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Introduction

Feedback in engineering is all about facing uncertainties affecting dynamical systems. These uncertainties result from incomplete knowledge of the dynamics or from non modeled unpredictable exogenous factors. This is the reason why, a discussion regarding learning-based tools and ideas involving uncertainty management in control should unavoidably operate some necessary choices unless it encompasses all the history of control design. This is because any classical control-related management of uncertainties can be viewed as specific instantiation of learning from the measured quantities. Such a choice explicitly excludes many topics and focuses on others.

Let us face it, the recent burst of the keyword learning in the control literature is mainly due to two facts, namely: 1) The recent impressive success stories of Deep Reinforcement Learning (DRL) in the games area (GO, Chess, etc.) and since, in many fancy application areas including painting and Music! and 2) the availability of easy-to-use and efficient general purpose learning tools such as scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and Deep Neural Networks (DNN) learner tools such as Keras [START_REF] Chollet | [END_REF] and google's tensorflow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]. Therefore, while RL [START_REF] Amos | On the model-based stochastic value gradient for continuous reinforcement learning learning[END_REF] should be one single topic among many others on which the above mentioned ! This paper was not presented at any IFAC meeting.
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choice has to operate, it is a fact that the unreasonably over-optimistic 1 expectations and widespread beliefs regarding the extent to which RL might be successful without almost no specific a priori knowledge, does alter in a dramatic way and probably for many years to come, the state-of-mind of young researchers in the control engineering community.

That is the reason why, without a (necessarily too short) balanced discussion towards moderating the expectations and scope of validity of RL (and especially model-free RL) in the specific domain of control engineering, no claim involving other options can be even heard since sentences, like the one below, can always be used to disqualify any possible realistic and real-life compatible innovative solution:

Why should I examine any suggestion when I am told that Reinforcement Learning solves any problem even without having the slightest knowledge on the dynamics or any a priori assumption while using exclusively ground-truth real-life measurements? Therefore, this paper starts by first recalling briefly what RL is about in the framework of control systems with continuous state set under uncertainties (Section 2.1). Focus is made on the computation issues in the modelbased setting (Section 2.2.1) and then in the model-free setting (Section 2.2.2). Capitalizing on this recall some recent works showing interactions between control and RL are briefly described in Section 2.3, in particular, RL-based identification of input/output linearizing state feedback (Section 2.3.1) as well as control invariance based framework for safe learning during RL (Section 2.3.2) are discussed. Section 3 explores some scalable solutions mainly involving a combination of stochastic MPC, probabilistic certification and clustering. The paper ends with a general discussion regarding some claims and practices related to data-driven solutions as well as some humble recommendation regarding the positioning of the control community in a data/AI dominated period.

2 Reinforcement learning? why not? but . . .

Brief refresher on Reinforcement learning

Consider a discrete-time dynamical system with state vector x ∈ R n , control input vector u ∈ R nu . In the following reminder and for the sake of homogeneity of notation throughout the whole scope of the paper, the cost minimization paradigm is used instead of the reward maximization that is commonly invoked in the RL literature. Therefore, it is assumed that a measurable stage cost ℓ(x, u) is associated to the pair (x, u) being visited by the controlled system. The result of the integration of this stage cost over some time interval is assumed to be an indicator of the quality of the system behavior over this interval (lower values are better).

The starting point in any control design approach is to consider the so called sets-of-interest X and U that contain all possible realizations of the state and the input vectors values. Choosing such sets is definitively not an easy task but this difficulty is not specific to RL and materializes in any possible framework.

In its so-called deterministic-policy form [START_REF] David | Deterministic policy gradient algorithms[END_REF] 2 , the objective of RL design is to find an optimal state-feedback policy π : X → U such that the following cost is minimized [START_REF] David | Deterministic policy gradient algorithms[END_REF]:

J(π) := ! X ρ π (x)ℓ(x, π(x))dx (1) 
where ρ π (x) stands for the discounted probability density function of the state under the control strategy π, namely:

ρ π (x) := ! X ∞ " k=1 γ k-1 p 0 (s)p(s → x, k, π)ds (2) 
which simply sums (with a discount factor γ) the probabilities of all the paths starting at some initial state s (with probability density p 0 (s)) and passes through x after k sampling periods. The probability density of such an event under the feedback strategy π is denoted by p(s → x, k, π). The use of probabilities implicitly acknowledges that the underlying controlled system's dynamics is uncertain.

The ambition of RL formulations is to provide a statefeedback policy π " that is optimal considering the statistics of possible realizations of the system future lifeimpacting components (state, uncertainties). This is precisely what is expressed through the cost function [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF] and this is precisely why RL is (conceptually) viewed as the perfect answer to the presence of uncertainties in the controlled systems.

The search for such an optimal policy commonly starts by choosing some parametrized form, say π θ , of the feedback strategy; and to look for an optimal parameter vector θ " that minimizes the corresponding cost J(π θ ) defined by ( 1). This minimization is commonly performed using gradient descent in which the gradient of the cost function w.r.t the design parameter θ is given by [START_REF] David | Deterministic policy gradient algorithms[END_REF]:

∇ θ J(π θ ) = ! X ρ π θ (x) # ∇ θ π θ (x) $ ∇ u Q π θ (x, π θ (x))dx (3) = E % # ∇ θ π θ (•) $ ∇ u Q π θ (•, π θ (•)) & (4) 
where Q π (x, u) is the so-called action value function defined by:

Q π (x, u) := ℓ(x, u) + E % ∞ " k=0 γ k ℓ(x k+1 , π θ (x k+1 )) & (5) 
under (x 0 , u 0 ) = (x, u)

Note that the definition (5) of Q π implies (by the Bellman optimality argument) that when the feedback strategy is optimal one gets the so-called Q-learning equation characterizing the corresponding optimal action-value map:

Q π " (x, u) = ℓ(x, u) + γ min v∈U E % Q π " (x + , v) & ( 6 
)
in which the expectation (which differs from the one involved in the very definition (5) of Q π itself) refers to the uncertainties on the prediction of the next state x + . Equation ( 6) recalls the Stochastic Dynamic Programming formulation and suggests that the optimal action value function can also be (at least conceptually) computed by a fixed-point iteration [START_REF] Geist | Anderson acceleration for reinforcement learning[END_REF][START_REF] Alamir | Explicit approximation of stochastic optimal feedback control for combined therapy of cancer[END_REF], namely, using a current estimation of the map Q π , one can derive a corrected version from the evaluation of the r.h.s of [START_REF] Alamir | A heuristic for dynamic output predictive control design for uncertain nonlinear systems[END_REF].

Note that having the optimal action value map Q " = Q π " enables to derive the optimal policy and the optimal value function by:

u " (x) := arg min u∈U Q " (x, u) ; V * (x) = Q " (x, π " (x)) (7)

The challenges of RL implementation

In this section, the challenges that are associated to the implementation of the above formulation in the presence of uncertainties are recalled in two contexts of use, namely 1) in the presence of uncertain dynamic model and 2) in the purely data-driven context, called also model-free RL. Note that the literature on RL involves a huge amount of possible variants that slightly differ in many technicalities. For a detailed discussion, the reader might refer to the excellent recent books [START_REF] Sutton | Reinforcement learning: An introduction[END_REF][START_REF] Bertsekas | Reinforcement learning and optimal control[END_REF]. The following necessarily over-simplified presentation simply helps conveying general messages that, presumably hold true among the different versions.

In the presence of an uncertain model

When one disposes of an uncertain model in the sense that x + can be computed (with uncertainty) from the knowledge of (x, u), an off-line solution can be an option.

More precisely, for the current value of the policy parameter θ, the expectation invoked in the r.h.s of (4) can be approximated via averaging over a cloud of realizations of the state. For each state x in this cloud, The estimation of the value of Q(x, π θ (x)) needs the estimation of the expectation of the integrated cost (5) which involves model-based simulations in which the sampled quantity is the realization of the uncertainties for the current sample of x. The number of samples in these two averaging processes can be determined following the recommendations of [START_REF] Vidyasagar | Randomized algorithms for robust controller synthesis using statistical learning theory[END_REF] depending on the targeted quality of the approximations. Recall that all the above cascaded evaluations are to be done to get the evaluation of the gradient at the current value θ during the gradientbased optimization process.

This means that even if the gradient descent converges ultimately to the right solution, this might need a number of simulations [involved in [START_REF] Alamir | On the use of supervised clustering in stochastic nmpc design[END_REF]] that grows exponentially in the state dimension. This is the price to pay if one would like to stick to the ideal promises of RL which is to deliver the stochastically optimal state feedback strategy defined as a function of the state over the set of interest X.

The discussion above applies to the case where the gradient approach is used. When an uncertain model is available, it is also possible to compute the expectation in-voked in the r.h.s of (6) in order to implement the fixedpoint iteration (since a cloud of x + realizations can be computed based on the uncertain model) 3 . In this case, the curse of dimensionality still applies since the cardinality of the supporting grid in the state space that is needed to enforce the equality (6) over X increases exponentially in the state space.

The possibility of simulating the dynamics offers an obvious advantage over model-free design since any pair of (x, u) can be visited by forcing a simulation that starts precisely at (x, u). Therefore by extensively using Graphical Processing Unit (GPU) to perform parallel simulations and by waiting sufficiently long time and provided that a discrete state setting is considered and assuming that there is no uncertainties 4 , one can achieve very good sub-optimal solutions. But for continuous state uncertain systems, this goes rapidly beyond acceptable limits should the original promises of RL be targeted. This is because not only should any region of the (x, u) continuous space be visited, but it should be visited many times with different realizations of the uncertainties in order to compute the associated expectation approximatively.

Therefore, the above discussion can be summarized by the following statement:

When considering the control related continuous state applications, if the initial ambitious promises of RL are to be fulfilled, namely computing a stochastically optimal policy over a continuous set of states, the curse of dimensionality is unavoidable. RL inherits the standard limitations of Approximate Dynamic Programming (ADP). The beauty of the gradient theorem and the universality of deep neural networks does not help overcoming this fundamental obstacle.

Fact 1

The combination of a faithful model, appropriate ad-hoc simplifications and choices can be very effective in specific situations. A recent illustrative example has been proposed in [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF] where an actor/critic RL approach has been used to design a magnetic control of tokamak plasmas. Note however that no specific uncertainty handling is used although the resulting feedback does show robustness to non modeled dynamics as in any feedback control framework.

Model-free setting

The presumed ability of RL schemes to derive statefeedback policies in the absence of the slightest knowledge of the underlying dynamics has a lot to do with the high expectation they raise in the minds of many decision makers, engineers and researchers. In this section, the simplest version of model-free implementation of RL is recalled before we can examine the extent to which the commonly shared statement regarding modelfree RL are justified.

Note first of all that none of the possibilities invoked in the previous section applies to the model-free case since model-based simulations are no more possible meaning that neither the whole cloud of trajectories involved in [START_REF] Alamir | On the use of supervised clustering in stochastic nmpc design[END_REF] nor even a single step as in ( 6) can be obtained through model simulation. Only real-life measurementbased updating steps can be used. More precisely, the algorithm can only use the values of triplets of the form:

' z (i) , ℓ(z (i) ) ( i∈I z (i) = (x (i) , u (i) ) (8) 
that are visited by the real system during some data collection experiment or during the system life-time should a continuous RL adaptation be adopted.

In its simplest form, the model-free RL starts by assuming a w-parametrized structure Q w (•, •) of the action value map and then implements an alternate improvement of the policy π θ and the action-value map Q w according to the following updating rule (also referred to as the actor/critic method):

δ (i) = % ℓ(z (i) ) + γQ w (i) (z (i+1) ) & -Q w (i) (z (i) ) (9a) w (i+1) = w (i) -α w δ (i) # ∇ w Q w (i) (z (i) ) $ (9b) θ (i+1) = θ (i) -α θ ∇ θ π θ (x (i) )∇ u Q w (i) (z (i) ) (9c)
where (9b) is a gradient step that intends to update w (and hence Q w ) towards the satisfaction of (6) based on the error δ (i) on the Bellman equality at the current iteration i. On the other hand, the updating rule (9c) implements a gradient step in the policy parameter θ which aims to decrease the action value map, given its current estimation at iteration i.

Note however that in order to explore in a sufficiently relevant manner the space of (x, u) so that the expectation can be correctly estimated, actions u k that are different from the ones suggested by π θ (x k ) should be regularly applied. The way and the frequency at which the exploration should be done is still an open and largely unsolved problem and will probably remain as such forever. This is because only random-like variations can be applied around the current value u = π θi (x (i) ) + ν (i) since, In the absence of an underlying dynamical model, there is strictly no way of knowing what is the correction ν (i) to be applied in order to force the system to visit a still unvisited region of the state-action space.

Even discarding this major difficulty, one can easily admit that for a controlled system with continuous state and control, a satisfactory exploration is a major issue to achieve in a reasonable time when the state and the control dimension go above some very moderate sizes.

Another fundamental limitation stems from the fact that since only purely experimental data collection is involved, one can only encounter the realizations of the uncertainties that are decided by the fate during the specific interval of time during which data is being collected!. In other words, the outcome of the iterations of model-free RL depends on an unavoidably limited set of realizations of the uncertainties that might have no statistical relevance given the true set of possible realizations that the original statement of the RL was intended to explicitly account for.

Beside this structural lack of effective handling of the uncertainties, there is another drawback that is associated to the gradient approach used in (9a)-(9c). Indeed, not-too-young readers probably still recall these ancient times where the problem of local minima associated to the gradient descent methods were largely acknowledged and largely experimented. It seems however that the astonishing success5 of Stochastic Gradient Descent (SGD) in the context of Deep Learning (DL) induced a collective forgetting of this simple fact.

The recent better understanding of the behavior of SGD iterations in the context of DL [START_REF] Zeyuan | A convergence theory for deep learning via over-parameterization[END_REF] suggests that the convergence comes from the combination of two facts, namely: the use of sufficiently large number of hidden layers leading to an over-parameterization of the underlying Deep Neural Network (DNN) on one hand and the use of SGD on the other hand. Unfortunately, the use of over-parametrization in the context of model-free control system design while increasing the probability of avoiding very bad local minima obviously comes at the price of much larger required number of real-life iterations making the framework inappropriate in many control related situations if not in the majority of them.

Last but not least, one must keep in mind that the model-free approach can only be used for situations where the problem can be stated in terms that only involve the measured quantities. In many situations, there are constraints to be handled, or terms in the stage cost, that involves internal states that are not directly measured. These components of the state are generally reconstructed using model-based observers or through simulation-based identification of relationships between the measurement profile and these components [START_REF] Alamir | Identification of a class of nonlinear dynamic relationships: Application to the identification of engine emission models[END_REF]. This is obviously impossible in a totally model-free setting.

Therefore, the above discussion can be summarized by the following statement:

As far as controlled continuous state systems are concerned, model-free RL frameworks rarely achieve the original promises in terms of uncertainty handling over the state space of interest. At best, they are possible heuristics with fragile convergence assessment and weak statistical relevance. Nevertheless, they can be quite valuable on a specific set of contexts.

Fact 2

For all the above reasons, only model-based frameworks are considered in the remainder of this paper.

Mixing RL & control ingredients

In some recent works, the paradigm of RL is invoked to solve control specific problems or control-based accommodations are used to enable a safe RL. In this section, we build on the previous recall on RL in order to discuss representative instances of such works, namely, the RLbased design of feedback linearization [START_REF] Castaeda | Improving input-output linearizing controllers for bipedal robots via reinforcement learning[END_REF][START_REF] Westenbroek | Feedback linearization for uncertain systems via reinforcement learning[END_REF] and the Design of safe-learning frameworks [START_REF] Fisac | A general safety framework for learning-based control in uncertain robotic systems[END_REF][START_REF] Choi | Reinforcement learning for safety-critical control under model uncertainty, using control lyapunov functions and control barrier functions[END_REF][START_REF] Hewing | Learning-based model predictive control: Toward safe learning in control[END_REF].

Learning feedback linearization via RL

Recall that the feedback linearization of a nonlinear dynamics ẋ = f (x)+g(x)u amounts to find an output map y = h(x) and a state feedback π θ (x, v) such that the following equality [START_REF] Alamo | Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems[END_REF] holds which transforms the nonlinear system into a chain of integrators controlled by v6 :

y (ν) = L ν f h(x) + L g L ν-1 f h(x)π θ (x, v) (10) 
= W θ (x, v) = v (11) 
where y (ν) denote the ν-derivative of y while v is a feedforward term.

Note that equation [START_REF] Alamir | On the Use of Parameterized NMPC in Realtime Automotive Control[END_REF] holds provided that the relative degree7 associated to the output y is equal to ν [START_REF] Isidori | Nonlinear Control Systems[END_REF]. This suggests to use the following definition of the stage cost as a quality indicator for θ to define a RL framework:

ℓ(x, v, θ) := %y (ν) -v% 2 2 ( 12 
)
which is assumed to be a measured quantity in the related works [START_REF] Castaeda | Improving input-output linearizing controllers for bipedal robots via reinforcement learning[END_REF][START_REF] Westenbroek | Feedback linearization for uncertain systems via reinforcement learning[END_REF]. Since model-free RL requires only the measurement of the stage cost ℓ (and the state vector x! used in π θ (x, v)), the associated schemes can be used in this context to progressively discover the linearizing state strategy π θ from real-life experiments.

Similar recent ideas towards learning linearizing feedback have been proposed in [START_REF] Umlauft | Feedback linearization based on gaussian processes with event-triggered online learning[END_REF] to achieve eventtriggered learning based on Gaussian process modeling.

It is worth underlying that several, quite questionable, assumptions are needed for the approach to apply, namely, 1) the existence and the explicit knowledge of a measurable output map y = h(x) for which the relative degree ν, assumed to be known, is invariant over all possible realizations of the unknown dynamics and 2) the possibility to measure the whole state as well as the high derivative of the output y (ν) which might be unrealistic for relative order higher than or equal to 2 because of the unavoidable measurement noise. Nevertheless, the scheme might be of some help in some very specific applications.

Control-based solutions for Safe learning

While in section 2.2.2, attention is focused on the computational issue associated to the curse of dimensionality in RL and the difficult task of exploring, without a supporting model, the action-state space, a crucial problem was left aside, namely the safety of the controlled system during the learning exploratory phase.

Without claiming to solve the curse of dimensionality nor the exploration issue (Section 2.2), a series of works [START_REF] Gillula | Guaranteed safe online learning via reachability: tracking a ground target using a quadrotor[END_REF][START_REF] Anayo | Reachability-based safe learning with gaussian processes[END_REF][START_REF] Fisac | A general safety framework for learning-based control in uncertain robotic systems[END_REF] attempted nevertheless to address the safety issue for a rather restricted class of small size dynamical systems of the form:

ẋ = f (x, u, d(x)) (13) 
where f is supposed to be known while d is an unknown map for which a bounding set D(x) is supposed to be known such that d(x) ∈ D(x). A so-called safety set is supposed to be defined by S := {x : g(x) ≥ 0} which is supposed to be a robust control invariant set under some state feedback strategy κ " (x) to be determined. This means that under κ " (x), any trajectory that starts in S remains in S. Note that the main difficulty lies in the computation of the strategy κ " while the map d(•) is not known. This is done by solving, in the unknown V (•, •), the Hamilton-Jacobi-Isaac equation [START_REF] Basar | Dynamic noncooperative game theory[END_REF] which only involves the presumably known bounding set D(x):

0 = min ' g(x) -V (x, t), ∂V ∂t (x, t) + max u∈U min d∈ D(x) ∂V ∂x f (x, u, d) ( (14) 
with the boundary condition V (x, T ) = g(x). Once such a map V is computed, the strategy κ " is derived by:

κ " (x) := arg max u∈U min d∈ D(x) ∂V ∂x f (x, u, d) (15) 
having this safe feedback strategy κ " , a cautious exploration can be implemented during which the worst consequence of applying the RL suggested control u = π θ (i) (x) + ν (i) (Section 2.2.2 page 4) is evaluated in terms of safety and if violation is possible, the safe strategy κ " (x (i) ) is applied instead. Probabilistic evaluation (see Section 3.1.2) can also be used instead of the worstcase evaluation in order to avoid over pessimistic design that might lead to reduced exploration performance. In this case, the safe strategy is used only if the constraint violation probability goes beyond some threshold.

The framework is assessed experimentally in [START_REF] Fisac | A general safety framework for learning-based control in uncertain robotic systems[END_REF] to address the problem of safe exploration of RL strategy applied to the problem of the scalar vertical displacement of a quadrotor drone. In this example, the uncertain vertical dynamics (13) takes the following simple form:

ẋ1 = x 2 ; ẋ2 = k T u + g + k 0 + d(x). (16) 
where x 1 stands for the altitude z.

It is worth taking few minutes to examine this example since it is iconic of the impact of RL on our research community. Indeed, Given that the objective is to regulate the variable x 1 = z governed by [START_REF] Bonne | A simulink library of cryogenic components to automatically generate control schemes for large cryorefrigerators[END_REF] in spite of the absence of knowledge of d(x) for which an upper bound D(x) is known, an old fashioned control designer would simply have used the following simple law (assuming, without loss of generality, that u ∈ [-ū, +ū] and k T > 0:

u = ū • tanh ) -β % ż + λ S ( ż -λ(z d -z)) &* (17) 
since this would steer the system to the manifold S(z) = ż-λ(z d -z) = 0 which achieves the regulation task without the need for any learning and a fortiori any safe learning concern. Another more general scheme with provable convergence in the absence of almost no knowledge on the system's model has been recently proposed [START_REF] Mohamed | Robust output feedback controller for a class of nonlinear systems with actuator dynamicsthis work is funded by innov-hydro project[END_REF] to address a wider class of problems that includes (16) as a particular instance.

This example is iconic of a general attitude that can be stated as follows:

In some recent works, the already available and purely control-related solutions are too easily forgotten when it comes to contributing in any possible way to the RL buzzword induced euphoria.

An example of deep understanding via classical control concepts and tools of the achievable performance via adaptation and high gain control can be found in the recent excellent survey [START_REF] Guo | Feedback and uncertainty: Some basic problems and results[END_REF].

Other recent works focused on control-oriented solutions to the safe learning problem based on the use of Barrier functions [START_REF] Choi | Reinforcement learning for safety-critical control under model uncertainty, using control lyapunov functions and control barrier functions[END_REF][START_REF] Hirshberg | Safety considerations in deep control policies with safety barrier certificates under uncertainty[END_REF][START_REF] Wang | Learning control barrier functions with high relative degree for safety-critical control[END_REF], robust MPC [START_REF] Zanon | Safe reinforcement learning using robust mpc[END_REF] or via projection on safe sets [START_REF] Gros | Safe reinforcement learning via projection on a safe set: How to achieve optimality[END_REF] are worth examining for interested readers.

Discussion

Let us take a step back to look at the big picture! Recall that in the nineties, the nonlinear control design via analytic Lyapunov methods [START_REF] Khalil | Nonlinear Systems[END_REF] was the dominant option. The emergent Nonlinear Model Predictive Control (NMPC) [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF] was sometimes even denied the qualification of state feedback by some nonlinear systems theorists 8 because of its implicit nature (no explicit expression of the feedback nor of the associated optimal cost function). The difficult, if not impossible, derivation of Lyapunov-based solutions to general nonlinear systems incited [START_REF] Hou | From model-based control to data-driven control: Survey, classification and perspective[END_REF] (even in 2013!) to classify systems for which, modeling involving high nonlinearities is necessary, as legitimate candidates for data-driven control design.

The success of NMPC and the unavoidable constraints handling task achieved convincing our community that NMPC is probably not so bad an option. However, the desire to have explicit representations that can be computed once for all resisted in the linear case leading to the design of Explicit Linear MPC computation tools [START_REF] Tondel | An algorithm for multi-parametric quadratic programming and explicit mpc solutions[END_REF]. Several years were necessary to acknowledge the non scalability of this option and the comparable complexity to on-line computation even in linear low-dimensional case [START_REF] Borrelli | On the complexity of explicit mpc laws[END_REF].

Having this recall in mind, it is hard not to see in the RL a new avatar of this buried desire to be able to compute the control as a strategy (pre-computed function of the state) that arms the designer against the uncertainties in an explicit, guaranteed, pre-computed and on the top of it, optimal manner.

The previous section suggests that this option is strongly questionable, at least in its general scope claim. The remainder of this paper is dedicated to model-based learning options that might appear to be less ambitious but which are, to the author's opinion, more appropriate for real-life engineering problems.

Scalable model-based learning for control design and certification under uncertainties

The frameworks discussed in this section follow the conclusion of the discussion of Section 2.4. The ambition of designing a stochastic optimal strategy that holds over a whole subset of the state space is abandoned in favor of one of the following three alternatives:

(1) Either by dropping the search for a strategy in favor of the real-time computation of point-wise (given the current state) on-line solution of a stochastic optimization problem. This option repetitively looks for the best sequence of actions (in an approximate stochastic sense) given the current state and applies the first action. At the next instant the process is repeated leading to the so-called stochastic MPC (Section 3.2.1).

(2) Or by dropping the optimality induced characterization that lies under the stochastic dynamic programming formulation (Q-learning) in favor of more pragmatic and scalable output feedback oriented heuristics (Section 3.2.2).

(3) Or by explicitly adopting a parameterized suboptimal solution where a state feedback is designed in a problem-dependent step while leaving some few parameters of the solution to be tuned via randomized optimization. This solution keeps the ambition of deriving a feedback strategy over some subset of the state space but intentionally drops the optimality requirement in order to get a tractable design procedure (Section 3.2.3).

From the above presentation, it comes out that two frameworks need to be briefly recalled before the associated solutions can be discussed, namely, Stochastic Model Predictive Control (SMPC) and stochastic certification via randomized optimization. This is the object of the next section.

Recalls

Hereafter, only brief recalls are proposed for the sake of completeness, interested readers are invited to consult the proposed reference for a detailed exposition.

Stochastic Model Predictive Control

Consider the class of systems governed by:

x + = f (x, u, w) (18) 
where x, u and w stand for the state, control input and uncertainties/disturbance vectors respectively. The map f is supposed to be known. All the uncertainties are gathered in w. Stochastic Model Predictive Control (SMPC) amounts to compute an implicit feedback control based on the repetitive solution of the following optimization problem 9 , expressed at instant k where the state of the system is x k :

P(x k , η) : u " (x k ) ← min u∈U N E % J(u | x k , •) & (19) under Pr % g(u, x k , •) ≤ 0 & ≥ 1 -η (20)
where the expectation in [START_REF] Capone | Anticipating the long-term effect of online learning in control[END_REF] and the probability in [START_REF] Castaeda | Improving input-output linearizing controllers for bipedal robots via reinforcement learning[END_REF] refer to the realization of the uncertainties/disturbance vector profile w. The condensed expression g(u, x k , w) ≤ 0 refers to the vector of constraints to be satisfied. This might gather stage constraints over the prediction horizon as well as terminal constraints at the end of the prediction horizon. This is the reason why the expression involves the control and the uncertainty profiles u and w. The prediction horizon length is denoted by N while U stands for the set of admissible control values.

Note that SMPC can also be formulated as the problem of finding a feedback strategy rather than a control profile (see [START_REF] Mesbah | Stochastic model predictive control: An overview and perspectives for future research[END_REF] for more details). We stick to the latter formulation in accordance with the previous discussion. Note finally that the parameter η in ( 19)-( 20) introduces constraint relaxation as a probability of constraint violation is allowed provided that it is lower than η.

Denoting by u " (x k ) := (u " 0 , . . . u " N -1 ) ∈ U N a solution to P(x k , η), the applied feedback is given by u k = u " 0 in accordance with the receding horizon principle. This control is applied during the time interval (k, k + 1). At the next sampling instant, a new optimization problem P(x k+1 , η) is defined and solved, the first action in the optimal sequence is applied over (k + 1, k + 2) and so on.

Note that the concrete handling of the probability term in (20) over high dimensional uncertainty vector is not straightforward. The probabilistic certification framework discussed in the next section gives appropriate and concrete tools to manage this issue.

Probabilistic certification

Probabilistic certification paradigm addresses the problem of relaxing an original optimization problem including a robust constraint satisfaction requirement involving a decision variable θ ∈ Θ ⊂ R n θ and an uncertainty vector p of the form: min θ∈Θ J(θ) under (∀p) I(θ, p) = 0 (21) 9 There are several alternatives regarding the definition of SMPC and the way the constraints related concerns have to be stated.

where I(θ, p) is defined as follows:

I(θ, p) := + 0 if specification are satisfied 1 otherwise (22)
and where a probability measure P is associated to the uncertainty vector p that is assumed to belong to some admissible set P.

The randomized method replaces the original hard problem ( 21) by the following relaxed problem:

min θ∈Θ J(θ) under Pr{I(θ, p) = 0} ≥ 1 -η (23) 
where Pr{I(θ, p) = 1} represents the probability of the event I(θ, p) = 1 (violation of the requirement) given some statistics of realization of the uncertainty vector p.

Now since the computation of the probability term is a rather involved and expensive task, the randomized method [START_REF] Alamo | Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems[END_REF][START_REF] Alamo | Randomized methods for design of uncertain systems: sample complexity and sequential algorithms[END_REF] simplifies ( 23) by replacing the probability by the mean value over N s drawn independent identically distributed (i.i.d) samples of p in P, namely the new optimization problem becomes:

min θ∈Θ J(θ) under Ns " ℓ=1 I(θ, p (ℓ) ) ≤ m (24) 
which simply replaces the constraint on the probability by a different constraint stating that the mean value of I(θ, p (ℓ) ) over N s random samples to be lower than m/N s , or to state it differently that at most m between the total number N s of samples lead to the violation of the specification. It comes therefore that, for any given admissible number of failures m ∈ N, N s must be such that m N s ≤ η which is obviously only a necessary condition. This is because N s must also be sufficiently large so that the fulfillment of [START_REF] Fisac | A general safety framework for learning-based control in uncertain robotic systems[END_REF] implies that the condition (23) on the probability is satisfied with a probability greater than 1 -δ with a pre-specified small value δ.

That is the reason why the minimum value of N s that makes this implication true involves both the precision specified by η and the confidence level specified by δ.

In [START_REF] Alamo | Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems[END_REF][START_REF] Alamo | Randomized methods for design of uncertain systems: sample complexity and sequential algorithms[END_REF], several expressions for the value of N s are given under different assumptions. An example of upper bounds on N s is given below in the case where Θ is a discrete set of cardinality n Θ . In this case, the following proposition holds [START_REF] Alamo | Randomized methods for design of uncertain systems: sample complexity and sequential algorithms[END_REF]:

Proposition 3.1 Let m ∈ N be any integer. Let δ ∈ (0, 1) be a targeted confidence parameter and η ∈ (0, 1) be a targeted precision parameter. Assuma a design parameter that belong to a discrete set Θ of cardinality n Θ . Table 1 Evolution of the sample size Ns as a function of the precision parameter η and the cardinality nΘ of the design parameter set Θ. A confidence parameter δ = 10 -3 is used while the number of failures m = 1 is used in [START_REF] Garcia-Tirado | Closed-loop control with unannounced exercise for adults with type 1 diabetes using the ensemble model predictive control[END_REF].

Take N s satisfying:

N s ≥ 1 η , m + ln( n Θ δ ) + ) 2m ln( n Θ δ ) * 1/2 - ( 25 
)
then any solution θ to [START_REF] Fisac | A general safety framework for learning-based control in uncertain robotic systems[END_REF] in which the . p (ℓ) / Ns ℓ=1 are randomly i.i.d drawn using the probability measure P satisfies the constraint in [START_REF] David | Deterministic policy gradient algorithms[END_REF] with a probability ≥ 1 -δ.

A remarkable property of the expression (25) enabling the computation of N s is that it is totally independent of the the dimension of the vector of parameters p. This is of a tremendous importance in the context of uncertain models involving high number of uncertain parameters. Another interesting feature of Proposition 3.1 is that the confidence parameter δ appears through logarithmic terms which means that one can seek highly confident assertions without dramatic increase in the number of samples. Table 1 shows examples of lower bounds on the number N s of required scenarios to achieve the certification for different values of the pair (n Θ , η) when the high confidence parameter value δ = 10 -3 is used.

Approximate SMPC schemes

The SMPC topic deserves a survey on its own [START_REF] Mesbah | Stochastic model predictive control: An overview and perspectives for future research[END_REF][START_REF] Mesbah | Stochastic model predictive control with active uncertainty learning: A survey on dual control[END_REF] and frequent updating is necessary because of the rapid undergoing development. Some instances are shown here motivated by the discussion above. The basic difficulty in solving ( 19)-( 20) stems from the expectation and the probability that are involved in the formulation. Indeed, a precise approximation of these quantities needs a high number of samples of the uncertainty realizations to be associated to the current state x k in order to formulate a faithful approximation of the problem to be solved in real-time. The approaches revisited hereafter proposes different ways of addressing this issue in a non yet totally satisfactory manner.

Uncertainties clustering-based solutions

One of the SMPC that is widely used is related to the so-called multi-stage scenario-tree decomposition (see

u 0 u 0 u 0 u 1 u 1 u 1 u 2 u 2 u 2 u 3 u 3 u 3 N r N x k u 1 1 u ℓ 1 u 1 2 u ℓ 2 u 1 9 u ℓ 9 
Fig. 1. Illustration of the tree of scenarios for N = 6, Nr = 2, ℓ = N -Nr = 4 and q = 3.

[ [START_REF] Lucia | A new robust nmpc scheme and its application to a semi-batch reactor example[END_REF][START_REF] Mart | Improving scenario decomposition algorithms for robust nonlinear model predictive control[END_REF] and the references therein). In this approach, the basic assumption is that the value w ∈ R nw of the uncertainty/disturbance vector at each sampling instant lies in a discrete set of moderate cardinality q, say W := {w (1) , . . . , w (q) } where w (i) ∈ R nw . Consequently, the uncertainty profile over a prediction horizon of length N takes values in a set of cardinality q N . The resulting exponential explosion is limited by the assumption according to which the value pf w becomes constant after a limited number of steps N r (defining the so-called robust horizon) as shown in Figure 1. This reduces the number of scenarios to n s := q Nr instead of q N . The resulting tree is shown in Figure 1 for N = 6, N r = 2 and q = 3 where a control profile is associated to each uncertainties profile with some constraints that are discussed below. It is also assumed that the available statistics of the uncertainties enables to associate a probability ω i to each scenario i among the n s = q Nr scenarios under consideration so that a weighted cost function can be defined at instant k by:

ns " i=1 ω i J(u (i) |x k , w (i) ) ( 26 
)
where {w (i) } ns i=1 is the set of scenarios while u (i) is the control profile associated to the i-th scenario. Note however that these control profiles are constrained by the fact that all the control inputs starting from the same state (root) have to be equal. This constraint is referred to as the non anticipation constraint. This is clearly shown on Figure 1 through the notation u 0 , u 1 , u 2 and u 3 . Note that the expression ( 26) is supposed to be an approximation of the expected cost as defined by [START_REF] Capone | Anticipating the long-term effect of online learning in control[END_REF]. Similar weighted constraints can be similarly defined in order to replace [START_REF] Castaeda | Improving input-output linearizing controllers for bipedal robots via reinforcement learning[END_REF].

Obviously, the assumption regarding the finite number q Nr of scenarios might be viewed as a brute force assumption. As a matter of fact, the discrete set of q possible values of w can be viewed as a result of a clustering operation and the corresponding probabilities {ω i } ns i=1 can be obtained as a by-product of the same clustering step using the ratios of population sizes of the clusters to the total number of randomly drawn samples.

Clustering algorithms (K-Means, Mean-shift, DBSCAN, to cite but few available algorithms in the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]) generally perform an unsupervised clustering in the sense that they consider only internal relationships between the elements of the set of samples W := {w [1] , . . . , w [s] } where s ≫ n s to be used in the clustering operation (finding the centers of the clusters and their associated weights):

W unsupervised --------→ clustering W N (27) 
In a recent work [START_REF] Alamir | On the use of supervised clustering in stochastic nmpc design[END_REF], it has been suggested that a supervised clustering can be achieved by inducing the clustering of the elements of W from the unsuprvised clustering of the optimal solutions U " := {u [i]" } s i=1 of the deterministic optimal control problems associated to the elements w [i] of the set W:

W unsupervised --------→ clustering U " induced ------→ clustering W N (28) 
The rationale behind this solution is that uncertainty/disturbance profiles should be considered as similar if they induce the similar optimal solutions even if the disturbances are not close in their own space.

Beside the supervised clustering feature, it is proposed in [START_REF] Alamir | On the use of supervised clustering in stochastic nmpc design[END_REF] to continuously update a FIFO buffer of clusters so that the clustering can be made state-dependent.

The heuristics summarized in this section have been applied to relevant problems such as the problem of uncertainty aware type-1 diabetes [START_REF] Garcia-Tirado | Closed-loop control with unannounced exercise for adults with type 1 diabetes using the ensemble model predictive control[END_REF] as well as the combined therapy of cancer [START_REF] Alamir | On the use of supervised clustering in stochastic nmpc design[END_REF] to cite but few examples. Note that both frameworks involve at some stage, the solution of a deterministic nonlinear optimal control problem that can be achieved using excellent and freely available solvers that are gathered within unified optimization framework such as Casadi [START_REF] Gillis | Casadi: a software framework for nonlinear optimization and optimal control[END_REF].

Learning output-feedback stochastic NMPC from clouds of deterministic solutions

The online computation of the optimization problems invoked in Section 3.2.1 might be incompatible with realtime implementation for a class of systems showing fast dynamics requiring small sampling periods. An intuitive option is to then simulate off-line a high number of closed-loop scenarios and then to learn the resulting feedback using nonlinear modeling structures such as DNN, Random Forest or any other regression model that are available in any Machine Learning package. Once a candidate fitted feedback is available, its performance (in-cluding constraints satisfaction assessment) can be certified using the probabilistic certification framework recalled in Section 3.1.2.

Such a solution is proposed in [START_REF] Karg | Probabilistic performance validation of deep learningbased robust nmpc controllers[END_REF] in order to learn the robust feedback associated to the robust multi-stage tree scenarios approach recalled in Section 3.2.1 and to certify the resulting approximate feedback. More precisely, during the simulated closed-loop scenarios, NMPC feedback based on the solution of the deterministic NLP defined by [START_REF] Geist | Anderson acceleration for reinforcement learning[END_REF] and the associated constraint is used. Once a sufficient learning data is obtained, a DNN is used to capture the structure of the feedback. During the closed-loop simulation, an extended Kalman filter is used to get an output feedback so that the certification implicitly includes the state estimation error. The framework is validated using the quite challenging example of controlling a wind kite under a restrictive altitude constraint. A tightening parameter η (back off on the lower bound of the altitude) is used that can be viewed as a hyper parameter for the control design 10 which is optimized via probabilistic certification.

The framework of [START_REF] Karg | Probabilistic performance validation of deep learningbased robust nmpc controllers[END_REF][START_REF] Karg | Learning-based approximation of robust nonlinear predictive control with state estimation applied to a towing kite[END_REF] heavily relies on the observability assumption which might be quite questionable in the presence of high uncertainties affecting the model's parameters. This being said, it should be emphasized that the learning literature rarely addresses the need for an output feedback and the availability of the state is unfortunately a too frequently used assumption in the learning-based control literature.

A different alternative has been recently proposed [START_REF] Alamir | A heuristic for dynamic output predictive control design for uncertain nonlinear systems[END_REF] that is based on the off-line solution of deterministic problems to build a learning data for the identification of an uncertainty-aware dynamic output feedback.

More precisely, a cloud of pairs {z = (x 0 , w)} z∈Z is considered in which each element z is a pair of initial state x 0 and an uncertainty vector profile w. Obviously, each z defines a deterministic optimal control problem P(x 0 , w) in which both x 0 and w are supposed to be known. Figure 2 shows how the optimal solution of the deterministic optimal control problem P(z) can be used to construct a learning data D(z) associated to z of the form:

D(z) := ' y ",(-) M +j (z), u " M +j (z) ( m-1 j=0 (29) 
in which u " (z) := (u " 0 (z), . . . , u " N -1 (z)) is the optimal control profile (should x 0 and w be perfectly known) while y ",(-) M +j := (y " j , . . . , y " M +j ) stands for the sequence of measurement (including the input) gathered during the interval [j, M + j] (see Figure 2). The rationale behind this choice it that if N = ∞, by the Bellman principle, the control input u " M +j (z) would be the first action in the exact optimal solution associated to the pair (x " M +j (z), w) that would be reconstructed using the previous the output profile y ",(-) M +j should the extended observability condition holds true. For finite prediction horizon N this corresponds to an approximation. This is what is meant by the notation û" 0 (y ",(-)

M +j (z)) := u " M (z) ≈ u " 0 (y ",(-)
M +j (z)) in Figure 2. By so doing, a single NLP solution enables to gather m instances in the learning data that aims to identify the approximate optimal control as a function of the previously measured output. Repeating this process for a cloud of n z = card(Z) samples of z, a learning data of size m • n z can be built from the solution of n z standard deterministic NLP solutions: card

0 1 z∈Z D(z) 2 = mn z (30) 
Here again, once an output feedback map is fitted, its performance can be certified following the same guidelines invoked previously since high number of closedloop simulations can be efficiently conducted in an optimization-free way. In a further stage, it is possible to re-inject the values of z for which the performances show inadequate in the learning process iteratively in order to improve the quality of the fitted map.

The use of the measurement profile y (-) as a feature vector is obviously inspired by the extended observability idea (joint observation of the state and the uncertain parameter vector) but the observability is not a constructive condition for the heuristic implementation. In the absence of strict observability, the fitting step would find the best compromise given the dispersion of the indistinguishable features in the learning data.

In [START_REF] Alamir | A heuristic for dynamic output predictive control design for uncertain nonlinear systems[END_REF], the above framework has been used to derive an uncertainty-aware output feedback applied to address an economic MPC design. Comparisons have been conducted against a perfect-knowledge ideal NMPC on one hand and a nominal NMPC. It comes out that, despite large uncertainties ranging from 20% to 180% of the nominal values, the proposed design recovers 78% of the advantage of having full knowledge of the parameters values compared to the nominal one.

Suboptimal certified strategies via problemdependent parameterization

As already mentioned in Section 2.3.2, quite often, the availability of computation power and user-friendly software that can address complex and ambitious formulation makes it easy to forget simple and efficient solutions that might appropriately address the problem in a simple and elegant way. Indeed, in many real-life situations, one disposes of an uncertain model of the form:

ξ = f 1 (ξ, u, ϕ(η)) (31) η = f 2 (ξ, η, w) (32) y = h(ξ, u) (33) 
where f 1 is a known function involving uncertainty through an uncertain map ϕ that depends on a variable that obeys an uncertain dynamics f 2 that also depends on some exogenous signal w. ξ and η stand for two sub-state vectors. Assume that H 1 ) the control objective and constraints can be expressed in terms of (ξ, u) only, namely:

J(ξ, u) , g(ξ, u) ≤ 0 ( 34 
)
where ξ, u stand for the trajectories of ξ and u over some prediction horizon.

H 2 ) the system defined by: ξ

= f 1 (ξ, u, z) (35) ż = 0 (36) 
is observable; H 3 ) The dynamics (32) is unconditionally bounded.

Under these conditions, it is possible to generically design a Moving-Horizon-Estimator (MHE) [START_REF] Rawlings | Moving Horizon Estimation[END_REF] of the state (ξ, z) of the dynamical system (35)-( 36) which provides an estimation of the unknown term11 :

0 ξ φ2 = MHO(y (-) ) (37) 
The estimation can be used to define a parameterized output feedback of the form

k θ ( ξ, φ) = k θ • MHO(y (-1) )
By so doing it is possible to simulate closed-loop scenarios for different value of the unknown dynamics parameters as well as the initial guess of the observer in order to perform randomized optimal choice of the control parameter θ following the guidelines of section 3.1.2 where p is defined by:

p := (ξ(0), η(0), ξ(0), η(0), w) (38) 
which clearly enables to write J and g invoked in [START_REF] Hou | From model-based control to data-driven control: Survey, classification and perspective[END_REF] as function of (θ, p). This framework is rigorously detailed in [START_REF] Karg | Probabilistic performance validation of deep learningbased robust nmpc controllers[END_REF] but appeared previously, totally or partially, in many application oriented works such as [START_REF] Alamir | On the Use of Parameterized NMPC in Realtime Automotive Control[END_REF][START_REF] Alamir | On probabilistic certification of combined cancer therapies using strongly uncertain models[END_REF][START_REF] Alamir | Feedback law with probabilistic certification for propofol-based control of bis during anesthesia[END_REF] related respectively to automotive control, cancer treatment and propofol-based control of BIS during anesthesia. It is shown how in each specific case, a problem-dependent design of the parameterized control law k θ () can be derived enabling a faster simulation of the high number of closed-loop scenarios required for the certification and probabilistic optimization task.

Miscellaneous: Non covered related topics

As mentioned in the introduction, learning for control is so vast a topic that only a tiny selected set of items has been shortly discussed. Among the interesting topics that are not mentioned in this paper, it is worth mentioning those related to the construction of non parametric models (kernel-based [START_REF] Maddalena | Learning non-parametric models with guarantees: A smooth lipschitz regression approach[END_REF], kinky inference-based [START_REF] Calliess | Lazily adapted constant kinky inference for nonparametric regression and model-reference adaptive control[END_REF][START_REF] Manzano | Robust learning-based mpc for nonlinear constrained systems[END_REF] among many others) and the approximation of associated bounds (maximum modeling error, Lypschitz constants to cite but few ones) that allow the use of standard control design or proof arguments that require the knowledge of such bounds. Recent works related to the propagation of uncertainties [START_REF] Zhu | A new distribution-free concept for representing, comparing, and propagating uncertainty in dynamical systems with kernel probabilistic programming[END_REF], anticipating the learning process [START_REF] Capone | Anticipating the long-term effect of online learning in control[END_REF], joint extended state/parameters estimation error certification [START_REF] Alamir | Partial extended observability certification and optimal design of moving horizon estimators[END_REF], combining system identification and reinforcement learning [START_REF] Martinsen | Combining system identification with reinforcement learning-based mpc[END_REF] or MPC-induced parametrization of reinforcement learning [START_REF] Gros | Data-driven economic nmpc using reinforcement learning[END_REF] are worth examining and might be very promising topics in the near future.

Regarding the computational aspects, the use of parallel computation involving GPU/FPGA [START_REF] Jansen | Gpu++: an embedded gpu development system for general-purpose computations[END_REF][START_REF] Grsoy | Control system implementation on an fpga platform[END_REF][START_REF] Yu | Efficient convex optimization on gpus for embedded model predictive control[END_REF][START_REF] Rathai | Gpu-based parameterized nmpc scheme for control of half car vehicle with semi-active suspension system[END_REF] which play key role in deep learning will certainly play an even increasingly crucial role in all design and certification methods that involve high number of simulations that can be conducted in parallel (only some of them have been discussed above).

Discussion

In this last section, some key issues are discussed which are worth examining carefully when it comes to considering the coupling between learning and control.

Is appropriate modeling really expensive?

Too many papers advocating for massive use of datadriven solutions start by asserting that modeling is an expensive step that is worth avoiding. This is probably true when high fidelity models are thought of, but it is not so accurate if one seeks parameterized models that can be structurally sound in so far as they correspond to a family of behaviors that contains the true one for a combination (although unknown) of parameter values. These models can then be used inside the many uncertain model-based solutions which acknowledge and accommodate for the presence of uncertain parameters as it has been shown in the previous sections. After all, no engineering system falls from the sky, somebody has designed it following our solid understanding of the underlying governing laws.

In order to assess the previous statement, it is worth recalling that there are several domain-specific and available libraries that help modeling real-life systems in a modular and drag-and-drop way: A non exhaustive list of such libraries would include: the Matlab Simscape multi-discipline library12 (electrical, multi-body, fluids, etc), the unified physical system modeling Modelica [START_REF]Modelica -a unified object-oriented language for physical systems modeling[END_REF], the Simulink simcryo library [START_REF] Bonne | A simulink library of cryogenic components to automatically generate control schemes for large cryorefrigerators[END_REF] dedicated to the modeling of cryogenic refrigerators, the psim simulator13 dedicated to microgrids modeling to cite but few examples among so many.

With the development of parametric uncertainty aware solutions such as the ones recalled in the present paper, it is possible that further specific development in controloriented structural modeling might be the appropriate direction to undertake which can reveal consistent in no more than few years. Such solid representation of the processes is currently highly appreciated by the industrial partners of our technologies and algorithms. Moreover, knowledge-based representations are already favorably welcomed as a step towards explainability that is systematically opposed to purely data-driven black-box approaches.

It is quite surprising to witness the emergence of increasingly wide spreading beliefs according to which discarding our first principles-based understanding of the physical world might be an efficient option. A nice discussion regarding this dangerous drift is provided in [START_REF] Sepulchre | To know or to predict[END_REF].

Heuristic vs provable settings

The emergence of data-driven solutions and tools obviously questions the necessary positioning of the control community in the landscape of data-based solutions providers. One of the options that is frequently suggested claims that the control community is very good when it comes to providing provable statements in the form of guaranteed performance/stability and constraints satisfaction.

While this is probably true, the implication of this positioning might be quite risky. This is in particular true when confusion is made between two fundamentally different achievements:

• Providing ad-hoc assumption-based sufficient conditions for a statement to hold;

• Providing a set of checkable, verifiable and real-life compatible14 conditions.

Sticking to the first item is obviously much easier and very much corresponds to a rather common practice in the control community. A danger that lies underneath is to prevent clever and efficient heuristics (including control-culture's inspired ones) that are not prooffriendly to emerge in our publication supports leaving the field of the only solutions that matter in real-life to computer science originated contributions. Another probably more harmful danger is to forget the uncheckable quality of the assumptions and rely on the papers titles to consider that the problem is solved while it is still totally open form a practical and real-life point of view.

Sharing codes and benchmarks

While a mathematical proof can be carefully read and checked, data-related results highly depend on manysometimes hidden-steps (Randomness in data generation, splitting the data into learning and validation 15 , tuning of the model's hyper-parameters, features selections, normalization, choice of the cloud of possibilities, etc). This suggests that a good practice is to share the whole code and data in an accessible form to the readers of accepted publications.

While such practices are commonly encouraged, they should probably become mandatory, at least when the contributions meet some conditions in terms of datadependent content.

Similarly, as mentioned in the paper, very often, quite involved and complex frameworks are assessed using toy ad-hoc examples that might be handled using standard control tools and methods. The arguments implicitly used is that, these are simply illustrative examples but the proposed framework does scale to tackle real-life problems. The suggestion here is just to use only such relevant examples in the first place. Such examples can be built by our community and shared as unquestionably relevant benchmarks that enable to rank the proposed solutions or at least check, in far more convincing way, their effectiveness and scalability.

Teaching Data-related tools in control courses

This paper hopefully underlined many potential fertile combinaisons of control-based ideas and data-related tools and concepts. However, in order for such a potential to materialize in cross-discipline contributions, it is mandatory that data-mining, Machine Learning and AI tools enters the corps of the basic teaching programs of any control-oriented course. This should not be done on a tools developing level but rather in a user oriented manner. In other words, it is crucial to render common and easy to a control designer to experiment different ways of including data-oriented modules in his/her controlinspired solutions.

Such a better understanding and practicing of datarelated tools enable to come out with highly effective surprising solutions but can also help demystifying some other options that might sometimes be wrongly viewed as universal magical solutions to almost any problem.
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 2 Fig.2. Construction of the learning data D(z): by going forward in a moving window along the optimal trajectory computed for a single pair z = (x0, w) it is possible to generate a high number of different samples of pair (y(-) , u) that can be used in the construction of the learning data for the identification of uncertainty-aware output feedback.

The slight difference in the various RL forms is not relevant to the current discussion since the overall assessment and conclusion remain valid.
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that might hold at least for one realistic existing real-life system!