is of non-negative

Kodaira dimension, hence not unirational, for g ≥ 41 and g �= 42, 45, 46, 48; see similar

results for moduli spaces of special cubic four-folds in [45, Proposition 1.3] and for

moduli spaces of special Gushel–Mukai four-folds in [48]. Therefore, for a high genus

in this range, some entirely new idea is needed to study the generalized Franchetta

conjecture.

The paper is organized as follows: in Section 2, we collect some basic facts

concerning the Franchetta property. In Section 3, we first recap the theory of special

cubic four-folds and their associated K3 surfaces, then we establish the bridge between

their Franchetta properties, namely, Theorem 1.5 (or rather its more precise version

Theorem 3.4). In the remaining sections, as their titles indicate, we prove Theorem 1.7

case by case and give applications.

Convention:

Throughout the paper, we work over the field of complex numbers C. All Chow groups

and Chow motives are with rational coefficients: for any (possibly singular) variety X

of dimension d we write CHi(X) = CHd−i(X) for the group of i-dimensional algebraic

cycles with Q-coefficients modulo rational equivalence. A lattice means a free abelian

group of finite rank equipped with a symmetric bilinear pairing.
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Cubic Fourfolds, K3 and Franchetta Property 7

2 Franchetta Property and Generically Defined Cycles

To tackle with the generalized Franchetta conjecture, we will need to study this property

beyond the scope of K3 surfaces:

Definition 2.1 (Franchetta property [22, 23]). Let X → B be a smooth projective

morphism between complex varieties (or algebraic stacks). For an integer i ≥ 0, we

say that the family X /B satisfies the Franchetta property for codimension-i cycles, if

for any z ∈ CHi(X )Q and any b ∈ B, the Gysin restriction z|Xb
is rationally equivalent

to zero if and only if its cohomology class [z|Xb
] = 0 in H2i(Xb,Q). If this holds for all i,

we simply say that X /B has the Franchetta property. Again, by spreading out rational

equivalence, it is equivalent to requiring the same property only for very general b ∈ B.

Remark 2.2. Note that there is no implication in either direction between the

Franchetta properties for a family X → B and for a subfamily XB′ → B′, where B′ is

a closed subscheme of B (see [23, page 1]). However, if B′ → B is a dominant morphism,

the Franchetta property of the base-changed family XB′ → B′ implies the Franchetta

property for X → B (see [22, Remark 2.6]); in particular, on can freely replace B by a

non-empty Zariski open subset.

To study the generalized Franchetta conjecture 1.2, or more generally the

Franchetta property (Definition 2.1), it is convenient to introduce the following notion.

Definition 2.3 (Generically defined cycles). let π : X → B be a smooth projective

morphism between complex varieties (or algebraic stacks). Let X be a fiber of π over

a closed point. We define the group of generically defined cycles on X as the following

graded subgroup of CH∗(X):

GDCH∗
B(X) := Im

(
CH∗(X ) → CH∗(X)

)
,

where the morphism is the Gysin restriction map.

Using this notation, the Franchetta property (Definition 2.1) for X /B is equiva-

lent to the injectivity of the cycle class map:

GDCH∗
B(X) → H∗(X,Q),

for all (or equivalently, for very general) fibers X.
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8 L. Fu and R. Laterveer

In [47], a key step is an argument using projective bundles, which is further

generalized in [22, 23] into a stratified version. Here we provide the following variant

allowing base locus, which is the basic tool in our paper.

Proposition 2.4 (Projective bundle argument: with base locus). Let P be a smooth

projective variety and let E be a vector bundle on it. Let Q ⊂ P be a (possibly singular)

closed subvariety. Let

B ⊂ B̄ := PH0(P, E ⊗ IQ)

denote the Zariski open subset parameterizing smooth dimensionally transversal sec-

tions of E vanishing along Q, and let π : X → B denote the universal family of zero loci of

such sections. Assume that B is not empty, and that the sections in H0(P, E⊗IQ) globally

generate E outside of Q. Then for any fiber X of π , we have

GDCH∗
B(X) = Im

(
CH∗(P) → CH∗(X)

) + Im
(
CH∗(Q) → CH∗(X)

)
,

where on the right-hand side, the first morphism is the Gysin restriction map and the

second morphism is the push-forward via the natural closed immersion.

Proof. Let X̄ → B̄ denote the universal family of zero loci of sections. The assumption

that E is globally generated outside of Q by its sections vanishing along Q implies that

the evaluation map X̄ → P restricts to a projective bundle over the open subset P \ Q.

Reasoning with the projective bundle formula as in [47, Lemma 1.1] or [23, Proposition

2.6], this readily gives that

Im
(
CH∗(X̄ \ (Q × B̄)) → CH∗(X \ Q)

) = Im
(
CH∗(P \ Q) → CH∗(X \ Q)

)
.

By the localization exact sequence for Chow groups, this implies that

GDCH∗
B(X) ⊂ Im

(
CH∗(P) → CH∗(X)

) + Im
(
CH∗(Q) → CH∗(X)

)
.

The converse inclusion is obvious. �

The following easy observation abstracts a basic setup that will be repeatedly

used in our proof of Theorem 1.7. In practice, P is some incidence variety in B×T, which

dominates B.
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Cubic Fourfolds, K3 and Franchetta Property 9

Lemma 2.5. Let P, B, T be varieties and let p : P → B and q : P → T be morphisms. Let

π : X → B be a smooth projective morphism. For a point b ∈ B lying in the image of p, let

X := Xb be the fiber of π over b. Then

GDCH∗
B(X) ⊂

⋂
t∈q(p−1(b))

GDCH∗
q−1(t)(X),

where on the right-hand side, X is viewed as a fiber in the base change to P (or rather to

q−1(t)) of the family X /B.

Proof. For any (b, t) ∈ B × T such that p−1(b) ∩ q−1(t) �= ∅, we have, by restricting p, a

morphism q−1(t) → B whose image contains b. Therefore, GDCH∗
B(X) ⊂ GDCH∗

q−1(t)
(X),

where X = Xb. One can conclude by letting t run through q(p−1(b)). �

3 Special Cubic Four-Folds and Associated K3 Surfaces

Let X be a cubic four-fold, that is, a smooth hypersurface of degree 3 in P5. Its

middle cohomology group H4(X,Z) equipped with the intersection pairing is naturally

a unimodular lattice abstractly isometric to I21,2 and, up to a Tate twist, it also

carries a weight-2 Hodge structure of K3 type with Hodge numbers (1, 21, 1). Denote by

h := c1(OX(1)) ∈ H2(X,Z) the hyperplane section class. The h-primitive cohomology

group

H4(X,Z)0 = {h2}⊥

is a Hodge structure of K3 type with Hodge numbers (1, 20, 1), and as a lattice is

isometric to the following cubic lattice:

� := E⊕2
8 ⊕ U⊕2 ⊕ A2,

where E8 is the unique positive definite unimodular even lattice of rank 8, U is the

hyperbolic plane, and A2 is the lattice with intersection form
( 2 −1

−1 2

)
. We can fix

embeddings without loss of generality (such embeddings are unique up to isometries

of I21,2):

h2 ∈ I21,2 and � = {h2}⊥ ⊂ I21,2.

The moduli space of cubic four-folds is denoted by C := |OP5(3)|sm/ PGL6. The

local period domain

�(�) := {
ω ∈ P(� ⊗ C) | ω2 = 0, ω · ω < 0

}
(2)
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10 L. Fu and R. Laterveer

is equipped with a natural action of the group

Õ(�) := {
g ∈ O(�) | ḡ|A�

= idA�

} = {
g̃ ∈ O(I21,2) | g̃(h2) = h2}

,

where A� = �∨/� is the discriminant group of �. The corresponding quotient is called

the global period domain

D := �(�)/Õ(�),

which is a normal and quasi-projective variety by [3]. Sending a cubic four-fold X to its

period H3,1(X), we get the period map C → D, which is shown to be an open immersion

by Voisin [55].

3.1 Special cubics

Denote the subgroup of integral Hodge classes by

H2,2(X,Z) := H2,2(X) ∩ H4(X,Z),

which is also the subgroup of algebraic classes, thanks to the integral Hodge conjecture

proved by Voisin [56].

For a very general cubic four-fold, H2,2(X,Z) = Zh2. Following [28], a cubic four-

fold X is called special, if H2,2(X,Z) is of rank at least two. More precisely, a marked

cubic four-fold is a (special) cubic four-fold together with a primitive embedding of

lattices K ↪→ H2,2(X,Z) from a rank-2 lattice K such that the image contains h2. A

labelled cubic four-fold is a cubic four-fold together with a primitive rank-2 sublattice

K ⊂ H2,2(X,Z) containing h2. Such an embedding (resp. a sublattice) is called a

marking (resp. a labelling), and the determinant of the intersection matrix of K is

called the discriminant of the (marked or labelled) special cubic four-fold. It turns out

([28, Proposition 3.2.4]) that the lattice K, as well as its embedding into I21,2, is deter-

mined by d, up to isometries of I21,2 preserving the class h2. Hence it is conventional to

denote K by Kd, and we can fix without loss of generality the embeddings

h2 ∈ Kd ⊂ I21,2,

�d := K⊥
d ⊂ �.
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Cubic Fourfolds, K3 and Franchetta Property 11

By Hassett [28, Theorem 1.0.1]), for a positive integer d, there exists a special

cubic four-fold of discriminant d if and only if

(∗) d > 6 and d ≡ 0 or 2 (mod 6);

moreover, for such an integer d, the locus of special cubic four-folds of discriminant d

is an irreducible divisor in the moduli space C, denoted by Cd.

The period domains of labelled and marked cubic four-folds of discriminant d

are

Dlab
d = �(�d)/Õ(�, Kd), (3)

Dmar
d = �(�d)/Õ(�d), (4)

where �(�d) is defined similarly as in (2), and Õ(�, Kd) (resp. Õ(�d)) is the subgroup of

elements of Õ(�) that preserves (resp. acts trivially on) the sublattice Kd.

Define the moduli spaces of marked and labelled cubic four-folds of discrim-

inant d respectively as Cmar
d := C ×D Dmar

d and Clab
d := C ×D Dlab

d , which are normal

quasi-projective varieties. There are natural morphisms

where the vertical period maps are open immersions, the middle horizonal morphisms

are normalizations, while the left horizontal ones are isomorphisms if d ≡ 2 (mod 6)

and are finite of degree 2 if d ≡ 0 (mod 6) (see [28, Proposition 5.2.1]).

3.2 Associated K3

Given a marked special cubic four-fold (X, Kd ↪→ H2,2(X,Z)) of discriminant d, we say a

polarized K3 surface (S, H) is Hodge-theoretically associated to X if there exists a Hodge

isometry:

H4(X,Z) ⊃ K⊥
d

�−→ H⊥(−1) ⊂ H2(S,Z)(−1),
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12 L. Fu and R. Laterveer

where (−1) is the Tate twist and changes the sign of the quadratic form. Note that by

comparing the discriminant, we have deg(H2) = d, that is, the K3 surface is of genus

g = d
2 + 1.

Hassett [28, Theorem 5.1.3] showed that a special cubic four-fold of discriminant

d has a Hodge-theoretically associated K3 surface if and only if

(∗∗) d satisfies (∗) and d/2 is not divisible by 9 or any prime number p ≡ −1 (mod 3).

Such d’s are called admissible, and the first few values are 14, 26, 38, 42, 62, 74, 78, etc.

On the other hand, following [33], let

Ku(X) := {
E ∈ Db(X) | RHom(OX(i), E) = 0 for i = 0, 1, 2

}
be the Kuznetsov component of (the bounded derived category of coherent sheaves

of) X, which is a 2-Calabi–Yau category. One says that an algebraic K3 surface S is

homologically associated to X if there is an equivalence of triangulated categories:

Ku(X) � Db(S).

Both notions of Hodge-theoretically and homologically associated K3 surfaces

are very much motivated by the rationality problem of cubic four-folds, a topic that we

do not treat in this paper. However, what is important to us is the following relation

between these two notions.

Theorem 3.1 (Addington–Thomas [1, Theorem 1.1], [4, Corollary 1.7]). Let d be an

integer satisfying (∗). Let X ∈ Cd, a special cubic four-fold of discriminant d. The

following conditions are equivalent:

(i) The integer d is admissible, that is, it satisfies the condition (∗∗).

(ii) X has a homologically associated K3 surface: Ku(X) � Db(S) for some

projective K3 surface S.

The arguments in [1] and [4] actually show that assuming (i), there is a polarized

K3 surface of degree d homologically associated to X.

Essentially by taking the characteristic classes of the Fourier–Mukai kernel in

(ii), Bülles [14] established the following relation between the motive of a special cubic

four-fold and the motive of its associated K3 surface. This can be seen as a motivic
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Cubic Fourfolds, K3 and Franchetta Property 13

lifting of the result of Addington and Thomas [1, Theorem 1.2]. See also [25, Theorem 3]

for a different proof resulting in a stronger version taking into account the quadratic

space structure.

Theorem 3.2 (Bülles [14, Theorem 0.4]). Given a special cubic four-fold X ∈ Cd with d

satisfying (∗∗), there exist a polarized K3 surface (S, H) of degree d and an isomorphism

in the category of rational Chow motives CHM:

h(X) � h(S)(−1) ⊕ ⊕ (−2) ⊕ (−4). (5)

In particular, there is an algebraic cycle Z ∈ CH3(X × S), which induces an isomorphism

of rational Chow groups:

CH1(X)hom � CH0(S)hom. (6)

Remark 3.3. The original proof in [14] shows that the cycle Z can be chosen to be the

codimension-3 component of the Mukai vector of the Fourier–Mukai kernel E inducing

the equivalence between Ku(X) and Db(S):

Z = v3(E).

The proof in [25] actually shows that Z′ := v3(ER) gives the inverse of the isomorphism

(6), where ER := E∨ ⊗ p∗
XωX [4] is the Fourier–Mukai kernel of the right adjoint.

3.3 Linking two Franchetta properties

The main purpose of this section is the following result, which for an admissible d,

transforms the generalized Franchetta conjecture 1.2 for K3 surfaces of degree d into

the Franchetta property for marked special cubic four-folds of discriminant d. Denote

by Cmar
d,1 → Cmar

d the universal family of cubic four-folds and by Fg,1 → Fg the universal

family of K3 surfaces.

Theorem 3.4. Let d be an integer satisfying the condition (∗∗). Let g = d
2 + 1.

The Franchetta property for codimension-2 cycles for Fg,1 → Fg is equivalent to the

Franchetta property for codimension 3-cycles for Cmar
d,1 → Cmar

d .

Remark 3.5. Theorem 1.5 is a consequence of Theorem 3.4, since when d ≡ 2 (mod 6),

Cmar
d → Cd is the normalization map, hence does not affect the Franchetta property. On
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14 L. Fu and R. Laterveer

the other hand, if d ≡ 0 (mod 6), then Cmar
d → Cd is of degree 2. Hence by Remark 2.2,

the Franchetta property for Fg implies the Franchetta property for Cd.

To prove Theorem 3.4, it is crucial to adapt Addington–Thomas’ Theorem 3.1 and

Bülles’ Theorem 3.2 into their family version. Let � := E8(−1)⊕2 ⊕ U⊕3 be the K3 lattice.

Let �d := E8(−1)⊕2⊕U⊕2⊕Z(−d) be the abstract lattice underlying the second primitive

cohomology of a polarized K3 surface of degree d. Hassett’s condition (∗∗) mentioned

above is equivalent to the existence of an isometry, up to a sign, between the lattices �d

and �d.

For an integer d satisfying (∗∗), upon fixing an isometry ε : �d
�−→ �d(−1), we

have an induced isomorphism between the period domain of marked special cubic four-

folds of discriminant d and the period domain of polarized K3 surfaces of degree d:

Dmar
d = �(�d)/Õ(�d)

�−→ Nd = �(�d)/Õ(�d),

which gives rise to a birational isomorphism (depending on the choice of ε) between

the moduli space of marked cubic four-folds of discriminant d and the moduli space of

polarized K3 surfaces of genus g := d
2 + 1:

(7)

The rational map φ sends a marked cubic four-fold to its Hodge-theoretically associated

polarized K3 surface.

Let F◦
g be a Zariski open subset of Fg where φ is an isomorphism. The restrictions

over F◦
g of the universal families Cmar

d,1 and Fg,1 are denoted by X → F◦
g and S → F◦

g

respectively.

For a cubic four-fold X, Addington–Thomas [1,Definition 2.2] equipped the

topological K-theory of the Kuznetsov component Ku(X) with a lattice structure via the

Euler pairing, abstractly isometric to the Mukai lattice �̃ := E⊕2
8 ⊕ U⊕4, and a natural

weight-2 Hodge structure of K3 type via the Mukai-vector map:

v : Ktop(Ku(X)) ↪→ H∗(X,Q).

The resulting Mukai lattice of Ku(X), denoted by H̃(Ku(X),Z), always contains the

A2(−1)-lattice 〈λ1, λ2〉, where λi is the class of p(Oline(i)), and p : Db(X) → Ku(X) is the

left adjoint of the inclusion functor Ku(X) ↪→ Db(X). Identifying H̃(Ku(X),Z) with its
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Cubic Fourfolds, K3 and Franchetta Property 15

image via v, the Mukai vectors λi are given explicitly as follows, denoted by the same

notation:

λ1 = 3 + 5

4
h − 7

32
h2 − 77

384
h3 + 41

2048
h4 ;

λ2 = −3 − 1

4
h + 15

32
h2 + 1

384
h3 − 153

2048
h4.

Now for the family X → F◦
g , we have the local system of Mukai lattices over F◦

g .

H := {
H̃(Ku(Xt),Z)

}
t∈F◦

g

Lemma 3.6. There exist sections v, v′, w of the local system H such that they are

fiberwise algebraic and satisfy v2 = 0, v · v′ = 1, v · w = 0, and w2 = −d. (By definition,

a section of a local system is flat and global (i.e., monodromy invariant).

Proof. This is essentially [1, Theorem 3.1]. Indeed, by the definition of Dmar
d in (4), we

see that the monodromy invariant subspace of H∗(X,Q) contains 〈1, h, h2, h3, h4〉 + Kd,

whose inverse image by the Mukai-vector map v, denoted by Ld, is the saturation of

the lattice 〈λ1, λ2〉 ⊕ Zvd, where vd is the generator of the orthogonal complement of

h2 in Kd:

Kd = Zh2 ⊕ Zvd , Ld = 〈λ1, λ2〉 ⊕ Zvd.

All classes in Ld are fiberwise Hodge, hence algebraic. By construction, Ld is a rank 3

primitive sublattice in �̃ of discriminant d such that

� ⊃ K⊥
d =: �d = L⊥

d ⊂ �̃.

By [1, Theorem 3.1, (1) ⇒ (2)], or more directly, by [32, Lemma 1.10, Remark 1.11], there

is an isomorphism

Ld
�−→ U ⊕ Z(−d).

One can then take v, v′ to be the standard basis of U and w to be the generator of Z(−d).

�

Example 3.7. Let us give the explicit formulas of the vectors in the cases g = 14

and 22.
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16 L. Fu and R. Laterveer

• When g = 14, or equivalently d = 26, the monodromy invariant part of the

local system H contains the lattice generated by λ1, λ2 and an extra class τ ,

with the intersection form

λ1 λ2 τ

λ1 −2 1 0

λ2 1 −2 1

τ 0 1 8

(8)

Then we take v = λ1 + 3λ2 + τ , v′ = λ1 and w = 11λ1 + 22λ2 + 7τ .

• When g = 22, or equivalently d = 42, the monodromy invariant part of the

local system H contains the lattice generated by λ1, λ2 and an extra class

τ = v42, with the intersection form

λ1 λ2 τ

λ1 −2 1 0

λ2 1 −2 0

τ 0 0 14

(9)

Then we take v = λ1 + 3λ2 + τ , v′ = λ1 and w = 14λ1 + 28λ2 + 9τ .

Now we can extend Addington–Thomas’ result Theorem 3.1 into the following

family version.

Proposition 3.8. Let d be an integer satisfying (∗∗) and g = d
2 + 1. Let X and S be the

family of cubic four-folds and K3 surfaces over F◦
g as above. Up to replacing F◦

g by a non-

empty Zariski open subset, there exists a relative Fourier–Mukai kernel E ∈ Db(X ×F◦
g
S)

such that for any t ∈ F◦
g , the Fourier–Mukai transform with kernel Et ∈ Db(Xt × St)

induces an equivalence Ku(Xt)
�−→ Db(St).

Proof. A distinguished connected component of the (numerical) stability manifold of

cubic four-folds is constructed in [5]. Let v, v′, w be as in Lemma 3.6. By [4, Theorem

29.4], for a v-generic stability condition σ on X over F◦
g , there is a relative moduli space

Mσ (v) of Bridgeland stable objects in Ku(X /F◦
g) with Mukai vector v, which is (up to

shrinking F◦
g ) a relative projective K3 surface over F◦

g . By the existence of the vector

v′ with v · v′ = 1, this moduli space Mσ (v) is fine. The existence of the vector w with

w2 = d implies that Mσ (v) admits a relative polarization over F◦
g of degree d. We can
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Cubic Fourfolds, K3 and Franchetta Property 17

therefore identify S with Mσ (v). Let E be the universal sheaf. Then the corresponding

Fourier–Mukai transform is an equivalence by [4, Lemma 33.2]. �

We deduce the following family version of Bülles’ result.

Corollary 3.9. Let the notation be as before. Up to shrinking F◦
g , there exist cycles

Z ∈ CH3(X ×F◦
g
S) and Z′ ∈ CH3(S ×F◦

g
X ), with the property that for any t ∈ F◦

g , the

cycles Zt, Z′
t ∈ CH3(Xt × St) induce mutually inverse isomorphisms

CH1(Xt)hom � CH0(St)hom.

Proof. Let E be as in Proposition 3.8 and let ER be the relative Fourier–Mukai kernel of

the right adjoint. Then Theorem 3.2 and Remark 3.3 show that Z := v3(E) and Z′ := v3(ER)

induce fiberwise inverse isomorphisms between CH1(Xt)hom and CH0(St)hom. �

Remark 3.10. By applying the argument (Manin’s identity principle) as in the proof of

[14, Theorem 0.4] to the relative Fourier–Mukai kernel E as well as its right adjoint, we

can also show that there is an isomorphism between h(X ) and h(S)(−1) ⊕ � ⊕ �(−2) ⊕
�(−4), as relative Chow motives over F◦

g .

Proof. of Theorem 3.4 (hence Theorem 1.5) Given a point t ∈ F◦
g , consider the following

commutative diagram where the vertical arrows are Gysin restriction maps:

(10)

Assume first the Franchetta property for Fg,1/Fg. For any α ∈ Im(r1) ∩ CH3(Xt)hom, the

above diagram shows that Zt,∗(α) ∈ CH2(St)hom ∩ Im(r2), hence is zero by assumption.

By Corollary 3.9, Zt,∗ is an isomorphism, thus α = 0 ∈ CH3(Xt), that is, the Franchetta

property is satisfied for Cmar
d,1 /Cmar

d .

Similarly, by using Z′ in Corollary 3.9, one can show that the Franchetta property

for Cmar
d,1 /Cmar

d implies that for Fg,1/Fg. �

Proof of Theorem 1.7 for d = 14, 38. Since 14 and 38 are both ≡ 2 (mod 6), Theorem

1.5 applies. Therefore, the Franchetta property for the universal family over C14 and C38

are equivalent to Conjecture 1.2 for g = 8 and 20, respectively, which are proved in [47].

�

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac102/6582084 by guest on 02 M

ay 2023



18 L. Fu and R. Laterveer

4 Franchetta for C8 and F2

In this section, we first show Theorem 1.7 for d = 8, and then deduce from it a

new proof of Conjecture 1.2 for g = 2. The key is the geometric characterization of

special cubic four-folds of discriminant 8: those are exactly the ones containing a plane

[28, Section 4.1.1].

Consider the following varieties.

B := {
X ⊂ P5 | X is a cubic four-fold containing a plane

}
.

P := {(R, X) | X is a cubic four-fold, R is a plane contained in X} .

We have natural morphisms p : P → B and q : P → Gr(P2,P5) sending a couple (R, X) to

X and R respectively. By construction, p, q are surjective, and the fiber of q over a point

[R] ∈ Gr(P2,P5) parametrizes all the cubic four-folds containing the plane R, which is a

Zariski open subset of PH0(P5, IR ⊗ O(3)) � P45.

Proof of Theorem 1.7 for d = 8. As there is a dominant morphism B → C8, it suffices

to show the Franchetta property for the universal family of cubic four-folds X → B. For

any b ∈ B, denote by Xb the corresponding special cubic four-fold of discriminant 8, and

let R be any plane contained in Xb (for generic b, there is only one plane). It is obvious

(or one uses Lemma 2.5) that

GDCH3
B(Xb) ⊂ GDCH3

BR
(Xb),

where BR ⊂ B is the subfamily of cubic four-folds containing the plane R.

By Proposition 2.4,

GDCH3
BR

(Xb) = Im
(
CH3(P5) → CH3(Xb)

) + Im
(
CH1(R) → CH3(Xb)

) = Qh3 + Ql,

where h is the hyperplane section class and l is the class of a line in R. However, l and

h3 are proportional. Indeed, denoting by i : R ↪→ X and ι : X ↪→ P5 the natural closed

immersions, we have

h3 = ι∗(ι∗(R)) = R · c1(NX/P5) = R · 3h = 3i∗i∗(h) = 3l. (11)

Therefore, GDCH3
B(Xb) = Qh3. �
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Cubic Fourfolds, K3 and Franchetta Property 19

As an application, we provide a proof of the generalized Franchetta conjecture 1.2

for g = 2, which is different from the one in [47] using Mukai models.

Proof of Conjecture 1.2 for g = 2. A generic cubic four-fold X in C8 contains only one

plane, denoted by R. Projecting from R endows the blow-up X ′ := BlR X with a quadric

fibration structure π : X ′ → P2, where the base P2 parameterizes all P3’s containing R,

and the fibers of π are exactly the quadric surfaces that are residual intersections (to

R) of the corresponding P3 with X. The Stein factorization of the relative Hilbert scheme

of lines of π is as follows:

Hilbline(X ′/P2) → S → P2,

where the first map is a P1-fibration and the second map is a double cover. The surface S

is the associated (twisted) K3 surface (see [55, §1], [33]). We identify CH0(Hilbline(X ′/P2))

and CH0(S). Note that there is a natural map i : Hilbline(X ′/P2) → F(X), providing

a uniruled divisor in the Fano variety of lines. By [51, Example 1.5], the following

composition is an isomorphism:

CH0(S) � CH0(Hilbline(X ′/P2)) → CH0(F(X)) → CH1(X),

where the first map is induced by i and the second map is induced by the incidence

variety {(l, x) ∈ F(X) × X | x ∈ l}.
It is clear from the above construction that the isomorphism between CH0(S)

and CH1(X) can be defined generically over the moduli space C8, which admits a

dominant map to F2. Therefore, the Franchetta property for the universal family of cubic

four-folds over C8, which is just proved previously, implies the generalized Franchetta

conjecture 1.2 for F2. �

Remark 4.1 (Twisted K3 surfaces). Recently, Brakkee [13] constructed and studied

moduli spaces of twisted polarized K3 surfaces, as well as their relations with special

cubic four-folds. In particular, the following is shown ([13, page 1475]): let g be a positive

integer such that d = 2g−2 satisfies (∗∗) and d ≡ 2 (mod 6), then for any r not divisible

by 3, there exists a birational isomorphism between the moduli space of special cubic

four-folds Cdr2 and the moduli space Fg[r] of order-r twisted K3 surfaces of genus g. Note

that forgetting the Brauer class gives rise to a natural surjective map Fg[r] → Fg. The

same argument as in Section 3, in particular Theorem 3.4, can be adapted to the twisted
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20 L. Fu and R. Laterveer

case to show that for d and g as before, the Franchetta property for the universal family

over Cdr2 is equivalent to the Franchetta property for the universal family of K3 surfaces

over Fg[r], hence implies the generalized Franchetta conjecture 1.2 for g. Our new proof

of Conjecture 1.2 for g = 2 given above is the special case where g = r = d = 2.

5 Franchetta for C20

The d = 20 case of Theorem 1.7 is already proved in [24, Lemma 6.3] using the

so-called Küchle four-folds of type c7. In this section, we give an alternative proof,

which is very similar to the case d = 8 treated in Section 4. The geometric input is

Hassett’s result [28, Section 4.1.4] that special cubic four-folds of discriminant 20 are

characterized generically as the ones containing a Veronese surface, that is, the image

of the embedding of P2 into P5 via the complete linear system |OP2(2)|. Similarly, as in

Section 4, set

B := {
X ⊂ P5 | X is a cubic four-fold containing a Veronese surface

}
,

T := {
R ⊂ P5 | R is a Veronese surface

}
,

P := {(R, X) | X is a cubic four-fold, R is a Veronese surface contained in X} ,

together with natural surjective morphisms p : P → B and q : P → T.

Proof of Theorem 1.7 for d = 20. Let X → B be the universal family. For any b ∈ B,

denote the fiber by Xb and take a Veronese surface R ⊂ Xb. Let BR ⊂ B be the subvariety

parametrizing cubic four-folds containing R, then

GDCH3
B(Xb) ⊂ GDCH3

BR
(Xb).

As R is cut out by quadrics, for any point x ∈ P5\R, there exists a cubic four-fold

containing R and avoiding x. Hence Proposition 2.4 applies and gives that

GDCH3
BR

(Xb) = Im
(
CH3(P5) → CH3(Xb)

) + Im
(
CH1(R) → CH3(Xb)

) = Qh3 + Ql,

where l is a line in R (so a conic in P5). A similar computation as in (11) gives that

3l = 2h3. Therefore, GDCH3
B(Xb) = Qh3. �
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Cubic Fourfolds, K3 and Franchetta Property 21

6 Franchetta for C26 and F14

In this section, we establish Conjecture 1.2 in the case g = 14. Thanks to Theorem 3.4

(or Theorem 1.5), it is equivalent to proving Theorem 1.7 for d = 26. The key ingredient

in our argument is the following geometric characterization of such special cubic four-

folds generically as the ones containing rational normal scrolls of degree 7 with 3 nodes.

In the sequel, we often simply call such scrolls 3-nodal and septic.

Theorem 6.1 (Farkas–Verra [19]). A generic member X ∈ C26 contains a 2-dimensional

family of 3-nodal septic scrolls, parameterized by a non-empty Zariski open subset of

the Hodge-theoretically associated genus 14 K3 surface of X. Conversely, given a 3-nodal

septic scroll R ⊂ P5, a cubic four-fold containing R is special of discriminant 26.

Another key ingredient is on the defining equations of these scrolls:

Lemma 6.2 (Russo–Staglianò [50]). Let R ⊂ P5 be a generic 3-nodal septic scroll. Then

R is cut out by cubic equations.

Proof. This has been checked in [50, Section 7], cf. item (ii) in Table 1 of loc. cit. Let us

provide some details of the checking procedure using Macaulay2, which was kindly com-

municated to us by Michael Hoff. As in [19, pages 7–8], let C[x0, x1, x2, x3, x4, y0, y1, y2, y3]

be the homogeneous coordinate ring of P8 and let R′ ⊂ P8 be the smooth septic scroll

defined as the locus where the following matrix is of rank ≤ 1, that is, the ideal of R′ is

generated by the 2 × 2 minors of the matrix:

(
x0 x1 x2 x3 y0 y1 y2

x1 x2 x3 x4 y1 y2 y3

)
.

The (5-dimensional) secant variety Sec(R′) ⊂ P8 is defined as the locus where the

following matrix is of rank ≤ 2, that is, the ideal of Sec(R′) is generated by the 3 × 3

minors of the matrix:

⎛⎜⎜⎝
x0 x1 x2 y0 y1

x1 x2 x3 y1 y2

x2 x3 x4 y2 y3

⎞⎟⎟⎠ .
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22 L. Fu and R. Laterveer

Then we choose the following three points on Sec(R′)\R′:

P1 = [1 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 1],

P2 = [1 : 1 : 1 : 1 : 1 : 1 : 2 : 2 : 2],

P3 = [1 : 2 : 4 : 8 : 8 : 8 : 16 : 32 : 64].

The linear projection from P8 ��� P5 from the projective plane spanned by P1, P2, P3

sends R′ to a 3-nodal septic scroll R0 ⊂ P5, whose graded Betti diagram is as follows

(computed by Macaulay2):

1 − − − −
− − − − −
− 13 24 15 3

(12)

This means that the minimal free resolution of the homogeneous coordinate ring of R0

is as follows,

0 → S(−6)⊕3 → S(−5)⊕15 → S(−4)⊕24 → S(−3)⊕13 → S → SR0
→ 0,

where S is the homogeneous coordinate ring of P5.

By upper semi-continuity, the entries of the Betti diagram for a generic 3-nodal

septic scroll R ⊂ P5 are less than or equal to the ones in the above diagram (12). However,

since the alternating sum of entries of each diagonal (i.e., line of 45◦) in the Betti diagram

is determined by the Hilbert polynomial (see [18, Corollary 1.10]), the purity of (12) (i.e.,

there is at most one non-zero entry in each diagonal) implies that the numbers in (12)

are the minimal possible ones. Therefore, any generic 3-nodal septic scroll R has the

same Betti diagram (12).

In other words, the minimal free resolution of the homogeneous coordinate ring

of a generic 3-nodal septic scroll R takes the following form:

0 → S(−6)⊕3 → S(−5)⊕15 → S(−4)⊕24 → S(−3)⊕13 → S → SR → 0.

In particular, one sees that the ideal of R is generated by 13 cubics (with 24 linear

relations). �
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Cubic Fourfolds, K3 and Franchetta Property 23

Let us now consider the following parameter spaces:

T := {
R ⊂ P5 | R is a 3-nodal septic scroll

}
.

B := {
X ⊂ P5 | X is a cubic four-fold containing a 3-nodal septic scroll

}
.

P := {
R ⊂ X ⊂ P5 | X is a cubic four-fold, R ∈ T

}
.

We emphasize that in the above definitions, we do not quotient out by automorphisms,

hence the spaces are some open subsets of certain Hilbert schemes in P5.

Then we have natural morphisms in the following diagram.

(13)

By Theorem 6.1 (combined with [19, Proposition 3.4]), we have the following.

Lemma 6.3. In the above diagram.

(i) The natural map B → C26 is dominant.

(ii) The morphism p is surjective. Its general fibers are Zariski open subsets of

K3 surfaces.

(iii) The morphism q is surjective. Its general fibers are Zariski open subsets

of P12.

Let π : X → B be the universal family of cubic four-folds over B.

Proposition 6.4. For any b ∈ B, let Xb be the fiber of π over b. Then

GDCH3
B(Xb) ⊂

⋂
t∈q(p−1(b))

(
Qh3 + Q�t

)
,

where �t is the class in CH3(Xb) of the ruling of Rt, and Rt is the scroll parameterized by

t ∈ T.
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24 L. Fu and R. Laterveer

Proof. Applying Lemma 2.5 to the diagram (13), we have that for any b ∈ B,

GDCH3
B(Xb) ⊂

⋂
t∈q(p−1(b))

GDCH3
q−1(t)(Xb).

However, q−1(t) parameterizes all cubic four-folds containing Rt, which is an open

subset of PH0(P5,O(3) ⊗ IRt
) � P12. Lemma 6.2 guarantees that for any point outside of

Rt, there is a cubic four-fold containing Rt but not this point. Therefore, Proposition 2.4

implies that

GDCH3
q−1(t)(Xb) = Im

(
CH3(P5) → CH3(Xb)

) + Im
(
CH1(Rt) → CH3(Xb)

)
. (14)

On the right-hand side of (14), the first term is obviously Qh3. As for the second term,

since there is a surjection F1 → Rt (see [19, Section 3]), where F1 = Blo P
2 is the

first Hirzebruch surface, the group CH1(Rt) is at most 2-dimensional, generated by

the restriction h|Rt
and the class �t of the ruling of the scroll. The class h|Rt

, when

pushed-forward to Xb, is h · Rt. To conclude, it suffices to show that h · Rt ∈ CH3(Xb) is

proportional to h3. To this end, let ι : Xb → P5 be the natural inclusion. Then we have

3h · Rt = ι∗ι∗(Rt).

Since ι∗(Rt) = 7H3 ∈ CH3(P5), where H is the hyperplane class of P5, we obtain that

3h · Rt = 7h3. The proof is complete. �

Now we are ready to prove the main results, Theorem 1.4, or equivalently,

Theorem 1.7 for d = 26.

Proof of Theorem 1.7 for d = 26. Since there is a dominant morphism B → C26, it

is enough to show the Franchetta property for codimension-3 cycles for the universal

family of special cubic four-folds π : X → B. Thanks to Proposition 6.4, it suffices to

show that for a general cubic four-fold X of discriminant 26, there exists a 3-nodal

septic scroll R ⊂ X, such that the class of the ruling � of R, viewed as an element in

CH3(X), is proportional to h3.

Let S be the K3 surface that is Hodge-theoretically associated to X. By [19] (see

Theorem 6.1), there is a dense open subset S0 ⊂ S parameterizing the 3-nodal septic

scrolls contained in X. Choose a constant cycle curve C intersecting S0, which is possible
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Cubic Fourfolds, K3 and Franchetta Property 25

because constant cycle curves are Zariski dense in S (see e.g., [58, Lemma 2.3]). For any

t ∈ C∩S0, let Rt be the corresponding scroll in X. Since all rulings of Rt are parameterized

by a rational curve Tt, we can view Tt as a rational curve in the Fano variety of lines

F(X). Therefore, we have well-defined (i.e., independent of t ∈ C) cycle classes L := Lt ∈
CH0(F(X)) and � := P∗(L) ∈ CH3(X), where P ⊂ F(X) × X is the incidence subvariety (i.e.,

the universal projective line).

We claim that the class L ∈ CH0(F(X)) has a 2-dimensional rational orbit.

Indeed, by [28], for d = 26, there is an isomorphism

ϕ : S[2] �−→ F(X)

between the Hilbert square of S and F(X). Since C is a constant cycle curve in S, we have

the following constant cycle surface in S[2]:

W := {z ∈ S[2] | supp(z) = {t}, t ∈ C},

whose image under ϕ gives rise to a constant cycle surface in F(X). To prove the claim,

we only need to see that the points of this constant cycle surface ϕ(W) represent the

class L ∈ CH0(F(X)). To this end, let ρ : S[2] → S(2) be the Hilbert–Chow morphism,

then by the construction of [19], for any t ∈ S, the septic rational curve Tt ⊂ F(X)

parameterizing the rulings of Rt is exactly ϕ(ρ−1(t)), where t is viewed as a point

of the diagonal �S ⊂ S(2). Hence the class of points on ϕ(W) is L. The claim is

proved. In other words, L ∈ S2CH0(F(X)), where S• refers to Voisin’s orbit filtration on

0-cycles [59].

However, thanks to Voisin’s result [59, Proposition 4.5] (or [59, Theorem 2.5]),

we know that S2CH0(F(X)) is one-dimensional, generated by g4, where g is the Plücker

polarization class of F(X). Hence L ∈ Qg4 in CH0(F(X)).

Since the incidence subvariety P in F(X) × X induces a morphism

P∗ : CH0(F(X)) → CH3(X),

which sends g4 to 36h3 (see e.g., [52, Lemma A.4]) and P∗(L) = � by construction, one can

conclude that � ∈ Qh3. In other words, the ruling class �t is a proportional h3 for any

t ∈ C ∩ S0. The proof is complete. �
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7 Franchetta for C14 and F8

The argument in Section 6 can also be applied to give a new proof of Conjecture 1.2 for

g = 8, or equivalently (by Theorem 3.4), the Franchetta property for the universal family

of special cubic four-folds over C14.

Recall that a generic cubic four-fold in C14 is a Pfaffian cubic (see Beauville–

Donagi [7]), namely, a 4-dimensional smooth linear section of the Pfaffian cubic

hypersurface

Pf :=
{

φ ∈ P(

2∧
V) | φ ∧ φ ∧ φ = 0

}
,

where V is a 6-dimensional vector space. The associated K3 surface S is the dual 2-

dimensional linear section of Gr(2, V∨) ⊂ P(
∧2 V∨). The key ingredient is the following

characterization of cubic four-folds in C14 by smooth rational normal quartic scrolls,

simply called quartic scrolls in the sequel, in analogy with Theorem 6.1.

Theorem 7.1 (Hassett [28, 4.1.3], Beauville–Donagi [7, Section 2], Tregub [53]). Let C14

be the moduli space of special cubic four-folds with discriminant 14.

(i) A generic member X in C14 is Pfaffian and contains a quartic scroll and

conversely, a cubic four-fold containing a quartic scroll is in C14.

(ii) A Pfaffian cubic four-fold X contains a two-dimensional family of quartic

scrolls parameterized by the associated K3 surface S. Moreover, there is a

natural isomorphism S[2] � F(X).

Another geometric fact we need is the following, see, for example, [29, §1.4].

Lemma 7.2. A quartic scroll in P5 is cut out by quadric equations.

Proof. In fact, a quartic scroll in P5 can be defined by the 2 × 2 minors of the matrix

(
u v x y

v w y z

)
(15)

where [u : v : w : x : y : z] are the homogeneous coordinates of P5. �
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Proof of Theorem 1.7 for d = 14. Consider

B := {
X ⊂ P5 | X is a Pfaffian cubic four-fold

}
;

T := {
R ⊂ P5 | R is a quartic scroll

}
;

P := {
R ⊂ X ⊂ P5 | X is a cubic four-fold, R ∈ T

}
,

together with natural morphisms p : P → B and q : P → T, which are surjective by

Theorem 7.1 (i). Since B → C14 is dominant, it suffices to show the Franchetta property

for the universal family of cubic four-folds X → B.

Similarly to Proposition 6.4, we first show that

GDCH3
B(Xb) ⊂

⋂
t∈q(p−1(b))

(
Qh3 + Q�t

)
, (16)

where �t ∈ CH3(Xb) of the class of a ruling of the scroll Rt, for any t ∈ T. Indeed,

Lemma 2.5 yields that for any b ∈ B,

GDCH3
B(Xb) ⊂

⋂
t∈q(p−1(b))

GDCH3
q−1(t)(Xb);

while for any t ∈ q(p−1(b)), Lemma 7.2 allows us to apply Proposition 2.4 to obtain that

GDCH3
q−1(t)(Xb) = Im

(
CH3(P5) → CH3(Xb)

) + Im
(
CH1(Rt) → CH3(Xb)

)
.

On the right-hand side, the first term gives Qh3, and the second term is generated by the

push-forward of h|Rt
and �t, since Rt is a rational ruled surface. A similar computation

as in Proposition 6.4 yields that the push-forward of h|Rt
is 4

3h3 in CH1(Xb). The equality

(16) is proved.

It remains to show that for any Pfaffian cubic four-fold X, there exists a quartic

scroll R ⊂ X, such that the class of the ruling � of R, viewed in CH3(X), is proportional

to h3. The argument is as in the proof in Section 6 for the d = 26 case of Theorem 1.7.

Let S be the associated K3 surface. Choose a (sufficiently generic) constant cycle curve

C in S, then the rulings of the scrolls parametrized by t ∈ C (see Theorem 7.1 (ii)) all

represent the same classes L ∈ CH0(F(X)) and � ∈ CH3(X).

The constant cycle curve C gives rise to a constant cycle surface in S[2]:

W := {z ∈ S[2] | supp(z) = {t}, t ∈ C}.
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28 L. Fu and R. Laterveer

Using the isomorphism ϕ : S[2] � F(X) (Theorem 7.1 (ii)), we obtain a constant cycle

surface in F(X). One can check from the explicit construction of the isomorphism ϕ given

in [7, Proposition 5] that the rational curve in F(X) corresponding to the family of rulings

of the scroll Rt parameterized by t ∈ S, is exactly the image under ϕ of ρ−1(t) � P1, where

t is viewed as a point in �S ⊂ S(2) and ρ : S[2] → S(2) is the Hilbert–Chow morphism.

It follows that for any point w ∈ W, the 0-cycle class w ∈ CH0(S[2]) (which does not

depend on w as W is a constant cycle surface) maps via ϕ to L ∈ CH0(F(X)). Therefore,

the class L has 2-dimensional rational orbit, hence must be a multiple of g4 by Voisin

[59, Proposition 4.5]. By [52, Lemma A.4], we conclude that � = P∗(L) is a multiple of h3,

as desired. �

Corollary 7.3. Conjecture 1.2 holds for g = 8.

Proof. By Theorem 1.5, it follows from the Franchetta property for special cubic four-

folds in C14, which has just been proved.

(We remark that instead of appealing to the general result Theorem 1.5, the

second author has established in [36,Corollary 4.4] directly the link between the CH1 of

a Pfaffian cubic four-fold and the CH0 of the associated K3 surface, which is generically

defined. This avoids the use of techniques from derived categories.) �
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