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Abstract: In recent years, the monitoring of compositional data using control charts has been
investigated in the Statistical Process Control field. In this study, we will design a Phase II
Multivariate Exponentially Weighted Moving Average (MEWMA) control chart with variable
sampling intervals to monitor compositional data based on isometric log-ratio transformation.
The Average Time to Signal will be computed based on the Markov chain approach to investigate
the performance of proposed chart. We also propose an optimal procedure to obtain the optimal
control limit, smoothing constant, and out-of-control Average Time to Signal for different shift
sizes and short sampling intervals. The performance of proposed chart in comparison with the
standard MEWMA chart for monitoring compositional data is also provided. Finally, we end
the paper with a conclusion and some recommendations for future research.
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1. INTRODUCTION

In the global competitive economy nowadays, an extremely
important task for manufacturing companies is to not
only offer high-quality products but also reduce waste and
increase efficiency in the production processes. The devel-
opment of advanced technologies in Artificial Intelligence
and Data Science fields makes this task more possible, but
also more challenging when competing with other compa-
nies. Therefore, making a smart decision in manufacturing
becomes a crucial task in any production company. In this
context, early detection of abnormal products as well as
assignable causes to fix the production system as soon as
possible is an indispensable part, and Statistical Control
Process (SPC) is one of the most effective methods to
accomplish this task. Through control charts, SPC helps
manufacturing companies monitor product qualities and
discover the defects in the production lines. In SPC lit-
erature, many studies have been done to design a variety
of control charts for monitoring different types of process
data, see Montgomery 2013. Among these different data,
compositional data (CoDa) are vectors whose components
are strictly positive and they often present the proportions,
percentages, or frequencies of some whole. Their applica-
tions can be found in many domains such as chemical re-
search, econometrics, and the food industry, see Aitchison
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1986. Due to the constraint on the sum of components of
the CoDa vector, it can not be treated as normal data.

In SPC literature, the studies in the control charts for
monitoring CoDa data are still limited. In Boyles 1997, a
chi-squared type control chart for monitoring CoDa data
was proposed. Recently, Vives-Mestres et al. 2014b inves-
tigated a T 2 control chart for monitoring CoDa with p = 3
and then Vives-Mestres et al. 2014a extended the work in
Vives-Mestres et al. 2014b for individual observations case.
Two methods for interpretations of out-of-control signal of
individual T 2

C control chart in case p > 3 was proposed in
Vives-Mestres et al. 2016. In Tran et al. 2017, the authors
proposed a MEWMA-CoDa chart for monitoring CoDa
with arbitrary components. This type of control chart
was shown to be effective in detecting small to moderate
process shift sizes and outperforming its competitor (T 2-
CoDa chart). The influence of measurement errors on the
performance of T 2, MEWMA chart for monitoring CoDa
were investigated in Zaidi et al. 2019 and Zaidi et al.
2020, respectively. In these control charts, the authors sug-
gested using an isometric log-ration (ilr) transformation
to transform CoDa to vector in Rp−1 space to handle the
constraint of CoDa and the average run length (ARL) to
evaluate the performance of proposed control charts.

In the control charts mentioned above, the fixed sampling
interval (FSI) was supposed to use. Recently, the design
of control charts tends to use variable sampling intervals
(VSI). In these charts, the sampling interval between two



consecutive samples is allowed to vary due to the value
of the current control statistic. Many studies on the VSI
control chart have been published so far, see, for example,
Castagliola et al. 2013, and Nguyen et al. 2018, among
many others. As we know, the VSI MEWMA control chart
for monitoring CoDa has not been used. Consequently,
in this study, we propose a VSI MEWMA type control
chart for monitoring CoDa, namely VSI MEWMA-CoDa,
with arbitrary components based on ilr transformation.
The modification of the Markov chain approach proposed
by Lee 2009 will be used to compute average time to signal
(ATS), criteria to access the performance of VSI control
charts.

The rest of this paper is organized as follows: In Section
2, the modeling of CoDa and the suggested isometric log-
ratio transformation are introduced; the VSI MEWMA-
CoDa control chart together with the Markov chain ap-
proach and optimization procedure to find the optimal
parameters are given in Section 3; in Section 4, the per-
formance of the VSI MEWMA-CoDa chart with different
scenarios are provided; conclusions and some recommen-
dations for further researches are given in Section 5.

2. MODELING OF COMPOSITIONAL DATA

By definition, a row vector, x = (x1, x2, . . . , xp), is a p-part
composition when its components are strictly positive and
they carry only relative information, see Aitchison 1986,
Pawlowsky-Glahn et al. 2015. The relative information
here refers only to the proportions between components of
the composition, regardless of their numerical values. The

sum of the components of x,

p∑
i=1

xi, is a constant κ. For

instance, κ = 100 refers to measurements in percentage
while κ = 1 means that the measurements are proportions.
Each composition can be considered as an equivalent class
made of proportional factors since the ratios between
its components do not change when multiplying it by a
positive constant. In this case, if x,y are compositions
and x = λy for some constants λ, we say that x,y are
compositionally equivalent. To check the equivalency of
the two compositions, we can use the closure function C(x),
defined as

C(x) =
(

κ · x1∑p
i=1 xi

,
κ · x2∑p
i=1 xi

, . . . ,
κ · xp∑p
i=1 xi

)
where κ > 0 is a fixed constant; in this definition, two
p-part compositions x,y are compositionally equivalent if
C(x) = C(y). The sample space of CoDa is the simplex,

Sp =
{
x = (x1, x2, . . . , xp) | xi > 0, i = 1, . . . , D;

p∑
i=1

xi = κ
}

In Rp space, we can use Euclidean geometry to add
vectors or multiply vectors by scalar to obtain their
properties or compute their distance. But, due to special
structure of CoDa vectors in Sp, this geometry can not be
applied directly. Aitchison 1986 introduced the Aitchison
geometry, with two operations required for a vector space
structure on Sp: Perturbation and powering operators.
The perturbation ⊕ of x ∈ Sp by y ∈ Sp (equivalent
to the addition in Rp) is defined by

x⊕ y = C(x1y1, . . . , xpyp) ∈ Sp

and the powering ⊙ of x ∈ Sp by a constant α ∈ R
(equivalent to the multiplication by a scalar operation in
the Rp) is defined by

α⊙ x = C(xα
1 , . . . , x

α
p ) ∈ Sp

In practice, CoDa are often transformed to vectors in the
Euclidean space to remove its constraints. The center log-
ratio (clr) transformation of vector x ∈ Sp, clr(x), is an
isometry from Sp to a subspace U ⊂ Rp, defined by

clr(x) =

(
ln

x1

gm(x)
, ln

x2

gm(x)
, . . . , ln

xp

gm(x)

)
= (ξ1, ξ2, . . . , ξp)

where

gm(x) =

(
p∏

i=1

xi

) 1
p

= exp

(
1

p

p∑
i=1

xi

)

is the geometric mean of the composition and

p∑
i=1

ξi = 0.

The inverse center log-ratio clr−1(ξ) recovering x from
ξ = (ξ1, . . . , ξp) is

clr−1(ξ) = C(exp(ξ)) = C(exp(ξ1), exp(ξ2), . . . , exp(ξp)).
Egozcue et al. 2003 showed that the constraint in the
component of clr(x) makes singular the clr(x) variance-
covariance matrix for random composition. To overcome
this drawback, Egozcue et al. 2003 proposed a new trans-
formation which is associated with an orthogonal basis
in Sp, named isometric log-ratio (irl) transformation. Let
e1, e2, . . . , ep−1 be an orthonormal basis of Sp. Any com-
position x ∈ Sp can be expressed as

x =

p−1⊕
i=1

x∗
i ⊙ ei, x∗

i = ⟨x, ei⟩a = ⟨clr(x), clr(ei)⟩

where ⟨, ⟩a denotes the Aitchison inner product. Thus,
the ilr transformation of x ∈ Sp is ilr(x) = x∗ =
(x∗

1, x
∗
2, . . . , x

∗
p−1). Let B be a (p − 1, p) matrix whose ith

row is clr(ei), i = 1, . . . , p − 1. This matrix is known as
a contrast matrix associated with the orthonormal basis
e1, e2, . . . , ep−1. The ilr transformation x∗ of composition
x can be computed by

x∗ = ilr(x) = (x∗
1, . . . , x

∗
p−1) = clr(x) ·B⊺

There are many candidates for an orthonormal basis in Sp.
Egozcue and Pawlowsky-Glahn 2005 proposed a sequential
binary partition to define an orthonormal basis. In this
basis, ei is defined to be C(ei,1, . . . , ei,j , . . . , ei,p) where

ei,j =


exp

(√
1

i(i+ 1)

)
if j ≤ i

exp

(
−
√

i

i+ 1

)
if j = i+ 1

1 otherwise

The elements ei,j are called the balancing elements of this
basis. Thus, if this type of orthonormal basis is chosen to
transform x, i.e., ilr(x) = clr(x) · B⊺, the coordinates x∗

i
are called balances and can be obtained by

x∗
i =

√
i

i+ 1
ln


(∏i

j=1 xj

) 1
i

xi+1

 .



Table 1. An example of ilr transformation in
S4

x1 x2 x3 x4 x∗
1 x∗

2 x∗
3

0.10 0.30 0.50 0.10 -0.78 -0.87 0.78
0.20 0.25 0.20 0.35 -0.16 0.09 -0.42
0.50 0.10 0.20 0.20 1.14 0.09 0.06
0.60 0.05 0.05 0.30 1.76 1.01 -0.83
0.35 0.15 0.10 0.40 0.60 0.68 -0.72
0.20 0.45 0.05 0.30 -0.57 1.46 -0.52

From its ilr coordinate x∗, x can be recovered by using the
inverse of ilr transformation:

ilr−1(x∗) = clr−1(x∗B) = C(exp(x∗B)).

Table 1 illustrates the application of ilr transformation in
practice for the case p = 4. The first 4 columns present the
components of 6 compositions in S4 and the remaining 3
columns present their corresponding ilr coordinates in R3.
As can be seen, these ilr coordinates x∗

i are not constrained
any longer. For more detail on CoDa and its properties,
see Pawlowsky-Glahn et al. 2015.

3. VSI MULTIVARIATE EWMA CONTROL
CHART FOR COMPOSITIONAL DATA

3.1 VSI MEWMA-CoDa control chart

Let us suppose that, at each sampling period i = 1, 2, . . ., a
sample of size n independent p-part composition observa-
tions {Xi,1, . . . ,Xi,n}, Xi,j ∈ Sp, j = 1, . . . , n is collected,
and suppose also that each Xi,j , j = 1, . . . , n, follows a
multivariate normal distributionNSp(µ,Σ) on the simplex
Sp, where µ ∈ Sp is the center of compositions and Σ
is their variance-covariance matrix. Assume that, when
the process is in-control, the composition center is µ0 and
when the process is out-of-control, the composition center
is µ1. The aim of this paper is to design a variable sam-
pling interval MEWMA control chart (denoted by VSI-
MEWMA-CoDa) to monitor the center µ of a p-part com-
positional process. Since CoDa data has a constant con-
straint on its components, the traditional VSI-MEWMA
control chart may not perform well on monitoring this type
of data. In Tran et al. 2017, instead of directly monitoring
the composition center µ, the authors proposed to mon-
itor the mean vector µ∗ = ilr(µ) using a FSI MEWMA
control chart for the sample mean coordinates vector X̄∗

i .
In this study, we will apply the idea of Tran et al. 2017 to
investigate a VSI-MEWMA control chart for monitoring a
compositional process.

Let {X∗
i,1, . . . ,X

∗
i,n} be the corresponding ilr coordinates

of {Xi,1, . . . ,Xi,n}, i.e. X∗
i,j = ilr(Xi,j) ∈ Rp−1. Since

Xi,j follows a multivariate normal distribution NSp(µ,Σ)
on Sp, its corresponding ilr coordinate X∗

i,j follows a

multivariate normal distribution NRp−1(µ∗,Σ∗) on Rp−1,
where µ∗ = ilr(µ) ∈ Rp−1 is the mean vector, Σ∗ is
the (p − 1, p − 1) variance-covariance matrix of the ilr
transformed data. The values of parameters µ∗ and Σ∗

depend on the particular choice of matrix B chosen in
ilr transformation (see Pawlowsky-Glahn et al. 2015 and
section 2). Denote the ilr coordinates of in-control compo-
sition center µ0 and out-of-control composition center µ1

are µ∗
0 and µ∗

1, respectively. The average of n independent
p-part compositional observations is defined by

X̄i =
1

n
⊙ (Xi,1 ⊕ · · · ⊕Xi,n)

then its ilr coordinate X̄∗
i is X̄∗

i = ilr(X̄i) =
1

n
(ilr(Xi,1) +

· · ·+ ilr(Xi,n)) =
1

n
(X∗

i,1 + · · ·+X∗
i,n) ∈ Rp−1.

We first recall the FSI MEWMA-CoDa control chart
proposed by Tran et al. 2017 as follows. Let the MEWMA
vector Wi be

Wi = r(X̄∗
i − µ∗

0) + (1− r)Wi−1, i = 1, 2, . . .

where Y0 = 0, r ∈ (0, 1] is a fixed smoothing parameter.
In FSI MEWMA-CoDa control chart, Tran et al. 2017
suggested to monitor the statistic

Qi = W⊺
i Σ

−1
Wi

Wi, i = 1, 2, . . . (1)

where ΣWi
is the variance-covariance matrix of Wi. In

this work, the asymptotic form of the variance-covariance
matrix ΣWi

ΣWi =
r

n(2− r)
Σ∗

was used to compute the plotted statistic (and it is also
used in our work). An out-of-control signal is issued when
Qi > UCL = H, where H > 0 is chosen to achieve a
specific value of in-control ATS.

In the FSI MEWMA-CoDa control chart, the sampling
interval is a fixed constant hF . As for the VSI MEWMA-
CoDa control chart, based on the current value of Qi, the
time between two successive samples X̄i, X̄i+1 is allowed
to varied. In this chart, the control limit UCL is held
the same as in the FSI chart, and an additional warning
limit w = UWL (0 < UWL < UCL) is introduced to
determine the switch between the long and short sampling
intervals: The long sampling intervals hL is used when the
control statistic Q2

i ≤ UWL2 (safe region) and the short
sampling intervals hS is used when UWL < Q2

i ≤ UCL2

(warning region). An out-of-control signal is issued when
Q2

i > UCL2.

3.2 Markov chain model

Suppose that the occurrence of an assignable cause makes
the in-control composition center µ0 is shifted to µ1,
or equivalently µ∗

0 is shifted to µ∗
1. In this subsection,

we will discuss a method based on the Markov chain
model to compute the average of the zero-state time to
signal (ATS) for the VSI MEWMA-CoDa control chart.
Let ATS0, ATS1 denote the ATS when the process runs
in-control, and out-of-control, respectively. In comparison
with other control charts, it is desirable to design a chart
with smaller ATS1 while their ATS0 are the same. In the
FSI chart, since the sampling interval hF is fixed, we have

ATSFSI = hF ×ARLFSI.

In the VSI chart, since the sampling interval is allowed to
vary, the relation between ATS and ARL would be:

ATSVSI = E(h)×ARLVSI.

where E(h) denote the average sampling interval.

Lowry et al. 1992 showed that the performance of a
MEWMA-X̄ chart is a function of the n, µ∗

0, µ
∗
1 and Σ∗

only through the non-centrality parameter δ where

δ =
√

n(µ∗
1 − µ∗

0)
⊺(Σ∗)−1(µ∗

1 − µ∗
0).



Without loss of generality, we can assume n = 1,
µ∗

0 = 0 (i.e. the in-control composition center is µ0 =

(
1

p
,
1

p
, . . . ,

1

p
)) and Σ∗ = Ip−1 (the identity matrix in

Rp−1). In this case, the statistic Qi in (1) is modified to

Qi = b ∥Wi∥22 with b =
2− r

r
. Consequently, the control

limits UCL and UWL of VSI MEWMA-CoDa are modified
to be

UCL =
√
H/b, UWL =

√
w/b

To calculate the in- and out-of-control ATS of the VSI
MEWMA-X̄ chart, Lee 2009 modified the Markov chain
approach proposed by Runger and Prabhu 1996 to approx-
imate its calculation based on the statistic qi = ∥Wi∥2.
Concerning the in-control case, the one dimensional
Markov chain can be used to approximate ATS. In this

case, the interval [0, UCL′], where UCL′ =
√
H/b, is

divided into m + 1 sub-intervals (states): the first sub-

interval has length
g

2
and the others have length g, where

g =
2UCL′

2m+ 1
. The probability of transition from state i to

state j, denoted by p(i, j), is given by

• for i = 0, 1, . . . ,m and j = 1, 2, . . . ,m,

p(i, j) = P

(( (j − 0.5)g

r

)2
< χ2(p− 1, c)

<
( (j + 0.5)g

r

)2)
where χ2(p − 1, c) denotes a non central chi-square
random variable with p − 1 degrees of freedom and

non-centrality parameter c =

(
(1− r)ig

r

)2

,

• for j = 0,

p(i, 0) = P

(
χ2(p− 1, c) <

( g

2r

)2)
.

Let P1 denote the (m + 1,m + 1) transition probability
matrix corresponding to the transient states with the
elements p(i, j) then the zero-state in-control ATS of the
VSI MEWMA-CoDa control chart is obtained by

ATS = s⊺(Im+1 −P1)
−1h,

where s is the (m + 1)-starting probability vector, i.e.
s = (1, 0, 0, . . . , 0)⊺, h is the (m + 1)-vector of sampling
interval with the ith component hi is defined by

hi =

{
hL if ig ≤ UWL

hS if ig > UWL
.

The expected sampling interval E(h) is calculated by

E(h) =
s⊺(Im+1 −P1)

−1h

s⊺(Im+1 −P1)−11m+1
,

where 1m+1 = (1, 1, . . . , 1)⊺ is the m+ 1 column vector of
1’s.

To calculate the zero-state ATS of VSI MEWMA-CoDa
chart in the out-of-control case, Lee 2009 modified the
two dimensional Markov chain approach which is originally
proposed by Runger and Prabhu 1996. In this approach,
Wi ∈ Rp−1 is partitioned into Wi1 ∈ R with mean δ ̸= 0

and Wi2 ∈ Rp−2 with zero mean. Then, qi = ∥Wi∥2 =√
W 2

i1 +W⊺
i2Wi2.

The transition probability h(i, j) of Wi1 from state i to
state j is used to analyze the out-of-control component.
Applying the Markov chain-based approach with the num-
ber of states of the Markov chain is 2m1 + 1, for i, j =
1, 2, . . . , 2m1 + 1, we have

h(i, j) =Φ

(
−UCL′ + jg1 − (1− r)ci

r
− δ

)
− Φ

(
−UCL′ + (j − 1)g1 − (1− r)ci

r
− δ

)
where Φ denotes the cumulative standard normal distribu-
tion function, ci = −UCL′+(i−0.5)g1 is the center point

of state i with the width of each state g1 =
2UCL′

2m1 + 1
.

Concerning Wi2 component, the transition probability
v(i, j) from state i to state j is used to analyze the
in-control component. In this case, the Markov chain
approach as in in-control case will be applied with p − 2
replacing p − 1. The control region is partitioned into
m2+1 sub-intervals (states) with the width of each states

is g2 =
2UCL′

2m2 + 1
. The transition probability v(i, j) is given

as follows

• for i = 0, 1, 2, . . . ,m2 and j = 1, 2, . . . ,m2

v(i, j) = P

(( (j − 0.5)g2
r

)2
< χ2(p− 2, c)

<
( (j + 0.5)g2

r

)2)
,

where c =

(
(1− r)ig2

r

)2

,

• for j = 0,

v(i, 0) = P

(
χ2(p− 2, c) <

( g2
2r

)2)
Let H denote the (2m1+1, 2m1+1) transition probability
matrix of Wi1 with elements h(i, j), V denote the (m2 +
1,m2 + 1) transition probability matrix of ∥Yi2∥2 with
elements v(i, j), and P2 denote the transition probability
matrix of two dimensional Markov chain. Since Wi1 and
Yi2 are independent, we have P2 = H ⊗ V, where ⊗ is
the Kronecker’s matrices product. Matrix P2 will consist
of the transition probabilities of all transient and some
absorbing states of the Markov chain.

LetT be the (2m1+1,m2+1)- matrix with element T (α, β)
given by

T(α, β) =

{
1 if state (α, β) is transient
0 otherwise

and P be the transition probability matrix containing
only transient states of the Markov chain. Then, we have
P = T(α, β)⊛P2 where symbol ⊛ indicates the element-
wise multiplication of matrices.

Let h be the (2m1+1)·(m2+1) vector of sampling intervals
for the bivariate chain. Lee 2009 defined h to be



h⊺ =
(
(1, 0), . . . , (1,m2), (2, 0), . . . , (2,m2), . . . ,

. . . , (2m1 + 1, 0), . . . , (2m1 + 1,m2)
)

with the element h(i, j) defined by

h(i, j) =

 hL if ai,j ≤ UWL2

hS if UWL2 < ai,j ≤ UCL2

0 otherwise

where ai,j = (i− (m1 + 1))2g21 + j2g22 .

Thus, the zero-sate out-of-control ATS of VSI MEWMA-
CoDa control chart is defined by ATS = s⊺(I − P)−1h
where s is the initial probability vector with the compo-
nent corresponding to state (α, β) = (m1 + 1, 0) is equal
to one and all other components are equal to zero. In case
m1 = m2 = m, Lee and Khoo 2006 showed that the entry
corresponding to the component with value equal to 1 of s
is the (m(m+1)+1)th entry. Concerning the performance
of the program used for the computation of the ATS, we
follow the recommendation in Tran et al. 2017 and decide
to use m1 = m2 = 30.

3.3 Optimization procedure

Assume that the fixed sampling interval in FSI control
charts is to be a time unit, i.e. hF = 1. Hence, ATSFSI

0 =
ARL0. In order to evaluate the performances of VSI
MEWMA-CoDa with its FSI version, we can compare
their out-of-control ATS1 while constraining the same in-
control values of both ATS0 and E0(h) (average sampling
interval). Thus, the VSI MEWMA-CoDa control chart
can be designed by finding the optimal combination of
parameters that minimize the out-of-control ATS1 subject
to the predefined constraint of ATS0 and E0(h).

In general, a fixed couple (hS , hL) is typically used, which
can be chosen from the suggested list as in the work of
Castagliola et al. 2013. However, as discussed in the study
of Nguyen et al. 2018, while hS is quite reasonable to fix, it
seems not practical to fix hL due to the fact that when the
control statistic falls into the central region, the process is
still in safe and the next sampling interval can be flexible to
choose if it does not influence the performance of the chart.
Based on this reason, we follow the suggestion in Nguyen
et al. 2018 to fix the proportion between the UCL and
UWL values. Let R be the number such that UWL = R ·
UCL. When the control limit UCL is determined, the
warning limit UWL can be computed based on the value
of R.

Thus, the optimal design of the VSI MEWMA-CoDa con-
trol chart will consist of searching the optimal parameters
(r,H, hL) which minimize the out-of-control ATS1 for
given shift δ subject to constraints in the in-control ATS0

and E0(h) = 1, i.e,

(r∗, H∗, h∗
L) = argmin

(r,H,hL)

ATS(n, r,H,R, p− 1, δ, hL, hS)

subject to the constraint

{
ATS(n, r∗, H∗, R, p− 1, δ = 0, h∗

L, hS) = ATS0
E0(h) = 1

By fixing the in-control predefined ATS0 value, these
optimal parameters can be obtained by using the two-steps
optimization procedure as follows

(1) Find the set of triples (r,H, hL) such that the in-
control ATS = ATS0 and E0(h) = 1.

(2) Among these feasible triples (r,H, hL), choose (r
∗, H∗)

which provides the smallest out-of-control ATS value
for a particular shift δ in vector µ∗

0.

As noted in Tran et al. 2017, the value of r must not be too
small to avoid unreliable results and the diverging ability
in the Markov Chain approach. In this paper, we fix the
minimal bound to search for the smoothing parameter r to
be 0.05, as recommended in many studies, including Tran
et al. 2017.

4. PERFORMANCE OF THE VSI
MEWMA-CODA CONTROL CHART

In this section, we will compare the performance of the VSI
MEWMA-CoDa chart with the FSI MEWMA-CoDa chart
proposed by Tran et al. 2017. The comparison will be based
on the values of out-of-control ATS1 while constraining
on the same in-control values of both ATS0 and E0(h).
To take advantage of the results from the study of Tran
et al. 2017, save the calculation costs, and simplify the
application in practice, we propose to find the near-optimal
values to the VSI MEWMA-CoDa control chart as follows:

• For each optimal couple (r∗, H∗) in Table 2 in study
of Tran et al. 2017, the value of UWL and hL are
chosen to achieve predefined ATS0 and E0(h),

• After obtaining UWL and hL, together with the
corresponding (r∗, H∗), we compute the ATS1 of VSI
MEWMA-CoDa for specific shift sizes δ and compare
them with ARL1 of FSI MEWMA-CoDa chart (Table
3 in Tran et al. 2017).

The procedure to find the near-optimal values is imple-
mented based on following scenarios:

• n = 1, p = 3, ATS0 = 200, and E0(h) = 1;
• δ ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00};
• hS ∈ {0.1, 0.5}.

The values ARL1 (FSI column) of MEWMA-CoDa and
ATS1 (VSI columns) for some different scenarios are shown

in Table 2. The values of w such that UWL =
√
w/b

and hL to obtain the near-optimal value are also provided
for each scenario. Some remarks can be drawn from this
results as follows

• The VSI MEWMA-CoDa control chart always out-
performs the FSI MEWMA-CoDa control chart in
detecting the process shifts. For example, when δ =
0.25, hS = 0.1, we have ARL1 = 64.6 for FSI
MEWMA-CoDa chart and ATS1 = 56.8 for VSI
MEWMA-CoDa chart,

• The VSI MEWMA-CoDa charts with smaller hS

(hS = 0.1) perform better than the ones with larger
hS (hS = 0.5). For example, when δ = 0.5, we have
ATS1 = 19.9 in case hS = 0.1 and ATS1 = 23.5 in
case hS = 0.5,

• When the shift sizes δ are large (δ ≥ 1.75), the
performance of VSI MEWMA-CoDa chart are still
better than FSI MEWMA-CoDa chart, but not much.



Table 2. Comparison between VSI MEWMA-
CoDa and FSI MEWMA-CoDa charts

δ FSI
hS = 0.1 hS = 0.5

(w, hL) VSI (w, hL) VSI

0.25 64.6 (1.7, 1.6) 56.8 (0.7, 2.1) 63.5
0.50 26.4 (1.7, 1.6) 19.9 (0.9, 1.8) 23.5
0.75 15.1 (1.6, 1.7) 10.4 (1.0, 1.8) 12.9
1.00 9.9 (2.9, 1.3) 6.9 (0.9, 1.8) 8.4
1.25 7.1 (1.6, 1.8) 4.9 (0.9, 2.0) 6.3
1.50 5.4 (3.5, 1.2) 3.7 (0.9, 1.9) 4.8
1.75 4.3 (3.7, 1.2) 3.0 (0.8, 2.1) 4.2
2.00 3.5 (3.6, 1.2) 2.4 (1.1, 1.8) 3.3

5. CONCLUSION

In this paper, we proposed a VSI MEWMA-CoDa control
chart to monitor a normal multivariate random vector
defined as the inverse isometric log-ratio of a p-part com-
position. The optimal procedure to compute the optimal
triple (r∗, H∗, h∗

L) and the ATS values of the proposed
chart for different shift sizes were presented. We also pro-
posed a method to find the near-optimal values for the
VSI MEWMA-CoDa chart to utilize the results in the
study of Tran et al. 2017 and reduce the computation
costs. The numerical performance comparison between the
VSI MEWMA-CoDa chart and standard (FSI) MEWMA-
CoDa control chart in terms of ATS1 (based on the near-
optimal values method) showed that the VSI MEWMA-
CoDa chart always outperforms the standard chart. Future
research on monitoring CoDa could be concentrated on
the extension of the VSI MEWMA-CoDa chart to the
VSI MCUSUM-CoDa chart, or investigating the effect
of measurement error on these charts. The methods to
transform CoDa into normal data before designing these
controls charts are also worthy to focus. Due to the wide
applications of CoDa in the real-life, the online monitoring
of CoDa should be worthy of consideration by researchers
in the SPC field.
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