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INTRODUCTION

In the global competitive economy nowadays, an extremely important task for manufacturing companies is to not only offer high-quality products but also reduce waste and increase efficiency in the production processes. The development of advanced technologies in Artificial Intelligence and Data Science fields makes this task more possible, but also more challenging when competing with other companies. Therefore, making a smart decision in manufacturing becomes a crucial task in any production company. In this context, early detection of abnormal products as well as assignable causes to fix the production system as soon as possible is an indispensable part, and Statistical Control Process (SPC) is one of the most effective methods to accomplish this task. Through control charts, SPC helps manufacturing companies monitor product qualities and discover the defects in the production lines. In SPC literature, many studies have been done to design a variety of control charts for monitoring different types of process data, see Montgomery 2013. Among these different data, compositional data (CoDa) are vectors whose components are strictly positive and they often present the proportions, percentages, or frequencies of some whole. Their applications can be found in many domains such as chemical research, econometrics, and the food industry, see [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF]. Due to the constraint on the sum of components of the CoDa vector, it can not be treated as normal data.

In SPC literature, the studies in the control charts for monitoring CoDa data are still limited. In Boyles 1997, a chi-squared C control chart in case p > 3 was proposed in Vives- [START_REF] Vives-Mestres | Signal Interpretation in Hotelling's T 2 Control Chart for Compositional Data[END_REF][START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF], the authors proposed a MEWMA-CoDa chart for monitoring CoDa with arbitrary components. This type of control chart was shown to be effective in detecting small to moderate process shift sizes and outperforming its competitor (T 2 -CoDa chart). The influence of measurement errors on the performance of T 2 , MEWMA chart for monitoring CoDa were investigated in [START_REF] Zaidi | Performance of the hotelling t2 control chart for compositional data in the presence of measurement errors[END_REF]Zaidi et al. 2020, respectively. In these control charts, the authors suggested using an isometric log-ration (ilr) transformation to transform CoDa to vector in R p-1 space to handle the constraint of CoDa and the average run length (ARL) to evaluate the performance of proposed control charts.

In the control charts mentioned above, the fixed sampling interval (FSI) was supposed to use. Recently, the design of control charts tends to use variable sampling intervals (VSI). In these charts, the sampling interval between two consecutive samples is allowed to vary due to the value of the current control statistic. Many studies on the VSI control chart have been published so far, see, for example, [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF][START_REF] Nguyen | Monitoring the ratio of two normal variables using variable sampling interval ewma control charts[END_REF], among many others. As we know, the VSI MEWMA control chart for monitoring CoDa has not been used. Consequently, in this study, we propose a VSI MEWMA type control chart for monitoring CoDa, namely VSI MEWMA-CoDa, with arbitrary components based on ilr transformation. The modification of the Markov chain approach proposed by Lee 2009 will be used to compute average time to signal (ATS), criteria to access the performance of VSI control charts.

The rest of this paper is organized as follows: In Section 2, the modeling of CoDa and the suggested isometric logratio transformation are introduced; the VSI MEWMA-CoDa control chart together with the Markov chain approach and optimization procedure to find the optimal parameters are given in Section 3; in Section 4, the performance of the VSI MEWMA-CoDa chart with different scenarios are provided; conclusions and some recommendations for further researches are given in Section 5.

MODELING OF COMPOSITIONAL DATA

By definition, a row vector, x = (x 1 , x 2 , . . . , x p ), is a p-part composition when its components are strictly positive and they carry only relative information, see [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF][START_REF] Pawlowsky-Glahn | Modeling and Analysis of Compositional Data[END_REF]. The relative information here refers only to the proportions between components of the composition, regardless of their numerical values. The sum of the components of x, p i=1

x i , is a constant κ. For instance, κ = 100 refers to measurements in percentage while κ = 1 means that the measurements are proportions. Each composition can be considered as an equivalent class made of proportional factors since the ratios between its components do not change when multiplying it by a positive constant. In this case, if x, y are compositions and x = λy for some constants λ, we say that x, y are compositionally equivalent. To check the equivalency of the two compositions, we can use the closure function C(x), defined as

C(x) = κ • x 1 p i=1 x i , κ • x 2 p i=1 x i , . . . , κ • x p p i=1
x i where κ > 0 is a fixed constant; in this definition, two p-part compositions x, y are compositionally equivalent if C(x) = C(y). The sample space of CoDa is the simplex,

S p = x = (x 1 , x 2 , . . . , x p ) | x i > 0, i = 1, . . . , D; p i=1 x i = κ
In R p space, we can use Euclidean geometry to add vectors or multiply vectors by scalar to obtain their properties or compute their distance. But, due to special structure of CoDa vectors in S p , this geometry can not be applied directly. [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF] introduced the Aitchison geometry, with two operations required for a vector space structure on S p : Perturbation and powering operators. The perturbation ⊕ of x ∈ S p by y ∈ S p (equivalent to the addition in R p ) is defined by

x ⊕ y = C(x 1 y 1 , . . . , x p y p ) ∈ S p and the powering ⊙ of x ∈ S p by a constant α ∈ R (equivalent to the multiplication by a scalar operation in the R p ) is defined by α ⊙ x = C(x α 1 , . . . , x α p ) ∈ S p In practice, CoDa are often transformed to vectors in the Euclidean space to remove its constraints. The center logratio (clr) transformation of vector x ∈ S p , clr(x), is an isometry from S p to a subspace U ⊂ R p , defined by clr(x) = ln

x 1 g m (x)

, ln x 2 g m (x) , . . . , ln x p g m (x) = (ξ 1 , ξ 2 , . . . , ξ p ) where

g m (x) = p i=1 x i 1 p = exp 1 p p i=1 x i
is the geometric mean of the composition and

p i=1 ξ i = 0.
The inverse center log-ratio clr -1 (ξ) recovering [START_REF] Egozcue | Isometric logratio transformations for compositional data analysis[END_REF] showed that the constraint in the component of clr(x) makes singular the clr(x) variancecovariance matrix for random composition. To overcome this drawback, [START_REF] Egozcue | Isometric logratio transformations for compositional data analysis[END_REF] proposed a new transformation which is associated with an orthogonal basis in S p , named isometric log-ratio (irl) transformation. Let e 1 , e 2 , . . . , e p-1 be an orthonormal basis of S p . Any composition x ∈ S p can be expressed as

x from ξ = (ξ 1 , . . . , ξ p ) is clr -1 (ξ) = C(exp(ξ)) = C(exp(ξ 1 ), exp(ξ 2 ), . . . , exp(ξ p )).
x = p-1 i=1 x * i ⊙ e i , x * i = ⟨x, e i ⟩ a = ⟨clr(x), clr(e i )⟩
where ⟨, ⟩ a denotes the Aitchison inner product. Thus, the ilr transformation of x ∈ S p is ilr(x) = x * = (x * 1 , x * 2 , . . . , x * p-1 ). Let B be a (p -1, p) matrix whose i th row is clr(e i ), i = 1, . . . , p -1. This matrix is known as a contrast matrix associated with the orthonormal basis e 1 , e 2 , . . . , e p-1 . The ilr transformation x * of composition x can be computed by

x * = ilr(x) = (x * 1 , . . . , x * p-1 ) = clr(x) • B ⊺ There are many candidates for an orthonormal basis in S p . Egozcue and Pawlowsky-Glahn 2005 proposed a sequential binary partition to define an orthonormal basis. In this basis, e i is defined to be C(e i,1 , . . . , e i,j , . . . , e i,p ) where

e i,j =                exp 1 i(i + 1) if j ≤ i exp - i i + 1 if j = i + 1 1 otherwise
The elements e i,j are called the balancing elements of this basis. Thus, if this type of orthonormal basis is chosen to transform x, i.e., ilr(x) = clr(x) • B ⊺ , the coordinates x * i are called balances and can be obtained by From its ilr coordinate x * , x can be recovered by using the inverse of ilr transformation:

x * i = i i + 1 ln    i j=1 x j 1 i x i+1    .
ilr -1 (x * ) = clr -1 (x * B) = C(exp(x * B))
. Table 1 illustrates the application of ilr transformation in practice for the case p = 4. The first 4 columns present the components of 6 compositions in S 4 and the remaining 3 columns present their corresponding ilr coordinates in R 3 . As can be seen, these ilr coordinates x * i are not constrained any longer. For more detail on CoDa and its properties, see Pawlowsky-Glahn et al. 2015.

VSI MULTIVARIATE EWMA CONTROL

CHART FOR COMPOSITIONAL DATA

VSI MEWMA-CoDa control chart

Let us suppose that, at each sampling period i = 1, 2, . . ., a sample of size n independent p-part composition observations {X i,1 , . . . , X i,n }, X i,j ∈ S p , j = 1, . . . , n is collected, and suppose also that each X i,j , j = 1, . . . , n, follows a multivariate normal distribution N S p (µ, Σ) on the simplex S p , where µ ∈ S p is the center of compositions and Σ is their variance-covariance matrix. Assume that, when the process is in-control, the composition center is µ 0 and when the process is out-of-control, the composition center is µ 1 . The aim of this paper is to design a variable sampling interval MEWMA control chart (denoted by VSI-MEWMA-CoDa) to monitor the center µ of a p-part compositional process. Since CoDa data has a constant constraint on its components, the traditional VSI-MEWMA control chart may not perform well on monitoring this type of data. In [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF], instead of directly monitoring the composition center µ, the authors proposed to monitor the mean vector µ * = ilr(µ) using a FSI MEWMA control chart for the sample mean coordinates vector X * i . In this study, we will apply the idea of [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF] to investigate a VSI-MEWMA control chart for monitoring a compositional process.

Let {X * i,1 , . . . , X * i,n } be the corresponding ilr coordinates of {X i,1 , . . . , X i,n }, i.e. X * i,j = ilr(X i,j ) ∈ R p-1
. Since X i,j follows a multivariate normal distribution N S p (µ, Σ) on S p , its corresponding ilr coordinate X * i,j follows a multivariate normal distribution N R p-1 (µ * , Σ * ) on R p-1 , where µ * = ilr(µ) ∈ R p-1 is the mean vector, Σ * is the (p -1, p -1) variance-covariance matrix of the ilr transformed data. The values of parameters µ * and Σ * depend on the particular choice of matrix B chosen in ilr transformation (see Pawlowsky-Glahn et al. 2015 and section 2). Denote the ilr coordinates of in-control composition center µ 0 and out-of-control composition center µ 1 are µ * 0 and µ * 1 , respectively. The average of n independent p-part compositional observations is defined by

Xi = 1 n ⊙ (X i,1 ⊕ • • • ⊕ X i,n ) then its ilr coordinate X * i is X * i = ilr( Xi ) = 1 n (ilr(X i,1 ) + • • • + ilr(X i,n )) = 1 n (X * i,1 + • • • + X * i,n ) ∈ R p-1 .
We first recall the FSI MEWMA-CoDa control chart proposed by [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF] as follows. Let the MEWMA vector W i be W

i = r( X * i -µ * 0 ) + (1 -r)W i-1 , i = 1, 2, .
. . where Y 0 = 0, r ∈ (0, 1] is a fixed smoothing parameter. In FSI MEWMA-CoDa control chart, [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF] suggested to monitor the statistic

Q i = W ⊺ i Σ -1 Wi W i , i = 1, 2, . . . (1 
) where Σ Wi is the variance-covariance matrix of W i . In this work, the asymptotic form of the variance-covariance matrix

Σ Wi Σ Wi = r n(2 -r) Σ *
was used to compute the plotted statistic (and it is also used in our work). An out-of-control signal is issued when

Q i > U CL = H
, where H > 0 is chosen to achieve a specific value of in-control AT S.

In the FSI MEWMA-CoDa control chart, the sampling interval is a fixed constant h F . As for the VSI MEWMA-CoDa control chart, based on the current value of Q i , the time between two successive samples Xi , Xi+1 is allowed to varied. In this chart, the control limit UCL is held the same as in the FSI chart, and an additional warning limit w = U W L (0 < U W L < U CL) is introduced to determine the switch between the long and short sampling intervals: The long sampling intervals h L is used when the control statistic Q 2 i ≤ U W L 2 (safe region) and the short sampling intervals h S is used when U W L < Q 2 i ≤ U CL 2 (warning region). An out-of-control signal is issued when

Q 2 i > U CL 2 .

Markov chain model

Suppose that the occurrence of an assignable cause makes the in-control composition center µ 0 is shifted to µ 1 , or equivalently µ * 0 is shifted to µ * 1 . In this subsection, we will discuss a method based on the Markov chain model to compute the average of the zero-state time to signal (ATS) for the VSI MEWMA-CoDa control chart. Let AT S 0 , AT S 1 denote the ATS when the process runs in-control, and out-of-control, respectively. In comparison with other control charts, it is desirable to design a chart with smaller AT S 1 while their AT S 0 are the same. In the FSI chart, since the sampling interval h F is fixed, we have AT S FSI = h F × ARL FSI . In the VSI chart, since the sampling interval is allowed to vary, the relation between AT S and ARL would be:

AT S VSI = E(h) × ARL VSI . where E(h) denote the average sampling interval. [START_REF] Lowry | A Multivariate Exponentially Weighted Moving Average control chart[END_REF] showed that the performance of a MEWMA-X chart is a function of the n, µ * 0 , µ * 1 and Σ * only through the non-centrality parameter δ where

δ = n(µ * 1 -µ * 0 ) ⊺ (Σ * ) -1 (µ * 1 -µ * 0 ).
Without loss of generality, we can assume n = 1, µ * 0 = 0 (i.e. the in-control composition center is µ

0 = ( 1 p , 1 p , . . . , 1 p 
)) and Σ * = I p-1 (the identity matrix in R p-1 ). In this case, the statistic Q i in (1) is modified to

Q i = b ∥W i ∥ 2 2 with b = 2 -r r
. Consequently, the control limits UCL and UWL of VSI MEWMA-CoDa are modified to be U CL = H/b, U W L = w/b To calculate the in-and out-of-control ATS of the VSI MEWMA-X chart, Lee 2009 modified the Markov chain approach proposed by Runger and Prabhu 1996 to approximate its calculation based on the statistic

q i = ∥W i ∥ 2 .
Concerning the in-control case, the one dimensional Markov chain can be used to approximate ATS. In this case, the interval [0, U CL ′ ], where U CL ′ = H/b, is divided into m + 1 sub-intervals (states): the first subinterval has length g 2 and the others have length g, where

g = 2U CL ′ 2m + 1
. The probability of transition from state i to state j, denoted by p(i, j), is given by • for j = 0,

• for i = 0, 1, . . . , m and j = 1, 2, . . . , m, p(i, j) = P (j -0.5)g r 2 < χ 2 (p -1, c) < (j + 0.5)g r
p(i, 0) = P χ 2 (p -1, c) < g 2r 2 .
Let P 1 denote the (m + 1, m + 1) transition probability matrix corresponding to the transient states with the elements p(i, j) then the zero-state in-control AT S of the VSI MEWMA-CoDa control chart is obtained by

AT S = s ⊺ (I m+1 -P 1 ) -1 h,
where s is the (m + 1)-starting probability vector, i.e. s = (1, 0, 0, . . . , 0) ⊺ , h is the (m + 1)-vector of sampling interval with the i th component h i is defined by

h i = h L if ig ≤ U W L h S if ig > U W L .
The expected sampling interval E(h) is calculated by

E(h) = s ⊺ (I m+1 -P 1 ) -1 h s ⊺ (I m+1 -P 1 ) -1 1 m+1
,

where 1 m+1 = (1, 1, . . . , 1) ⊺ is the m + 1 column vector of 1's.

To calculate the zero-state ATS of VSI MEWMA-CoDa chart in the out-of-control case, Lee 2009 modified the two dimensional Markov chain approach which is originally proposed by Runger and Prabhu 1996. In this approach,

W i ∈ R p-1 is partitioned into W i1 ∈ R with mean δ ̸ = 0 and W i2 ∈ R p-2 with zero mean. Then, q i = ∥W i ∥ 2 = W 2 i1 + W ⊺ i2 W i2 .
The transition probability h(i, j) of W i1 from state i to state j is used to analyze the out-of-control component.

Applying the Markov chain-based approach with the number of states of the Markov chain is 2m 1 + 1, for i, j = 1, 2, . . . , 2m 1 + 1, we have

h(i, j) =Φ -U CL ′ + jg 1 -(1 -r)c i r -δ -Φ -U CL ′ + (j -1)g 1 -(1 -r)c i r -δ
where Φ denotes the cumulative standard normal distribution function, c i = -U CL ′ + (i -0.5)g 1 is the center point of state i with the width of each state

g 1 = 2U CL ′ 2m 1 + 1 .
Concerning W i2 component, the transition probability v(i, j) from state i to state j is used to analyze the in-control component. In this case, the Markov chain approach as in in-control case will be applied with p -2 replacing p -1. The control region is partitioned into m 2 + 1 sub-intervals (states) with the width of each states

is g 2 = 2U CL ′ 2m 2 + 1
. The transition probability v(i, j) is given as follows

• for i = 0, 1, 2, . . . , m 2 and j = 1, 2, . . . , m 2 v(i, j) = P (j -0.5)g 2 r 2 < χ 2 (p -2, c) < (j + 0.5)g 2 r 2
,

where c = (1 -r)ig 2 r 2 , • for j = 0, v(i, 0) = P χ 2 (p -2, c) < g 2 2r 2
Let H denote the (2m 1 + 1, 2m 1 + 1) transition probability matrix of W i1 with elements h(i, j), V denote the (m 2 + 1, m 2 + 1) transition probability matrix of ∥Y i2 ∥ 2 with elements v(i, j), and P 2 denote the transition probability matrix of two dimensional Markov chain. Since W i1 and Y i2 are independent, we have P 2 = H ⊗ V, where ⊗ is the Kronecker's matrices product. Matrix P 2 will consist of the transition probabilities of all transient and some absorbing states of the Markov chain.

Let T be the (2m 1 +1, m 2 +1)-matrix with element T (α, β) given by

T(α, β) = 1 if state (α, β) is transient 0 otherwise
and P be the transition probability matrix containing only transient states of the Markov chain. Then, we have P = T(α, β) ⊛ P 2 where symbol ⊛ indicates the elementwise multiplication of matrices.

Let h be the (2m 1 +1)•(m 2 +1) vector of sampling intervals for the bivariate chain. Lee 2009 defined h to be h ⊺ = (1, 0), . . . , (1, m 2 ), (2, 0), . . . , (2, m 2 ), . . . , . . . , (2m 1 + 1, 0), . . . , (2m 1 + 1, m 2 ) with the element h(i, j) defined by

h(i, j) =    h L if a i,j ≤ U W L 2 h S if U W L 2 < a i,j ≤ U CL 2 0 otherwise
where a i,j = (i -(m 1 + 1)) 2 g 2 1 + j 2 g 2 2 . Thus, the zero-sate out-of-control AT S of VSI MEWMA-CoDa control chart is defined by AT S = s ⊺ (I -P) -1 h where s is the initial probability vector with the component corresponding to state (α, β) = (m 1 + 1, 0) is equal to one and all other components are equal to zero. In case [START_REF] Lee | Optimal statistical design of a multivariate EWMA chart based on ARL and MRL[END_REF] showed that the entry corresponding to the component with value equal to 1 of s is the (m(m + 1) + 1)th entry. Concerning the performance of the program used for the computation of the AT S, we follow the recommendation in [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF] and decide to use m 1 = m 2 = 30.

m 1 = m 2 = m,

Optimization procedure

Assume that the fixed sampling interval in FSI control charts is to be a time unit, i.e. h F = 1. Hence, AT S F SI 0 = ARL 0 . In order to evaluate the performances of VSI MEWMA-CoDa with its FSI version, we can compare their out-of-control AT S 1 while constraining the same incontrol values of both AT S 0 and E 0 (h) (average sampling interval). Thus, the VSI MEWMA-CoDa control chart can be designed by finding the optimal combination of parameters that minimize the out-of-control AT S 1 subject to the predefined constraint of AT S 0 and E 0 (h).

In general, a fixed couple (h S , h L ) is typically used, which can be chosen from the suggested list as in the work of [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF]. However, as discussed in the study of [START_REF] Nguyen | Monitoring the ratio of two normal variables using variable sampling interval ewma control charts[END_REF], while h S is quite reasonable to fix, it seems not practical to fix h L due to the fact that when the control statistic falls into the central region, the process is still in safe and the next sampling interval can be flexible to choose if it does not influence the performance of the chart. Based on this reason, we follow the suggestion in [START_REF] Nguyen | Monitoring the ratio of two normal variables using variable sampling interval ewma control charts[END_REF] to fix the proportion between the UCL and UWL values. Let R be the number such that U W L = R • U CL. When the control limit UCL is determined, the warning limit UWL can be computed based on the value of R.

Thus, the optimal design of the VSI MEWMA-CoDa control chart will consist of searching the optimal parameters (r, H, h L ) which minimize the out-of-control AT S 1 for given shift δ subject to constraints in the in-control AT S 0 and E 0

(h) = 1, i.e, (r * , H * , h * L ) = argmin (r,H,h L ) ATS(n, r, H, R, p -1, δ, h L , h S ) subject to the constraint ATS(n, r * , H * , R, p -1, δ = 0, h * L , h S ) = ATS 0 E 0 (h) = 1
By fixing the in-control predefined AT S 0 value, these optimal parameters can be obtained by using the two-steps optimization procedure as follows (1) Find the set of triples (r, H, h L ) such that the incontrol AT S = AT S 0 and E 0 (h) = 1. (2) Among these feasible triples (r, H, h L ), choose (r * , H * ) which provides the smallest out-of-control AT S value for a particular shift δ in vector µ * 0 . As noted in [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF], the value of r must not be too small to avoid unreliable results and the diverging ability in the Markov Chain approach. In this paper, we fix the minimal bound to search for the smoothing parameter r to be 0.05, as recommended in many studies, including [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF].

PERFORMANCE OF THE VSI MEWMA-CODA CONTROL CHART

In this section, we will compare the performance of the VSI MEWMA-CoDa chart with the FSI MEWMA-CoDa chart proposed by [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF]. The comparison will be based on the values of out-of-control ATS 1 while constraining on the same in-control values of both ATS 0 and E 0 (h). To take advantage of the results from the study of [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF], save the calculation costs, and simplify the application in practice, we propose to find the near-optimal values to the VSI MEWMA-CoDa control chart as follows:

• For each optimal couple (r * , H * ) in Table 2 in study of [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF], the value of UWL and h L are chosen to achieve predefined ATS 0 and E 0 (h), • After obtaining UWL and h L , together with the corresponding (r * , H * ), we compute the ATS 1 of VSI MEWMA-CoDa for specific shift sizes δ and compare them with ARL 1 of FSI MEWMA-CoDa chart (Table 3 in [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF].

The procedure to find the near-optimal values is implemented based on following scenarios:

• n = 1, p = 3, ATS 0 = 200, and E 0 (h) = 1;

• δ ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00};

• h S ∈ {0.1, 0.5}.

The values ARL 1 (FSI column) of MEWMA-CoDa and ATS 1 (VSI columns) for some different scenarios are shown in Table 2. The values of w such that U W L = w/b and h L to obtain the near-optimal value are also provided for each scenario. Some remarks can be drawn from this results as follows

• The VSI MEWMA-CoDa control chart always outperforms the FSI MEWMA-CoDa control chart in detecting the process shifts. For example, when δ = 0.25, h S = 0.1, we have ARL 1 = 64.6 for FSI MEWMA-CoDa chart and ATS 1 = 56.8 for VSI MEWMA-CoDa chart, • The VSI MEWMA-CoDa charts with smaller h S (h S = 0.1) perform better than the ones with larger h S (h S = 0.5). For example, when δ = 0.5, we have ATS 1 = 19.9 in case h S = 0.1 and ATS 1 = 23.5 in case h S = 0.5, • When the shift sizes δ are large (δ ≥ 1.75), the performance of VSI MEWMA-CoDa chart are still better than FSI MEWMA-CoDa chart, but not much. (1.0, 1.8) 12.9 1.00 9.9 (2.9, 1.3) 6.9 (0.9, 1.8) 8.4 1.25 7.1 (1.6, 1.8) 4.9 (0.9, 2.0) 6.3 1.50 5.4 (3.5, 1.2) 3.7 (0.9, 1.9) 

CONCLUSION

In this paper, we proposed a VSI MEWMA-CoDa control chart to monitor a normal multivariate random vector defined as the inverse isometric log-ratio of a p-part composition. The optimal procedure to compute the optimal triple (r * , H * , h * L ) and the ATS values of the proposed chart for different shift sizes were presented. We also proposed a method to find the near-optimal values for the VSI MEWMA-CoDa chart to utilize the results in the study of [START_REF] Tran | Monitoring compositional data using multivariate exponentially weighted moving average scheme[END_REF] and reduce the computation costs. The numerical performance comparison between the VSI MEWMA-CoDa chart and standard (FSI) MEWMA-CoDa control chart in terms of ATS 1 (based on the nearoptimal values method) showed that the VSI MEWMA-CoDa chart always outperforms the standard chart. Future research on monitoring CoDa could be concentrated on the extension of the VSI MEWMA-CoDa chart to the VSI MCUSUM-CoDa chart, or investigating the effect of measurement error on these charts. The methods to transform CoDa into normal data before designing these controls charts are also worthy to focus. Due to the wide applications of CoDa in the real-life, the online monitoring of CoDa should be worthy of consideration by researchers in the SPC field.

  type control chart for monitoring CoDa data was proposed. Recently, Vives-Mestres et al. 2014b investigated a T 2 control chart for monitoring CoDa with p = 3 and then Vives-Mestres et al. 2014a extended the work in Vives-Mestres et al. 2014b for individual observations case. Two methods for interpretations of out-of-control signal of individual T 2
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  where χ 2 (p -1, c) denotes a non central chi-square random variable with p -1 degrees of freedom and non-centrality parameter c = (1 -r)ig r 2 ,

Table 1 .

 1 An example of ilr transformation in S 4

	x 1	x 2	x 3	x 4	x * 1	x * 2	x * 3
	0.10 0.30 0.50 0.10 -0.78 -0.87	0.78
	0.20 0.25 0.20 0.35 -0.16	0.09	-0.42
	0.50 0.10 0.20 0.20	1.14	0.09	0.06
	0.60 0.05 0.05 0.30	1.76	1.01	-0.83
	0.35 0.15 0.10 0.40	0.60	0.68	-0.72
	0.20 0.45 0.05 0.30 -0.57	1.46	-0.52

Table 2 .

 2 Comparison between VSI MEWMA-CoDa and FSI MEWMA-CoDa charts

	δ	FSI	h S = 0.1 (w, h L ) VSI	h S = 0.5 (w, h L ) VSI
	0.25	64.6	(1.7, 1.6)	56.8	(0.7, 2.1)	63.5
	0.50	26.4	(1.7, 1.6)	19.9	(0.9, 1.8)	23.5
	0.75	15.1	(1.6, 1.7)	10.4