
LearningAgainstUncertainty inControl Engineering !

Mazen Alamir a

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble.

Abstract

In this paper, some data-based control design options that can be used to accommodate for the presence of uncertainties in
continuous-state engineering systems are recalled and discussed. Focus is made on reinforcement learning, stochastic model
predictive control and certification via randomized optimization. Some thoughts are also shared regarding the positioning of
the control community in a data and AI-dominated period for which some suggestions and risks are highlighted.
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1 Introduction

Feedback in engineering is all about facing uncertainties
affecting dynamical systems. These uncertainties result
from incomplete knowledge of the dynamics or from non
modeled unpredictable exogenous factors. This is the
reason why, a discussion regarding learning-based tools
and ideas involving uncertainty management in control
should unavoidably operate some necessary choices un-
less it encompasses all the history of control design. This
is because any classical control-related management of
uncertainties can be viewed as specific instantiation of
learning from the measured quantities. Such a choice ex-
plicitly excludes many topics and focuses on others.

Let us face it, the recent burst of the keyword learn-
ing in the control literature is mainly due to two facts,
namely: 1) The recent impressive success stories of Deep
Reinforcement Learning (DRL) in the games area (GO,
Chess, etc.) and since, in many fancy application areas
including painting and Music! and 2) the availability of
easy-to-use and efficient general purpose learning tools
such as scikit-learn [52] and Deep Neural Networks
(DNN) learner tools such as Keras [22] and google’s
tensorflow [1].

Therefore, while RL [13] should be one single topic
among many others on which the above mentioned
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choice has to operate, it is a fact that the unreasonably
over-optimistic 1 expectations and widespread beliefs
regarding the extent to which RL might be successful
without almost no specific a priori knowledge, does
alter in a dramatic way and probably for many years
to come, the state-of-mind of young researchers in the
control engineering community.

That is the reason why, without a (necessarily too
short) balanced discussion towards moderating the ex-
pectations and scope of validity of RL (and especially
model-free RL) in the specific domain of control engi-
neering, no claim involving other options can be even
heard since sentences, like the one below, can always
be used to disqualify any possible realistic and real-life
compatible innovative solution:

Why should I examine any suggestion when
I am told that Reinforcement Learning solves
any problem even without having the slightest
knowledge on the dynamics or any a priori as-
sumption while using exclusively ground-truth
real-life measurements?

Therefore, this paper starts by first recalling briefly what
RL is about in the framework of control systems with
continuous state set under uncertainties (Section 2.1).
Focus is made on the computation issues in the model-
based setting (Section 2.2.1) and then in the model-free
setting (Section 2.2.2). Capitalizing on this recall some

1 To the author’s opinion!
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recent works showing interactions between control and
RL are briefly described in Section 2.3, in particular,
RL-based identification of input/output linearizing state
feedback (Section 2.3.1) as well as control invariance
based framework for safe learning during RL (Section
2.3.2) are discussed. Section 3 explores some scalable
solutions mainly involving a combination of stochastic
MPC, probabilistic certification and clustering. The pa-
per ends with a general discussion regarding some claims
and practices related to data-driven solutions as well as
some humble recommendation regarding the position-
ing of the control community in a data/AI dominated
period.

2 Reinforcement learning? why not? but . . .

2.1 Brief refresher on Reinforcement learning

Consider a discrete-time dynamical system with state
vector x ∈ Rn, control input vector u ∈ Rnu . In the
following reminder and for the sake of homogeneity of
notation throughout the whole scope of the paper, the
cost minimization paradigm is used instead of the reward
maximization that is commonly invoked in the RL liter-
ature. Therefore, it is assumed that a measurable stage
cost ℓ(x, u) is associated to the pair (x, u) being visited
by the controlled system. The result of the integration of
this stage cost over some time interval is assumed to be
an indicator of the quality of the system behavior over
this interval (lower values are better).

The starting point in any control design approach is to
consider the so called sets-of-interest X and U that con-
tain all possible realizations of the state and the input
vectors values. Choosing such sets is definitively not an
easy task but this difficulty is not specific to RL and
materializes in any possible framework.

In its so-called deterministic-policy form [23] 2 , the ob-
jective of RL design is to find an optimal state-feedback
policy π : X → U such that the following cost is mini-
mized [23]:

J(π) :=

!

X
ρπ(x)ℓ(x,π(x))dx (1)

where ρπ(x) stands for the discounted probability den-
sity function of the state under the control strategy π,
namely:

ρπ(x) :=

!

X

∞"

k=1

γk−1p0(s)p(s → x, k,π)ds (2)

2 The slight difference in the various RL forms is not relevant
to the current discussion since the overall assessment and
conclusion remain valid.

which simply sums (with a discount factor γ) the prob-
abilities of all the paths starting at some initial state
s (with probability density p0(s)) and passes through
x after k sampling periods. The probability density of
such an event under the feedback strategy π is denoted
by p(s → x, k,π). The use of probabilities implicitly ac-
knowledges that the underlying controlled system’s dy-
namics is uncertain.

The ambition of RL formulations is to provide a state-
feedback policy π" that is optimal considering the statis-
tics of possible realizations of the system future life-
impacting components (state, uncertainties). This is pre-
cisely what is expressed through the cost function (1)
and this is precisely why RL is (conceptually) viewed as
the perfect answer to the presence of uncertainties in the
controlled systems.

The search for such an optimal policy commonly starts
by choosing some parametrized form, say πθ, of the feed-
back strategy; and to look for an optimal parameter vec-
tor θ" that minimizes the corresponding cost J(πθ) de-
fined by (1). This minimization is commonly performed
using gradient descent in which the gradient of the cost
function w.r.t the design parameter θ is given by [23]:

∇θJ(πθ) =

!

X
ρπθ (x)

#
∇θπθ(x)

$
∇uQ

πθ (x,πθ(x))dx

(3)

= E
%#
∇θπθ(·)

$
∇uQ

πθ (·,πθ(·))
&

(4)

where Qπ(x, u) is the so-called action value function
defined by:

Qπ(x, u) := ℓ(x, u) + E
% ∞"

k=0

γkℓ(xk+1,πθ(xk+1))
&

(5)

under (x0, u0) = (x, u)

Note that the definition (5) of Qπ implies (by the Bell-
man optimality argument) that when the feedback strat-
egy is optimal one gets the so-calledQ-learning equation
characterizing the corresponding optimal action-value
map:

Qπ"

(x, u) = ℓ(x, u) + γmin
v∈U

E
%
Qπ"

(x+, v)
&

(6)

in which the expectation (which differs from the one
involved in the very definition (5) of Qπ itself) refers to
the uncertainties on the prediction of the next state x+.
Equation (6) recalls the Stochastic Dynamic Program-
ming formulation and suggests that the optimal action
value function can also be (at least conceptually) com-
puted by a fixed-point iteration [26,4], namely, using
a current estimation of the map Qπ, one can derive a
corrected version from the evaluation of the r.h.s of (6).
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Note that having the optimal action value map
Q" = Qπ"

enables to derive the optimal policy and the
optimal value function by:

u"(x) := argmin
u∈U

Q"(x, u) ; V ∗(x) = Q"(x,π"(x)) (7)

2.2 The challenges of RL implementation

In this section, the challenges that are associated to the
implementation of the above formulation in the pres-
ence of uncertainties are recalled in two contexts of use,
namely 1) in the presence of uncertain dynamic model
and 2) in the purely data-driven context, called also
model-free RL. Note that the literature on RL involves
a huge amount of possible variants that slightly differ in
many technicalities. For a detailed discussion, the reader
might refer to the excellent recent books [55,51]. The
following necessarily over-simplified presentation simply
helps conveying general messages that, presumably hold
true among the different versions.

2.2.1 In the presence of an uncertain model

When one disposes of an uncertain model in the sense
that x+ can be computed (with uncertainty) from the
knowledge of (x, u), an off-line solution can be an option.

More precisely, for the current value of the policy
parameter θ, the expectation invoked in the r.h.s of (4)
can be approximated via averaging over a cloud of real-
izations of the state. For each state x in this cloud, The
estimation of the value of Q(x,πθ(x)) needs the estima-
tion of the expectation of the integrated cost (5) which
involves model-based simulations in which the sampled
quantity is the realization of the uncertainties for the
current sample of x. The number of samples in these two
averaging processes can be determined following the rec-
ommendations of [59] depending on the targeted qual-
ity of the approximations. Recall that all the above cas-
caded evaluations are to be done to get the evaluation of
the gradient at the current value θ during the gradient-
based optimization process.

This means that even if the gradient descent converges
ultimately to the right solution, this might need a num-
ber of simulations [involved in (5)] that grows exponen-
tially in the state dimension. This is the price to pay if
one would like to stick to the ideal promises of RL which
is to deliver the stochastically optimal state feedback
strategy defined as a function of the state over the set
of interest X.

The discussion above applies to the case where the gradi-
ent approach is used. When an uncertain model is avail-
able, it is also possible to compute the expectation in-

voked in the r.h.s of (6) in order to implement the fixed-
point iteration (since a cloud of x+ realizations can be
computed based on the uncertain model) 3 . In this case,
the curse of dimensionality still applies since the cardi-
nality of the supporting grid in the state space that is
needed to enforce the equality (6) over X increases ex-
ponentially in the state space.

The possibility of simulating the dynamics offers an ob-
vious advantage over model-free design since any pair of
(x, u) can be visited by forcing a simulation that starts
precisely at (x, u). Therefore by extensively usingGraph-
ical Processing Unit (GPU) to perform parallel simula-
tions and by waiting sufficiently long time and provided
that a discrete state setting is considered and assum-
ing that there is no uncertainties 4 , one can achieve very
good sub-optimal solutions. But for continuous state un-
certain systems, this goes rapidly beyond acceptable lim-
its should the original promises of RL be targeted. This is
because not only should any region of the (x, u) continu-
ous space be visited, but it should be visited many times
with different realizations of the uncertainties in order
to compute the associated expectation approximatively.

Therefore, the above discussion can be summarized by
the following statement:

When considering the control related continu-
ous state applications, if the initial ambitious
promises of RL are to be fulfilled, namely com-
puting a stochastically optimal policy over a
continuous set of states, the curse of dimen-
sionality is unavoidable. RL inherits the stan-
dard limitations of Approximate Dynamic Pro-
gramming (ADP). The beauty of the gradient
theorem and the universality of deep neural
networks does not help overcoming this funda-
mental obstacle.

Fact 1

The combination of a faithful model, appropriate ad-hoc
simplifications and choices can be very effective in spe-
cific situations. A recent illustrative example has been
proposed in [36] where an actor/critic RL approach has
been used to design a magnetic control of tokamak plas-
mas. Note however that no specific uncertainty handling
is used although the resulting feedback does show ro-
bustness to non modeled dynamics as in any feedback
control framework.

3 This is sometimes referred to as Q-learning.
4 This can scale up to several days of extensive GPU to
learn a simple ATARI game.
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2.2.2 Model-free setting

The presumed ability of RL schemes to derive state-
feedback policies in the absence of the slightest knowl-
edge of the underlying dynamics has a lot to do with
the high expectation they raise in the minds of many
decision makers, engineers and researchers. In this sec-
tion, the simplest version of model-free implementation
of RL is recalled before we can examine the extent to
which the commonly shared statement regarding model-
free RL are justified.

Note first of all that none of the possibilities invoked in
the previous section applies to the model-free case since
model-based simulations are no more possible meaning
that neither the whole cloud of trajectories involved in
(5) nor even a single step as in (6) can be obtained
through model simulation. Only real-life measurement-
based updating steps can be used. More precisely, the
algorithm can only use the values of triplets of the form:

'
z(i), ℓ(z(i))

(

i∈I
z(i) = (x(i), u(i)) (8)

that are visited by the real system during some data col-
lection experiment or during the system life-time should
a continuous RL adaptation be adopted.

In its simplest form, the model-free RL starts by as-
suming a w-parametrized structureQw(·, ·) of the action
value map and then implements an alternate improve-
ment of the policy πθ and the action-value map Qw ac-
cording to the following updating rule (also referred to
as the actor/critic method):

δ(i) =
%
ℓ(z(i)) + γQw(i)

(z(i+1))
&
−Qw(i)

(z(i)) (9a)

w(i+1) = w(i) − αwδ
(i)
#
∇wQ

w(i)

(z(i))
$

(9b)

θ(i+1) = θ(i) − αθ∇θπθ(x
(i))∇uQ

w(i)

(z(i)) (9c)

where (9b) is a gradient step that intends to update w
(and hence Qw) towards the satisfaction of (6) based
on the error δ(i) on the Bellman equality at the current
iteration i. On the other hand, the updating rule (9c)
implements a gradient step in the policy parameter θ
which aims to decrease the action value map, given its
current estimation at iteration i.

Note however that in order to explore in a sufficiently
relevant manner the space of (x, u) so that the expecta-
tion can be correctly estimated, actions uk that are dif-
ferent from the ones suggested by πθ(xk) should be reg-
ularly applied. The way and the frequency at which the
exploration should be done is still an open and largely
unsolved problem and will probably remain as such for-
ever. This is because only random-like variations can be
applied around the current value u = πθi(x

(i)) + ν(i)

since, In the absence of an underlying dynamical model,

there is strictly no way of knowing what is the correction
ν(i) to be applied in order to force the system to visit a
still unvisited region of the state-action space.

Even discarding this major difficulty, one can easily ad-
mit that for a controlled system with continuous state
and control, a satisfactory exploration is a major issue
to achieve in a reasonable time when the state and the
control dimension go above some very moderate sizes.

Another fundamental limitation stems from the fact
that since only purely experimental data collection is
involved, one can only encounter the realizations of the
uncertainties that are decided by the fate during the
specific interval of time during which data is being col-
lected!. In other words, the outcome of the iterations
of model-free RL depends on an unavoidably limited
set of realizations of the uncertainties that might have
no statistical relevance given the true set of possible
realizations that the original statement of the RL was
intended to explicitly account for.

Beside this structural lack of effective handling of the
uncertainties, there is another drawback that is asso-
ciated to the gradient approach used in (9a)-(9c). In-
deed, not-too-young readers probably still recall these
ancient times where the problem of local minima as-
sociated to the gradient descent methods were largely
acknowledged and largely experimented. It seems how-
ever that the astonishing success 5 of Stochastic Gra-
dient Descent (SGD) in the context of Deep Learning
(DL) induced a collective forgetting of this simple fact.
The recent better understanding of the behavior of SGD
iterations in the context of DL [64] suggests that the
convergence comes from the combination of two facts,
namely: the use of sufficiently large number of hidden
layers leading to an over-parameterization of the under-
lying Deep Neural Network (DNN) on one hand and the
use of SGD on the other hand. Unfortunately, the use of
over-parametrization in the context of model-free con-
trol system design while increasing the probability of
avoiding very bad local minima obviously comes at the
price of much larger required number of real-life itera-
tions making the framework inappropriate in many con-
trol related situations if not in the majority of them.

Last but not least, one must keep in mind that the
model-free approach can only be used for situations
where the problem can be stated in terms that only in-
volve the measured quantities. In many situations, there
are constraints to be handled, or terms in the stage
cost, that involves internal states that are not directly
measured. These components of the state are generally
reconstructed using model-based observers or through

5 Quite often if not always, this success is encountered in
rather non critical applications where committing error is
not fatal for the underlying context. This is almost never the
case in engineering world.
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simulation-based identification of relationships between
the measurement profile and these components [8]. This
is obviously impossible in a totally model-free setting.

Therefore, the above discussion can be summarized by
the following statement:

As far as controlled continuous state sys-
tems are concerned, model-free RL frameworks
rarely achieve the original promises in terms
of uncertainty handling over the state space of
interest. At best, they are possible heuristics
with fragile convergence assessment and weak
statistical relevance. Nevertheless, they can be
quite valuable on a specific set of contexts.

Fact 2

For all the above reasons, only model-based frame-
works are considered in the remainder of this paper.

2.3 Mixing RL & control ingredients

In some recent works, the paradigm of RL is invoked to
solve control specific problems or control-based accom-
modations are used to enable a safe RL. In this section,
we build on the previous recall on RL in order to discuss
representative instances of such works, namely, the RL-
based design of feedback linearization [20,61] and the
Design of safe-learning frameworks [24,21,32].

2.3.1 Learning feedback linearization via RL

Recall that the feedback linearization of a nonlinear dy-
namics ẋ = f(x)+g(x)u amounts to find an output map
y = h(x) and a state feedback πθ(x, v) such that the fol-
lowing equality (11) holds which transforms the nonlin-
ear system into a chain of integrators controlled by v 6 :

y(ν) = Lν
fh(x) + LgL

ν−1
f h(x)πθ(x, v) (10)

= Wθ(x, v) = v (11)

where y(ν) denote the ν-derivative of y while v is a feed-
forward term.

Note that equation (10) holds provided that the relative
degree 7 associated to the output y is equal to ν [35]. This
suggests to use the following definition of the stage cost
as a quality indicator for θ to define a RL framework:

ℓ(x, v, θ) := ‖y(ν) − v‖22 (12)

6 The notation Lfh stands for ∂h
∂x

f , L2
fh = Lf (Lfh), etc.

7 The relative degree associated to an output is the lowest
order of derivation that makes u appear explicitly in the r.h.s
of the corresponding higher derivative’s expression.

which is assumed to be a measured quantity in the re-
lated works [20,61]. Since model-free RL requires only
the measurement of the stage cost ℓ (and the state vector
x! used in πθ(x, v)), the associated schemes can be used
in this context to progressively discover the linearizing
state strategy πθ from real-life experiments.

Similar recent ideas towards learning linearizing feed-
back have been proposed in [58] to achieve event-
triggered learning based on Gaussian process modeling.

It is worth underlying that several, quite questionable, as-
sumptions are needed for the approach to apply, namely,
1) the existence and the explicit knowledge of a measur-
able output map y = h(x) for which the relative degree ν,
assumed to be known, is invariant over all possible real-
izations of the unknown dynamics and 2) the possibility
to measure the whole state as well as the high derivative
of the output y(ν) which might be unrealistic for relative
order higher than or equal to 2 because of the unavoid-
able measurement noise. Nevertheless, the scheme might
be of some help in some very specific applications.

2.3.2 Control-based solutions for Safe learning

While in section 2.2.2, attention is focused on the com-
putational issue associated to the curse of dimensional-
ity in RL and the difficult task of exploring, without a
supporting model, the action-state space, a crucial prob-
lem was left aside, namely the safety of the controlled
system during the learning exploratory phase.

Without claiming to solve the curse of dimensionality
nor the exploration issue (Section 2.2), a series of works
[27,2,24] attempted nevertheless to address the safety
issue for a rather restricted class of small size dynamical
systems of the form:

ẋ = f(x, u, d(x)) (13)

where f is supposed to be known while d is an unknown
map for which a bounding set D̂(x) is supposed to be

known such that d(x) ∈ D̂(x). A so-called safety set is
supposed to be defined by S := {x : g(x) ≥ 0} which
is supposed to be a robust control invariant set under
some state feedback strategy κ"(x) to be determined.
This means that under κ"(x), any trajectory that starts
in S remains in S. Note that the main difficulty lies in
the computation of the strategy κ" while the map d(·)
is not known. This is done by solving, in the unknown
V (·, ·), the Hamilton-Jacobi-Isaac equation [15] which

only involves the presumably known bounding set D̂(x):

0 = min
'
g(x)− V (x, t),

∂V

∂t
(x, t) + max

u∈U
min

d∈D̂(x)

∂V

∂x
f(x, u, d)

(
(14)
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with the boundary condition V (x, T ) = g(x). Once such
a map V is computed, the strategy κ" is derived by:

κ"(x) := argmax
u∈U

min
d∈D̂(x)

∂V

∂x
f(x, u, d) (15)

having this safe feedback strategy κ", a cautious ex-
ploration can be implemented during which the worst
consequence of applying the RL suggested control
u = πθ(i)(x) + ν(i) (Section 2.2.2 page 4) is evaluated in
terms of safety and if violation is possible, the safe strat-
egy κ"(x(i)) is applied instead. Probabilistic evaluation
(see Section 3.1.2) can also be used instead of the worst-
case evaluation in order to avoid over pessimistic design
that might lead to reduced exploration performance. In
this case, the safe strategy is used only if the constraint
violation probability goes beyond some threshold.

The framework is assessed experimentally in [24] to ad-
dress the problem of safe exploration of RL strategy ap-
plied to the problem of the scalar vertical displacement
of a quadrotor drone. In this example, the uncertain ver-
tical dynamics (13) takes the following simple form:

ẋ1 = x2 ; ẋ2 = kTu+ g + k0 + d(x). (16)

where x1 stands for the altitude z.

It is worth taking few minutes to examine this exam-
ple since it is iconic of the impact of RL on our research
community. Indeed, Given that the objective is to regu-
late the variable x1 = z governed by (16) in spite of the
absence of knowledge of d(x) for which an upper bound

D̂(x) is known, an old fashioned control designer would
simply have used the following simple law (assuming,
without loss of generality, that u ∈ [−ū,+ū] and kT > 0:

u = ū · tanh
)
−β

%
ż + λS(ż − λ(zd − z))

&*
(17)

since this would steer the system to the manifold S(z) =
ż−λ(zd−z) = 0 which achieves the regulation task with-
out the need for any learning and a fortiori any safe learn-
ing concern. Another more general scheme with provable
convergence in the absence of almost no knowledge on
the system’s model has been recently proposed [50] to
address a wider class of problems that includes (16) as
a particular instance.

This example is iconic of a general attitude that can be
stated as follows:

In some recent works, the already available and
purely control-related solutions are too easily
forgotten when it comes to contributing in any
possible way to the RL buzzword induced eu-
phoria.

An example of deep understanding via classical control
concepts and tools of the achievable performance via
adaptation and high gain control can be found in the
recent excellent survey [30].

Other recent works focused on control-oriented solutions
to the safe learning problem based on the use of Barrier
functions [21,33,60], robust MPC [63] or via projection
on safe sets [29] are worth examining for interested read-
ers.

2.4 Discussion

Let us take a step back to look at the big picture! Re-
call that in the nineties, the nonlinear control design via
analytic Lyapunov methods [40] was the dominant op-
tion. The emergent Nonlinear Model Predictive Control
(NMPC) [46] was sometimes even denied the qualifica-
tion of state feedback by some nonlinear systems theo-
rists 8 because of its implicit nature (no explicit expres-
sion of the feedback nor of the associated optimal cost
function). The difficult, if not impossible, derivation of
Lyapunov-based solutions to general nonlinear systems
incited [34] (even in 2013!) to classify systems for which,
modeling involving high nonlinearities is necessary, as
legitimate candidates for data-driven control design.

The success of NMPC and the unavoidable constraints
handling task achieved convincing our community that
NMPC is probably not so bad an option. However, the
desire to have explicit representations that can be com-
puted once for all resisted in the linear case leading to
the design of Explicit Linear MPC computation tools
[57]. Several years were necessary to acknowledge the non
scalability of this option and the comparable complexity
to on-line computation even in linear low-dimensional
case [17].

Having this recall in mind, it is hard not to see in the RL
a new avatar of this buried desire to be able to compute
the control as a strategy (pre-computed function of the
state) that arms the designer against the uncertainties
in an explicit, guaranteed, pre-computed and on the top
of it, optimal manner.

The previous section suggests that this option is strongly
questionable, at least in its general scope claim. The re-
mainder of this paper is dedicated to model-based learn-
ing options that might appear to be less ambitious but
which are, to the author’s opinion, more appropriate for
real-life engineering problems.

8 Including some members of the author’s PhD examination
committee in 1995!.
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3 Scalable model-based learning for control de-
sign and certification under uncertainties

The frameworks discussed in this section follow the con-
clusion of the discussion of Section 2.4. The ambition of
designing a stochastic optimal strategy that holds
over a whole subset of the state space is abandoned in
favor of one of the following three alternatives:

(1) Either by dropping the search for a strategy in favor
of the real-time computation of point-wise (given
the current state) on-line solution of a stochas-
tic optimization problem. This option repetitively
looks for the best sequence of actions (in an ap-
proximate stochastic sense) given the current state
and applies the first action. At the next instant
the process is repeated leading to the so-called
stochastic MPC (Section 3.2.1).

(2) Or by dropping the optimality induced charac-
terization that lies under the stochastic dynamic
programming formulation (Q-learning) in favor of
more pragmatic and scalable output feedback ori-
ented heuristics (Section 3.2.2).

(3) Or by explicitly adopting a parameterized sub-
optimal solution where a state feedback is designed
in a problem-dependent step while leaving some
few parameters of the solution to be tuned via
randomized optimization. This solution keeps the
ambition of deriving a feedback strategy over some
subset of the state space but intentionally drops the
optimality requirement in order to get a tractable
design procedure (Section 3.2.3).

From the above presentation, it comes out that two
frameworks need to be briefly recalled before the as-
sociated solutions can be discussed, namely, Stochastic
Model Predictive Control (SMPC) and stochastic certi-
fication via randomized optimization. This is the object
of the next section.

3.1 Recalls

Hereafter, only brief recalls are proposed for the sake of
completeness, interested readers are invited to consult
the proposed reference for a detailed exposition.

3.1.1 Stochastic Model Predictive Control

Consider the class of systems governed by:

x+ = f(x, u, w) (18)

where x, u and w stand for the state, control input and
uncertainties/disturbance vectors respectively. The map
f is supposed to be known. All the uncertainties are gath-
ered in w. Stochastic Model Predictive Control (SMPC)

amounts to compute an implicit feedback control based
on the repetitive solution of the following optimization
problem 9 , expressed at instant k where the state of the
system is xk:

P(xk, η) : u"(xk) ← min
u∈UN

E
%
J(u | xk, ·)

&
(19)

under Pr
%
g(u, xk, ·) ≤ 0

&
≥ 1− η (20)

where the expectation in (19) and the probabil-
ity in (20) refer to the realization of the uncertain-
ties/disturbance vector profile w. The condensed ex-
pression g(u, xk,w) ≤ 0 refers to the vector of con-
straints to be satisfied. This might gather stage con-
straints over the prediction horizon as well as terminal
constraints at the end of the prediction horizon. This
is the reason why the expression involves the control
and the uncertainty profiles u and w. The prediction
horizon length is denoted by N while U stands for the
set of admissible control values.

Note that SMPC can also be formulated as the prob-
lem of finding a feedback strategy rather than a control
profile (see [47] for more details). We stick to the latter
formulation in accordance with the previous discussion.
Note finally that the parameter η in (19)-(20) introduces
constraint relaxation as a probability of constraint vio-
lation is allowed provided that it is lower than η.

Denoting by u"(xk) := (u"
0, . . . u

"
N−1) ∈ UN a solution

to P(xk, η), the applied feedback is given by uk = u"
0

in accordance with the receding horizon principle. This
control is applied during the time interval (k, k+ 1). At
the next sampling instant, a new optimization problem
P(xk+1, η) is defined and solved, the first action in the
optimal sequence is applied over (k+1, k+2) and so on.

Note that the concrete handling of the probability term
in (20) over high dimensional uncertainty vector is not
straightforward. The probabilistic certification frame-
work discussed in the next section gives appropriate
and concrete tools to manage this issue.

3.1.2 Probabilistic certification

Probabilistic certification paradigm addresses the prob-
lem of relaxing an original optimization problem includ-
ing a robust constraint satisfaction requirement involv-
ing a decision variable θ ∈ Θ ⊂ Rnθ and an uncertainty
vector p of the form:

min
θ∈Θ

J(θ) under (∀p) I(θ, p) = 0 (21)

9 There are several alternatives regarding the definition of
SMPC and the way the constraints related concerns have to
be stated.
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where I(θ, p) is defined as follows:

I(θ, p) :=

+
0 if specification are satisfied

1 otherwise
(22)

and where a probability measure P is associated to the
uncertainty vector p that is assumed to belong to some
admissible set P.

The randomized method replaces the original hard
problem (21) by the following relaxed problem:

min
θ∈Θ

J(θ) under Pr{I(θ, p) = 0} ≥ 1− η (23)

where Pr{I(θ, p) = 1} represents the probability of the
event I(θ, p) = 1 (violation of the requirement) given
some statistics of realization of the uncertainty vector p.

Now since the computation of the probability term is
a rather involved and expensive task, the randomized
method [11,12] simplifies (23) by replacing the proba-
bility by the mean value over Ns drawn independent
identically distributed (i.i.d) samples of p in P, namely
the new optimization problem becomes:

min
θ∈Θ

J(θ) under

Ns"

ℓ=1

I(θ, p(ℓ)) ≤ m (24)

which simply replaces the constraint on the probabil-
ity by a different constraint stating that the mean value
of I(θ, p(ℓ)) over Ns random samples to be lower than
m/Ns, or to state it differently that at most m between
the total number Ns of samples lead to the violation of
the specification. It comes therefore that, for any given
admissible number of failures m ∈ N, Ns must be such

that
m

Ns
≤ η which is obviously only a necessary condi-

tion. This is because Ns must also be sufficiently large
so that the fulfillment of (24) implies that the condi-
tion (23) on the probability is satisfied with a probabil-
ity greater than 1− δ with a pre-specified small value δ.
That is the reason why the minimum value of Ns that
makes this implication true involves both the precision
specified by η and the confidence level specified by δ.

In [11,12], several expressions for the value of Ns are
given under different assumptions. An example of upper
bounds on Ns is given below in the case where Θ is a
discrete set of cardinality nΘ. In this case, the following
proposition holds [12]:

Proposition 3.1 Let m ∈ N be any integer. Let δ ∈
(0, 1) be a targeted confidence parameter and η ∈ (0, 1)
be a targeted precision parameter. Assuma a design pa-
rameter that belong to a discrete set Θ of cardinality nΘ.

nΘ η = 0.1 η = 0.05 η = 0.01 η = 0.001

5 154 308 1536 15354

10 163 326 1628 16280

100 193 386 1930 19299

10000 252 503 2515 25148

Table 1
Evolution of the sample size Ns as a function of the precision
parameter η and the cardinality nΘ of the design parameter
set Θ. A confidence parameter δ = 10−3 is used while the
number of failures m = 1 is used in (25).

Take Ns satisfying:

Ns ≥
1

η

,
m+ ln(

nΘ

δ
) +

)
2m ln(

nΘ

δ
)
*1/2

-
(25)

then any solution θ to (24) in which the
.
p(ℓ)

/Ns

ℓ=1
are

randomly i.i.d drawn using the probability measure P
satisfies the constraint in (23) with a probability ≥ 1− δ.

A remarkable property of the expression (25) enabling
the computation ofNs is that it is totally independent of
the the dimension of the vector of parameters p. This is
of a tremendous importance in the context of uncertain
models involving high number of uncertain parameters.
Another interesting feature of Proposition 3.1 is that
the confidence parameter δ appears through logarithmic
terms which means that one can seek highly confident
assertions without dramatic increase in the number of
samples. Table 1 shows examples of lower bounds on the
number Ns of required scenarios to achieve the certifi-
cation for different values of the pair (nΘ, η) when the
high confidence parameter value δ = 10−3 is used.

3.2 Approximate SMPC schemes

The SMPC topic deserves a survey on its own [47,48]
and frequent updating is necessary because of the rapid
undergoing development. Some instances are shown here
motivated by the discussion above. The basic difficulty
in solving (19)-(20) stems from the expectation and the
probability that are involved in the formulation. Indeed,
a precise approximation of these quantities needs a high
number of samples of the uncertainty realizations to be
associated to the current state xk in order to formulate
a faithful approximation of the problem to be solved in
real-time. The approaches revisited hereafter proposes
different ways of addressing this issue in a non yet totally
satisfactory manner.

3.2.1 Uncertainties clustering-based solutions

One of the SMPC that is widely used is related to the
so-called multi-stage scenario-tree decomposition (see
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Fig. 1. Illustration of the tree of scenarios for N = 6, Nr = 2,
ℓ = N −Nr = 4 and q = 3.

[41,45] and the references therein). In this approach,
the basic assumption is that the value w ∈ Rnw of
the uncertainty/disturbance vector at each sampling in-
stant lies in a discrete set of moderate cardinality q, say
W := {w(1), . . . , w(q)} where w(i) ∈ Rnw . Consequently,
the uncertainty profile over a prediction horizon of length
N takes values in a set of cardinality qN . The result-
ing exponential explosion is limited by the assumption
according to which the value pf w becomes constant af-
ter a limited number of steps Nr (defining the so-called
robust horizon) as shown in Figure 1. This reduces the
number of scenarios to ns := qNr instead of qN . The re-
sulting tree is shown in Figure 1 for N = 6, Nr = 2 and
q = 3 where a control profile is associated to each uncer-
tainties profile with some constraints that are discussed
below. It is also assumed that the available statistics of
the uncertainties enables to associate a probability ωi

to each scenario i among the ns = qNr scenarios under
consideration so that a weighted cost function can be
defined at instant k by:

ns"

i=1

ωiJ(u
(i) |xk,w

(i)) (26)

where {w(i)}ns
i=1 is the set of scenarios while u(i) is the

control profile associated to the i-th scenario. Note how-
ever that these control profiles are constrained by the
fact that all the control inputs starting from the same
state (root) have to be equal. This constraint is referred
to as the non anticipation constraint. This is clearly
shown on Figure 1 through the notation u0, u1, u2 and
u3. Note that the expression (26) is supposed to be an
approximation of the expected cost as defined by (19).
Similar weighted constraints can be similarly defined in
order to replace (20).

Obviously, the assumption regarding the finite number
qNr of scenarios might be viewed as a brute force as-
sumption. As a matter of fact, the discrete set of q pos-
sible values of w can be viewed as a result of a clustering

operation and the corresponding probabilities {ωi}ns
i=1

can be obtained as a by-product of the same clustering
step using the ratios of population sizes of the clusters
to the total number of randomly drawn samples.

Clustering algorithms (K-Means, Mean-shift, DBSCAN,
to cite but few available algorithms in the scikit-learn
library [52]) generally perform an unsupervised clus-
tering in the sense that they consider only internal
relationships between the elements of the set of samples
W := {w[1], . . . ,w[s]} where s ≫ ns to be used in the
clustering operation (finding the centers of the clusters
and their associated weights):

W unsupervised−−−−−−−−→
clustering

WN (27)

In a recent work [5], it has been suggested that a super-
vised clustering can be achieved by inducing the cluster-
ing of the elements of W from the unsuprvised cluster-
ing of the optimal solutions U" := {u[i]"}si=1 of the de-
terministic optimal control problems associated to the
elements w[i] of the set W:

W unsupervised−−−−−−−−→
clustering

U" induced−−−−−−→
clustering

WN (28)

The rationale behind this solution is that uncer-
tainty/disturbance profiles should be considered as sim-
ilar if they induce the similar optimal solutions even if
the disturbances are not close in their own space.

Beside the supervised clustering feature, it is proposed
in [5] to continuously update a FIFO buffer of clusters
so that the clustering can be made state-dependent.

The heuristics summarized in this section have been
applied to relevant problems such as the problem of
uncertainty aware type-1 diabetes [25] as well as the
combined therapy of cancer [5] to cite but few exam-
ples. Note that both frameworks involve at some stage,
the solution of a deterministic nonlinear optimal con-
trol problem that can be achieved using excellent and
freely available solvers that are gathered within unified
optimization framework such as Casadi [14].

3.2.2 Learning output-feedback stochastic NMPC from
clouds of deterministic solutions

The online computation of the optimization problems
invoked in Section 3.2.1 might be incompatible with real-
time implementation for a class of systems showing fast
dynamics requiring small sampling periods. An intu-
itive option is to then simulate off-line a high number of
closed-loop scenarios and then to learn the resulting feed-
back using nonlinear modeling structures such as DNN,
Random Forest or any other regression model that are
available in any Machine Learning package. Once a can-
didate fitted feedback is available, its performance (in-
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cluding constraints satisfaction assessment) can be cer-
tified using the probabilistic certification framework re-
called in Section 3.1.2.

Such a solution is proposed in [38] in order to learn the
robust feedback associated to the robust multi-stage tree
scenarios approach recalled in Section 3.2.1 and to cer-
tify the resulting approximate feedback. More precisely,
during the simulated closed-loop scenarios, NMPC feed-
back based on the solution of the deterministic NLP
defined by (26) and the associated constraint is used.
Once a sufficient learning data is obtained, a DNN is
used to capture the structure of the feedback. During
the closed-loop simulation, an extended Kalman filter is
used to get an output feedback so that the certification
implicitly includes the state estimation error. The frame-
work is validated using the quite challenging example of
controlling a wind kite under a restrictive altitude con-
straint. A tightening parameter η (back off on the lower
bound of the altitude) is used that can be viewed as a
hyper parameter for the control design 10 which is opti-
mized via probabilistic certification.

The framework of [38,39] heavily relies on the observ-
ability assumption which might be quite questionable in
the presence of high uncertainties affecting the model’s
parameters. This being said, it should be emphasized
that the learning literature rarely addresses the need for
an output feedback and the availability of the state is
unfortunately a too frequently used assumption in the
learning-based control literature.

A different alternative has been recently proposed [6]
that is based on the off-line solution of deterministic
problems to build a learning data for the identification
of an uncertainty-aware dynamic output feedback.

More precisely, a cloud of pairs {z = (x0,w)}z∈Z is
considered in which each element z is a pair of initial
state x0 and an uncertainty vector profile w. Obviously,
each z defines a deterministic optimal control problem
P(x0,w) in which both x0 and w are supposed to be
known. Figure 2 shows how the optimal solution of the
deterministic optimal control problem P(z) can be used
to construct a learning data D(z) associated to z of the
form:

D(z) :=
'
y
",(−)
M+j (z),u

"
M+j(z)

(m−1

j=0
(29)

in which u"(z) := (u"
0(z), . . . ,u

"
N−1(z)) is the optimal

control profile (should x0 and w be perfectly known)

while y
",(−)
M+j := (y"

j , . . . ,y
"
M+j) stands for the sequence

of measurement (including the input) gathered during
the interval [j,M + j] (see Figure 2).

10 Namely, η is a component of the decision variable θ in the
certification framework as recalled in Section 3.1.2

time

x0

0 NM

y
"(−)
M (z)

Optimal trajectories u"(z)

û"
0(y

"(−)
M (z)) := u"

M (z)

time

x0

0 NM + 1

y
"(−)
M+1(z)

Optimal trajectories u"(z)

û"
0(y

"(−)
M+1(z)) := u"

M+1(z)

time

x0

0 NM + 2

y
"(−)
M+2(z)

Optimal trajectories u"(z)

û"
0(y

"(−)
M+2(z)) := u"

M+2(z)

Fig. 2. Construction of the learning data D(z): by going for-
ward in a moving window along the optimal trajectory com-
puted for a single pair z = (x0, w) it is possible to generate

a high number of different samples of pair (y(−), u) that can
be used in the construction of the learning data for the iden-
tification of uncertainty-aware output feedback.

The rationale behind this choice it that if N = ∞, by
the Bellman principle, the control input u"

M+j(z) would
be the first action in the exact optimal solution asso-
ciated to the pair (x"

M+j(z),w) that would be recon-

structed using the previous the output profile y
",(−)
M+j

should the extended observability condition holds true.
For finite prediction horizon N this corresponds to an
approximation. This is what is meant by the notation

û"
0(y

",(−)
M+j (z)) := u"

M (z) ≈ u"
0(y

",(−)
M+j (z)) in Figure 2. By

so doing, a single NLP solution enables to gather m in-
stances in the learning data that aims to identify the
approximate optimal control as a function of the pre-
viously measured output. Repeating this process for a
cloud of nz = card(Z) samples of z, a learning data of
size m ·nz can be built from the solution of nz standard
deterministic NLP solutions:

card

0
1

z∈Z
D(z)

2
= mnz (30)

Here again, once an output feedback map is fitted, its
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performance can be certified following the same guide-
lines invoked previously since high number of closed-
loop simulations can be efficiently conducted in an
optimization-free way. In a further stage, it is possible
to re-inject the values of z for which the performances
show inadequate in the learning process iteratively in
order to improve the quality of the fitted map.

The use of the measurement profile y(−) as a feature
vector is obviously inspired by the extended observabil-
ity idea (joint observation of the state and the uncertain
parameter vector) but the observability is not a con-
structive condition for the heuristic implementation. In
the absence of strict observability, the fitting step would
find the best compromise given the dispersion of the in-
distinguishable features in the learning data.

In [6], the above framework has been used to derive an
uncertainty-aware output feedback applied to address
an economic MPC design. Comparisons have been con-
ducted against a perfect-knowledge ideal NMPC on one
hand and a nominal NMPC. It comes out that, despite
large uncertainties ranging from 20% to 180% of the
nominal values, the proposed design recovers 78% of the
advantage of having full knowledge of the parameters
values compared to the nominal one.

3.2.3 Suboptimal certified strategies via problem-
dependent parameterization

As already mentioned in Section 2.3.2, quite often, the
availability of computation power and user-friendly soft-
ware that can address complex and ambitious formula-
tion makes it easy to forget simple and efficient solutions
that might appropriately address the problem in a sim-
ple and elegant way. Indeed, in many real-life situations,
one disposes of an uncertain model of the form:

ξ̇ = f1(ξ, u,ϕ(η)) (31)

η̇ = f2(ξ, η, w) (32)

y = h(ξ, u) (33)

where f1 is a known function involving uncertainty
through an uncertain map ϕ that depends on a variable
that obeys an uncertain dynamics f2 that also depends
on some exogenous signal w. ξ and η stand for two
sub-state vectors. Assume that

H1) the control objective and constraints can be expressed
in terms of (ξ, u) only, namely:

J(ξ,u) , g(ξ,u) ≤ 0 (34)

where ξ, u stand for the trajectories of ξ and u over
some prediction horizon.

H2) the system defined by:

ξ̇ = f1(ξ, u, z) (35)

ż = 0 (36)

is observable;
H3) The dynamics (32) is unconditionally bounded.

Under these conditions, it is possible to generically de-
sign a Moving-Horizon-Estimator (MHE) [54] of the
state (ξ, z) of the dynamical system (35)-(36) which
provides an estimation of the unknown term 11 :

0
ξ̂

ϕ̂

2
= MHO(y(−)) (37)

The estimation can be used to define a parameterized
output feedback of the form

kθ(ξ̂, ϕ̂) = kθ ◦MHO(y(−1))

By so doing it is possible to simulate closed-loop scenar-
ios for different value of the unknown dynamics param-
eters as well as the initial guess of the observer in order
to perform randomized optimal choice of the control pa-
rameter θ following the guidelines of section 3.1.2 where
p is defined by:

p := (ξ(0), η(0), ξ̂(0), η̂(0),w) (38)

which clearly enables to write J and g invoked in (34) as
function of (θ, p). This framework is rigorously detailed
in [38] but appeared previously, totally or partially, in
many application oriented works such as [10,3,9] related
respectively to automotive control, cancer treatment and
propofol-based control of BIS during anesthesia. It is
shown how in each specific case, a problem-dependent
design of the parameterized control law kθ() can be de-
rived enabling a faster simulation of the high number of
closed-loop scenarios required for the certification and
probabilistic optimization task.

3.3 Miscellaneous: Non covered related topics

As mentioned in the introduction, learning for control
is so vast a topic that only a tiny selected set of items
has been shortly discussed. Among the interesting topics
that are not mentioned in this paper, it is worth men-
tioning those related to the construction of non para-
metric models (kernel-based [42], kinky inference-based
[18,43] among many others) and the approximation of
associated bounds (maximummodeling error, Lypschitz
constants to cite but few ones) that allow the use of stan-
dard control design or proof arguments that require the

11 The input measurement is included in the y vector.
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knowledge of such bounds. Recent works related to the
propagation of uncertainties [65], anticipating the learn-
ing process [19], joint extended state/parameters esti-
mation error certification [7], combining system identifi-
cation and reinforcement learning [44] or MPC-induced
parametrization of reinforcement learning [28] are worth
examining and might be very promising topics in the
near future.

Regarding the computational aspects, the use of parallel
computation involving GPU/FPGA [37,31,62,53] which
play key role in deep learning will certainly play an even
increasingly crucial role in all design and certification
methods that involve high number of simulations that
can be conducted in parallel (only some of them have
been discussed above).

4 Discussion

In this last section, some key issues are discussed which
are worth examining carefully when it comes to consid-
ering the coupling between learning and control.

4.1 Is appropriate modeling really expensive?

Too many papers advocating for massive use of data-
driven solutions start by asserting that modeling is an
expensive step that is worth avoiding. This is probably
true when high fidelity models are thought of, but it is
not so accurate if one seeks parameterized models that
can be structurally sound in so far as they correspond
to a family of behaviors that contains the true one for a
combination (although unknown) of parameter values.
These models can then be used inside the many uncer-
tain model-based solutions which acknowledge and ac-
commodate for the presence of uncertain parameters as
it has been shown in the previous sections. After all, no
engineering system falls from the sky, somebody has de-
signed it following our solid understanding of the under-
lying governing laws.

In order to assess the previous statement, it is worth re-
calling that there are several domain-specific and avail-
able libraries that help modeling real-life systems in a
modular and drag-and-drop way: A non exhaustive list
of such libraries would include: the Matlab Simscape
multi-discipline library 12 (electrical, multi-body, fluids,
etc), the unified physical systemmodeling Modelica [49],
the Simulink simcryo library [16] dedicated to the
modeling of cryogenic refrigerators, the psim simula-
tor 13 dedicated to microgrids modeling to cite but few
examples among so many.

12 https://fr.mathworks.com/products/simscape.html
13 https://psim.powersimtech.com/webinar-microgrid-
design-and-simulation

With the development of parametric uncertainty aware
solutions such as the ones recalled in the present paper,
it is possible that further specific development in control-
oriented structural modeling might be the appropriate
direction to undertake which can reveal consistent in no
more than few years. Such solid representation of the
processes is currently highly appreciated by the indus-
trial partners of our technologies and algorithms. More-
over, knowledge-based representations are already favor-
ably welcomed as a step towards explainability that is
systematically opposed to purely data-driven black-box
approaches.

It is quite surprising to witness the emergence of increas-
ingly wide spreading beliefs according to which discard-
ing our first principles-based understanding of the phys-
ical world might be an efficient option. A nice discussion
regarding this dangerous drift is provided in [56].

4.2 Heuristic vs provable settings

The emergence of data-driven solutions and tools ob-
viously questions the necessary positioning of the con-
trol community in the landscape of data-based solutions
providers. One of the options that is frequently suggested
claims that the control community is very good when it
comes to providing provable statements in the form of
guaranteed performance/stability and constraints satis-
faction.

While this is probably true, the implication of this po-
sitioning might be quite risky. This is in particular true
when confusion is made between two fundamentally dif-
ferent achievements:

• Providing ad-hoc assumption-based sufficient condi-
tions for a statement to hold;

• Providing a set of checkable, verifiable and real-life
compatible 14 conditions.

Sticking to the first item is obviously much easier and
very much corresponds to a rather common practice
in the control community. A danger that lies under-
neath is to prevent clever and efficient heuristics (includ-
ing control-culture’s inspired ones) that are not proof-
friendly to emerge in our publication supports leaving
the field of the only solutions that matter in real-life
to computer science originated contributions. Another
probably more harmful danger is to forget the uncheck-
able quality of the assumptions and rely on the papers
titles to consider that the problem is solved while it is
still totally open form a practical and real-life point of
view.

14 that might hold at least for one realistic existing real-life
system!

12



4.3 Sharing codes and benchmarks

While a mathematical proof can be carefully read and
checked, data-related results highly depend on many -
sometimes hidden- steps (Randomness in data genera-
tion, splitting the data into learning and validation 15 ,
tuning of the model’s hyper-parameters, features selec-
tions, normalization, choice of the cloud of possibilities,
etc). This suggests that a good practice is to share the
whole code and data in an accessible form to the readers
of accepted publications.

While such practices are commonly encouraged, they
should probably become mandatory, at least when the
contributions meet some conditions in terms of data-
dependent content.

Similarly, as mentioned in the paper, very often, quite
involved and complex frameworks are assessed using toy
ad-hoc examples that might be handled using standard
control tools and methods. The arguments implicitly
used is that, these are simply illustrative examples but
the proposed framework does scale to tackle real-life prob-
lems. The suggestion here is just to use only such rele-
vant examples in the first place. Such examples can be
built by our community and shared as unquestionably
relevant benchmarks that enable to rank the proposed
solutions or at least check, in far more convincing way,
their effectiveness and scalability.

4.4 Teaching Data-related tools in control courses

This paper hopefully underlined many potential fertile
combinaisons of control-based ideas and data-related
tools and concepts. However, in order for such a poten-
tial to materialize in cross-discipline contributions, it is
mandatory that data-mining, Machine Learning and AI
tools enters the corps of the basic teaching programs of
any control-oriented course. This should not be done on a
tools developing level but rather in a user oriented man-
ner. In other words, it is crucial to render common and
easy to a control designer to experiment different ways
of including data-oriented modules in his/her control-
inspired solutions.

Such a better understanding and practicing of data-
related tools enable to come out with highly effective
surprising solutions but can also help demystifying some
other options that might sometimes be wrongly viewed
as universal magical solutions to almost any problem.
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