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Abstract

3D-printed structures may be characterized by anisotropic fracture behavior because of their layered nature.
Depending on the orientation of the sample during the layer deposition, a completely different mechani-
cal response can be obtained, ranging from quasi-brittle to elastoplastic, and with large variations in the
maximum stress to failure. In this study, an optimization framework is proposed for 3D-printed samples
to maximize their resistance to fracture with respect to both the orientation of the deposited layers during
the process and the topology of the sample. To achieve this, a phase-field anisotropic elastoplastic fracture
model is combined with a Bidirectional Evolutionary Structural Optimization topology optimization. The
model makes it possible to predict the response of the structure until failure with respect to the orientation
of the deposited layers in the 3D-printing process and then optimize this orientation to maximize the me-
chanical response. A large increase in fracture resistance can be obtained by optimizing the orientation, and
a significant increase in fracture resistance can be achieved using the present nonlinear anisotropic topology
optimization compared with the use of linear topology optimization.

Keywords: Topology optimization, Phase field method, Anisotropic fracture, Elastoplasticity, 3D printing

1. Introduction

Currently, three-dimensional (3D)-printing technologies are revolutionizing the design and manufactur-
ing of products in many engineering fields, including aerospace [1, 2], biotechnology [3], civil engineering
[4, 5], and automotive engineering [6, 7]. The advantages of these techniques include the possibility of
considering new shapes that cannot be obtained directly with classical manufacturing processes. With the
rapid development of topology optimization (TO), new designs can be used to optimize the ratio of weight to
mechanical properties. However, 3D-printing processes may induce additional defects in the manufactured
samples. For example, in Fused Deposition Modeling from thermoplastic materials [8] or Selective Laser Sin-
tering [9] from polymer/metal powder, the parts are built layer by layer (see Fig. 1). The presence of pores
or heterogeneities between the layers may induce a strongly anisotropic behavior, and, more specifically, a
preferential orientation of cracks during the damage of the samples. As a result, the apparent resistance
of the sample may be completely different depending on the orientation of the deposited layers and the
external load, as shown experimentally e.g. in [10–14]. Therefore, it is important to consider the orientation
of the layers in the design of 3D-printed workpieces. However, this point has rarely been considered in the
literature.

The use of TO [15–27] for increasing the fracture resistance of structures is an emergent and exciting
topic in computational mechanics. In the first series of studies, linear fracture mechanics objectives in TO,

∗Corresponding author
Email address: lipengfeihhu@163.com (Pengfei Li)

Preprint submitted to Elsevier January 24, 2022



Deposited layers

Figure 1: Different orientations of deposited layers during a 3D printing SLS (Selective Laser Sintering) process for different
orientations of the sample during the process.

such as the elastic energy released by the crack in tension [28] or stress intensity factors [29], were used.
In another group of studies, the incremental damage response of the structure during a full load, from
initiation to damaged/cracked structures, was considered using various crack modeling techniques, such as
damage, enhanced gradient damage, or extended finite-element method techniques [30–41]. In [42], Suresh
et al. developed a TO method for designing transversely isotropic materials (e.g., additive manufactured
components) in which high-cycle fatigue constraints are considered. Recently, the phase field method [43–54]
(also called the variational approach to fracture in the literature) for simulating the quasi-brittle fracture
of structures and materials was combined with TO [55–62]. This is an important step for TO, with the
objective of increasing the fracture resistance. The phase field can be used in regular meshes, which is
advantageous in TO, and the approach can address the initiation, propagation, and interaction of complex,
multiple 2D and 3D fractures in arbitrary geometric configurations.

In this article, a TO framework is proposed to improve the fracture resistance of 3D-printed structures
with anisotropic elastoplastic behavior, considering the orientation of the layers induced by the 3D printing
process. The optimization is performed with respect to the fracture resistance of the sample, defined as the
cumulative external work of the structure during the entire loading cycle (from zero load until full failure).
Thus a model proposed previously [63] is used to consider the fracture behavior in layered elastoplastic
structures and is combined with the bidirectional evolutionary structural optimization (BESO) TO method.
Several numerical examples are employed to illustrate the methodology and the significance for the design of
3D-printed structures. A topology optimization with objective of fracture resistance maximization, taking
into account an orientation-dependent fracture behavior due to the 3D printing process is proposed here for
the first time to our best knowledge.

2. Phase field modeling of anisotropic elastoplastic damage in 3D printed materials

In this section, an anisotropic elastoplastic fracture model developed previously [63] for 3D printed parts
is described briefly. The proposed model is intended to describe any elastoplastic material associated to a
process for which a layered structure is induced. Such structure has been mainly observed e.g. in polymer
or metallic SLS. Note that Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF) may
lead to more complex local anisotropic behaviors due to the deposition path and may require extensions as
compared to the present framework. The model relies on the phase field method and is based on a variational
principle with a regularized description of discontinuities (see [43, 45, 64] and the review in [48] for classical
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quasi-brittle models). In the present model, two variables are used to describe the damage: one associated
with bulk damage d and the other describing the distribution of micro interfacial damage along the layers
induced by the 3D-printing process, denoted by α, which is associated with an anisotropic damage in the
direction of the weak planes (see Fig. 1). Considering a solid defined in a domain Ω ⊂ R2, with boundary
∂Ω, the total energy of the system is defined by

W =

∫
Ω

(
ψe + ψp + ψd + ψα

)
dΩ−

∫
∂ΩF

F · udS, (1)

where ψe denotes the elastic strain density energy function, ψp denotes the plastic strain density energy
function, ψd is the bulk layer fracture density function, ψα is the micro interfacial fracture density function
, ∂ΩF denotes the Neumann boundary, and F denotes the prescribed forces. We define

ψe =
1

2
(ε− εp) : C (α, d) : (ε− εp), (2)

where ε = 1
2 (∇u + ∇Tu) and εp denote the total and plastic strain tensors, respectively, and the elastic

strain is given by

εe = ε− εp. (3)

Plastic incompressibility is assumed, i.e., Tr(εp) = 0, where Tr(.) is the trace operator. In (2), C (α, d)
is the damage-dependent elasticity tensor, defined as

C (α, d) = g (d)Cα (α) , (4)

where we have chosen

g (d) = (1− d)
2
, (5)

and the matrix form associated with Cα can be expressed as a function of the layer orientation angle θ (see
Fig. 1) as

Cα(α) = Q(θ)TC′(α)Q(θ) (6)

with the transformation matrix

Q(θ) =


c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2

 , (7)

and c = cos(θ), s = sin(θ). In (6) C′ (α) is the effective elasticity matrix in the frame of the layers, given
in the present model by the following quadratic function of α:

C′ (α) =


a1 + a2(1− α)2 b1 + b2(1− α)2 0

b1 + b2(1− α)2 c1 + c2(1− α)2 0

0 0 d1 + d2(1− α)2

 , (8)

where a1, a2, ..., d2 are material constants that can be identified either experimentally or numerically by
RVE (Representative Volume Element) calculations (see [63]).
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The second-order Cauchy stress tensor is defined as

σ =
∂ψe

∂εe
= (1− d)

2 Cα : εe. (9)

In (1), ψp is here chosen as

ψp = σyp+
1

2
Hp2. (10)

This describes a linear isotropic hardening law for the plasticity evolution, where σy and H > 0 denote
the yield stress and hardening modulus parameters, respectively. In (10), p is an equivalent plastic strain
described by the evolution equation

ṗ =

√
2

3
‖ε̇p‖ , (11)

where ˙(.) denotes the time derivative. In (1), ψα and ψd are defined as

ψα = gαc γ
α (α) , ψd = gdcγ

d (d) , (12)

where gαc and gdc represent the fracture toughness with respect to α and d, respectively. In 3D printed
structures, interphase slip does not seem to be the dominant mechanism for failure and is then not taken
into account in the present model. However, models such as cohesive tractions have have been included in
previous phase field models [65] and could be added in future extension.

The bulk layer crack surface density function for d is defined by

γd (d) =
d2

2`d
+
`d
2
∇d · ∇d, (13)

where `d is a length-scale regularization parameter associated with d.
To enforce a preferential direction related to the damage induced by the micro interfacial failure, an

anisotropic crack surface density function is introduced [66, 67]:

γα (α) =
α2

2`α
+
`α
2
ωα : (∇α⊗∇α) , (14)

where `α is the length scale regularization parameter associated with α, and

ωα(θ) = 1 + ξα (1− nα(θ)⊗ nα(θ)) , (15)

where ξα � 1 is a parameter used to penalize the damage along the direction normal to nα (see Fig. 1).
Employing the variational framework for fracture, as introduced in [65, 68, 69], i.e., minimizing the

energy W with respect to u, d, and α with ḋ ≥ 0 and α̇ ≥ 0, yields a set of coupled equations to determine
the fields d(x) and α(x) and the displacements u(x) and ∀x ∈ Ω:

∇ · σ = 0 in Ω,

u = ū on ∂Ωu,

σn = F on ∂ΩF ,

(16)

where n is the unitary normal vector to ∂Ω, ∂Ωu is the Dirichlet boundary, and u are the prescribed
displacements on ∂Ωu.
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gdc
`d

(
d− `2d∆d

)
= 2 (1− d)H in Ω,

∇d · n = 0 on ∂Ω,

d = 1 on Γd.

(17)

The history strain energy density function is employed to prescribe the irreversibility of the bulk damage
field [45] and is defined by

H = max
s∈[0,t]

ψe0 (u, s) with ψe0 =
1

2
εe : Cα : εe. (18)

The irreversibility condition α̇ ≥ 0 is enforced algorithmically (see [63]). The equations associated with
the micro interfacial damage distribution α are given by

1
2 (1− d)

2
εe : ∂C

α

∂α : εe +
gαc
`α
α− gαc `αωα : ∇∇α = 0 in Ω,

∇α · n = 0 on ∂Ω,

α = 1 on Γα,

(19)

where (∇∇α)ij = ∂2α
∂xi∂xj

. Considering J2-plasticity, the yield criterion is given by

Fp =

√
3

2
‖σdev‖ − (σy +Hp) ≤ 0. (20)

Finally,

ε̇p = ṗ

√
3

2

σdev

‖σdev‖
with ṗ ≥ 0, (21)

where σdev := σ − 1
3Tr (σ) 1 is the deviatoric stress tensor.

Equations (16)-(17)-(19) are discretized by finite elements and solved in a staggered scheme, i.e., through
a fixed-point algorithm where the mechanical problem (16) and the phase field problems (17) and (19) are
solved separately. The mechanical problem (16) is nonlinear owing to the elastoplastic behavior and is solved
using a Newton algorithm. The equivalent plastic strain is updated using a return-mapping algorithm [70].
More details about the solving procedure can be found in [63].

3. Topology optimization formulation

In this section, a topological optimization is presented for maximizing the fracture resistance of elasto-
plastic anisotropic material described in Section 2. The method is based on the BESO method [71–73]. In
the proposed procedure, the fracture resistance is defined as the cumulative external work of the structure
for a complete loading, from the initiation of cracks to failure, under the constraint of material volume
fraction.

3.1. Optimization problem statement

The design domain Ω is discretized into Ne finite elements, and each element e is associated with a
topology design variable ρe. The vector {ρ} =

{
ρ1, ρ2, ..., ρNe

}
containing the discrete values for all elements

of the mesh is defined. Following the well-known BESO formulation [71], the design variables take the values
ρe ∈ [0; 1], ρe = 1 for solid material, whereas ρe = 0 corresponds to voids.
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For stability considerations, displacement-controlled loading is adopted. For a prescribed displacement
load, the fracture resistance maximization is equivalent to the maximization of the mechanical work. The
total (cumulated) mechanical work J is approximated by numerical integration using the trapezoidal rule,

J ≈ 1

2

nload∑
n=1

(
fnext + fn−1

ext

)T
∆un, (22)

where nload is the total number of displacement increments, ∆un denotes the prescribed load increment,
and fnext is the external nodal force vector at load n.

During optimization, the material volume fraction is prescribed. Then, the optimization problem dis-
cretized with Ne elements can be formulated as follows [72–74]:

Maximize : J (23)

subject : r = 0 (24)

Ne∑
e=1

ρeve/(

Ne∑
e=1

ve) = f (25)

ρe = 0 or 1, e = 1, 2, ..., Ne. (26)

Here, ve is the volume (area in 2D) of the e-th element, and f is the material volume fraction. Vector r
denotes nodal residual forces

r = fext −
Ne∑
e=1

ρe

∫
Ωe

BT
uσdΩ (27)

where Ωe denotes the element domain, and Bu is the matrix of the displacement shape function derivatives.
In this model, the discrete topology design variable ρe = 0; 1 indicates the existence of the associated

solid element e, whereas the constitutive behavior is assumed to be independent of ρe. This assumption
does not require the definition of supplementing pseudo-relationships between intermediate densities and
their constitutive behaviors, as in the case of models of the solid isotropic material with penalization type
[58, 75], thus avoiding the construction of Cα in Eq. (8) for all intermediate densities and being well-suited
for the present phase field model.

3.2. Sensitivity analysis

The derivation of the sensitivity requires the use of the adjoint method (e.g., [55, 76]). Assuming that
the displacement problem has been solved, the Lagrangian is introduced:

J =
1

2

nload∑
n=1

{(
fnext + fn−1

ext

)T
∆un + (λn1 )

T
rn + (λn2 )

T
rn−1

}
. (28)

Here, rn and rn−1 are the residuals of (27) at the n-th and (n − 1)-th load increments, respectively.
Furthermore, λn1 and λn2 are Lagrange multipliers with the same dimensions as the displacement vector u.

The final objective derivatives can be obtained as

∂J

∂ρe
= −1

2

nload∑
n=1

{
(λn1 )

T
∫

Ωe

BT
uσ

ndΩ + (λn2 )
T
∫

Ωe

BT
uσ

n−1dΩ

}
(29)

with

λn1,E = −∆unE, λn1,F =
(
Kn

tan,FF

)−1
Kn

tan,FE∆unE (30)
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λn2,E = −∆unE, λn2,F =
(
Kn−1

tan,FF

)−1

Kn−1
tan,FE∆unE (31)

where we define two sets among all degrees of freedom: essential (index E; associated with Dirichlet boundary
conditions) and free (index F) nodal values, e.g.. For a vector v and a matrix M we have:

v ∼

 vE

vF

 and M ∼

 MEE MEF

MFE MFF

 . (32)

The tangent stiffness matrix of the nonlinear mechanical system at the equilibrium of the m-th load
increment is defined as

Km
tan = − ∂rm

∂um
(33)

3.3. BESO updating scheme

The BESO variable updating scheme for this work follows part of the basic procedure presented in [73, 74].
In addition, a normalization strategy introduced previously [77] is used to improve the TO convergence.

The target material volume fraction f is reached by removing the material from the entire design domain,
i.e.,

f
k

= max
{
f, (1− cer) f

k−1
}
, (34)

where f
k

is the material volume fraction at the k-th design iteration, and cer is an evolutionary ratio that
determines the percentage of material to be removed from the design of the previous iteration. The actual
volume fraction obtained during the design iterations usually deviates slightly from the prescribed value.
Once the target material volume fraction f is reached, the optimization algorithm only modifies the topology
but keeps the volume fraction constant.

At each design iteration, the sensitivity numbers, which denote the relative ranking of the element
sensitivities, are used to determine the material removal and addition. Thus, without changing the relative
ranking of the element sensitivities, a normalization strategy introduced elsewhere [77] is employed to force
the element sensitivities φe to distribute in an interval of [0, 1], i.e.,

φe =
Xe −Xmin

Xmax −Xmin
, e = 1, 2, ..., Ne (35)

where Xe is the element sensitivity obtained in (29), and Xmax and Xmin denote the maximum and minimum
values of Xe, e = 1, 2, ..., Ne, respectively.

With this normalization strategy, the magnitude of the sensitivities can be efficiently unified to the same
order while maintaining a history-averaging technique, thus avoiding the possible numerical instabilities of
the TO process caused by the strong nonlinearity.

After normalization, the new sensitivities are smoothed to avoid mesh dependency by using a filtering
scheme [78]

φe =

∑Ne
j=1 wejφj∑Ne
j=1 wej

, (36)

in which wej is a linear weight factor

wej = max (0, rmin −∆ (e, j)) (37)

which is determined by the prescribed filter radius rmin and the element center-to-center distance ∆ (e, j)
between element e and j. Then a history-averaging technique [74, 79, 80] is employed to improve the
convergence of the TO process.
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4. Numerical examples

In this section, several illustrative examples of 3D-printed elastoplastic structures subjected to cracking
are presented. The proposed framework is used to design the optimal topology of the structures to resist
cracking, considering the orientation of deposited layers during the process. Two-dimensional examples are
considered with the plane stress assumption. The material properties for all numerical examples are the
same and are defined as follows: E = 10 GPa, ν = 0.25, σy = 0.05 GPa, H = 0.1 GPa, gdc = 5.2 × 10−3

kN/mm, and gαc = 1.4× 10−3 kN/mm.

(a)

(b)

L

L0.1 L

Quadratic fit Quadratic fit

Quadratic fit Quadratic fit

’’

’

’ ’

’

’ ’

©(c)

Figure 2: (a) Layer structure in a 3D printed material. The layers are separated by porous interphases (white dotted lines); (b)
numerical mesh of a periodic cell associated with the material; (c) evolution of the effective elastic moduli computed numerically
as a function of the degradation of the interface α.

In this work, the material coefficients in C′ (see Eq. (8)) were identified numerically by RVE calculations
from an RVE corresponding to a layered RVE (see Fig. 2 (b)). The material parameters for the matrix
were chosen as follows: E = 10 GPa, ν = 0.25. We denote the Young’s modulus of the interphase EI with
respect to the micro interfacial damage parameter α according to:

EI(α) = G(α)E, G(α) =
(1− α)

2

χ− (χ− 1) (1− α)
2 with χ ≥ 1. (38)

The Poisson’s ratio νI for the interphase is assumed to be independent on α: νI = ν. The evolution
of the identified componenents of C′ is shown in Fig. 2. The corresponding coefficients in C′ are: a1 = 9,
a2 = 1.67, b1 = c1 = d1 = 0, b2 = 2.67, c2 = 10.67, and d2 = 4.

In the present model, the defects between the layers induced by the 3D printing process are taken into
account by the presence of the weak interphase (see Fig. 2 (a)-(b)) and the related interfacial damage
model, which induces the anisotropic fracture behavior. The morphology and distributions of pores at the
interfaces between the deposited layers can be explicitly described in the RVE (see e.g. [63]). If experimental
observations are available to provide information about the layers and porous interphase thicknesses, they
can be included in the description of the RVE. If not, the coefficients in (8) can be fitted from macroscopic
calculations on samples for different orientations.
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The parameters of the numerical model are as follows. In all examples, a uniform mesh of quadrilateral
bilinear elements was employed. The characteristic length scale parameters `d and `α were both set to be
twice the typical finite-element size `d = `α = 2he. The parameter cer in (34) was set to 0.02. The filter
radius rmin was set to rmin = 6he, and ξα = 30 was used.

4.1. Topology optimization of a L-shaped bracket: Type I

As a first example, a bracket defined in an L-shaped design domain is considered, as shown in Fig. 3(a).
The domain was uniformly discretized into 3600 square bilinear elements with he = 0.5 mm.

We have shown in our previous work [63] that even though the results depend on the grid size, the results
are convergent when the grid is refined for the proposed anisotropic fracture model. In addition, a common
point for any topology optimization technique is that the final topology depends on the size of the grid used
during the topology optimization procedure. Analyzing the dependence on the final geometries with respect
to the grid size is an interesting point, and could be analyzed in future studies.

The boundary conditions were as follows: on the upper end, the x, y-displacements were fixed. On the
left side, the vertical displacements were prescribed with fixed incremental displacement loads of ∆U = 0.002
mm. The target volume fraction of the solid material in the final structure was set to f = 60%.

3
5

1
5

15 10

U

U

3
5

1
5

1510

Type I Type II

(a) (b)

Figure 3: Two 3D printed structures; the angle θ indicates the orientation of the layers induced by the 3D printing process.
(a): Type I L-shaped bracket; (b) Type II L-shape bracket.
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(c)
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Figure 4: Interfacial damage (α), bulk damage (d) and equivalent plastic strain (p) in the Type I L-shaped bracket structure
subjected to a load on the y−direction. The angle θ indicates the orientation of the layers induced by the 3D printing process:
(a) θ = 0◦; (b) θ = 60◦; (c) θ = 90◦.

First, the fracture process in the initial domain (without TO) was investigated. Fig. 4 shows the
final interfacial damage (α), bulk crack (d), and equivalent plastic strain (p) fields for three different layer
orientations. When θ = 0◦ and θ = 60◦, the failure of the structure was mainly caused by the propagation
of micro interfacial cracks (represented by the α distribution) along the layer orientation. However, for
θ = 90◦, the activation of the bulk layer damage d indicates that the fracture of the bulk layers was the
main mechanism that caused the failure of the structure. One can also observe a significant distribution of
the equivalent plastic strain field in that case, which did not occur for the other orientations. It is worth
noting that different fracture modes can be observed in this example with respect to the orientation angle.
For example, mode I occurs for θ = 0◦, while for θ = 60◦, mode II occurs.
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Figure 5: Load-displacement curves for a Type I L-shaped bracket (non-optimized geometry). The angle θ denotes the
orientation of the layers in the structure due to the 3D printing process.

J=55.7 mJ

Figure 6: Evolution of the design during topology optimization of the Type I L-shape bracket, for an orientation of the 3D
printed layers θ = 0◦. Final crack patterns (interfacial damage field α) are depicted for different steps of the optimization
procedure. The evolutions of the final external work and volume of solid are depicted in blue and red colors, respectively.

The corresponding load-displacement curves for different layer orientations are shown in Fig. 5. The
peak load increases with an increase in the layer orientation angle θ. For θ = 90◦, a long plastic stage can
be observed. This first investigation illustrates that the proposed anisotropic phase field model can consider
the orientation of the layers to describe the fracture process and describe the transition from quasi-brittle to
elastoplastic behavior with damage according to the layer orientation. In addition, even without considering
TO, the proposed model makes it possible to optimize the orientation of the sample in the 3D printing
process with respect to the layer deposition to maximize the mechanical strength.
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J=58.7 mJ

Figure 7: Evolution of the design during topology optimization of the Type I L-shape bracket, for an orientation of the 3D
printed layers θ = 60◦. Final crack patterns (interfacial damage field α) are depicted for different steps of the optimization
procedure. The evolutions of the final external work and volume of solid are depicted in blue and red colors, respectively.

J=91.5 mJ

Figure 8: Evolution of the design during topology optimization of the Type I L-shape bracket, for an orientation of the 3D
printed layers θ = 90◦. Final crack patterns (interfacial damage field α and bulk damage d) are depicted for different steps of
the optimization procedure. The evolutions of the final external work and volume of solid are depicted in blue and red colors,
respectively.

Figs. 6-8 show, respectively, the design history using the present TO framework and the corresponding
final crack patterns for θ = 0◦, θ = 60◦, and θ = 90◦. The objective value fluctuates and globally decreases
as the material is removed until the prescribed material volume fraction is reached. In Fig. 7, the objective
value slightly improves while the material is removed from initial 100% to 80%. This indicates that, for the
same fracture resistance performance, the required amount of material can be saved using this proposed TO
process. Fig. 8 shows that oscillations occur in the transition from elastoplastic to quasi-brittle behaviors
before convergence. Good convergence of the proposed scheme was achieved in all cases.

Fig. 9 shows the final interfacial damage (α), bulk crack (d), and equivalent plastic strain (p) fields
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for the corresponding optimized final designs, for different orientations of the layers. For all orientations,
the main fracture mechanism appears to be the interfacial damage because the field d does not significantly
develop. The corresponding load-displacement curves in Fig. 10 reveal that the response for the case θ = 90◦

induces a larger resistance to fracture, but there are no significant differences in the quasi-brittle nature of
the response. Compared to the load-displacement curve for initial design domain shown in Fig. 5, the load-
diaplacement curve for θ = 90◦ optimized design does not show a significant plastic stage. Several reasons
can cause the difference: (i) the optimized design is 60% volume fraction of the initial design domain, which is
obtained by removing material from the initial design domain; (ii) the optimized design fails earlier because
of the interfacial crack initiation and propagation which are much easier than the bulk crack initiation and
propagation.

p p

p
(a)

(c)

(b)

Figure 9: Optimized designs for the Type I L-shape structure. The final interfacial damage fields α, bulk crack d and equivalent
plastic strains p are indicated for different orientation angles θ of the deposited layers during the 3D printing process: (a) θ = 0◦;
(b) θ = 60◦; (c) θ = 90◦.

To evaluate the gains provided by the proposed framework, an analysis was performed. First, a classical
TO of the structure was performed considering a linear behavior with the material volume fraction constraint
and the same parameters. The obtained topologies are called ”isotropic linear” (IL). However, the fully
nonlinear framework TO described in section 3 was used to obtain the final design, called ”anisotropic
elastoplastic fracture” (AEF). Then, both designs were used to perform a fracture simulation using the
anisotropic fracture model described in section 2. Fracture patterns for different orientations are shown in
Figs. 11. The corresponding comparisons of the load-displacement curves and design objective values for
the IL and AEF designs are shown in Figs. 12. The gains in fracture resistance with the increase in external
work were evaluated for the IL and AEF designs. Increases of 18%, 15%, and 8% were obtained for the
orientations θ = 0◦, θ = 60◦, and θ = 90◦, respectively. A higher gain was obtained in the case of θ = 0◦.
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Figure 10: Load-displacement curves for a Type I L-shaped bracket (optimized design). The angle θ denotes the orientation of
the layers in the structure due to the 3D printing process.
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Figure 11: Final crack patterns (interfacial crack damage α) for optimized designs of the type I L-shape bracket structure.
”IL” indicates that the topology optimization has been conducted using Isotropic Linear fracture behavior. ”AEF” indicates
that the topology optimization has been conducted using anisotropic fracture behavior.
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Figure 12: Load-displacement curves for optimized designs of the type I L-shape bracket structure. The red curves correspond
to the optimized design obtained using a classical linear isotropic fracture behavior (IL). The blue curves are obtained using
the present fully anisotropic Fracture behavior (AEF). The values J indicate the values of the objective function. The curves
are depicted for different orientation angles of deposited layers during the 3D process.

14



4.2. Topology optimization of a L-shaped bracket: Type II

In the next example, the problem defined in Fig. 3(b), which depicts the geometry of the design domain
and the boundary conditions, was considered. The geometry is similar to that in the previous example, but
the boundary conditions induce a different distribution of strains within the structure. Again, the domain
was uniformly discretized into 3600 square bilinear elements with he = 0.5 mm. The boundary conditions
were as follows: on the lower end (y = 0), the x, y-displacement was fixed. On the upper end, the horizontal
displacements were prescribed with fixed incremental displacement loads ∆U = 0.002 mm. The target
volume fraction in the optimized structure was set to f = 60%.

The final interfacial damage, bulk crack, and equivalent plastic strain field in the initial design domain
for the three different layer orientations are shown in Fig. 13. In this case, when θ = 0◦ and θ = 120◦, the
failure of the structure was mainly caused by the propagation of micro interfacial cracks (represented by the
α distribution) along the layer orientation. However, for θ = 90◦, the activation of the bulk layer damage d
indicates that the fracture of the bulk layers was the main mechanism causing the failure of the structure
in this case.

p p

p
(a)

(c)

(b)

120

Figure 13: Interfacial damage (α), bulk damage (d) and equivalent plastic strain (p) in the Type II L-shaped bracket structure
subjected to a load on the y-direction. The angle θ corresponds to the orientation of the layers induced by the 3D printing
process: (a) θ = 0◦; (b) θ = 60◦; (c) θ = 90◦.

The corresponding load-displacement curves for different layer orientations are shown in Fig. 14. Here
again, the orientation θ = 90◦ exhibits a very different response, with a flattening of the curve, which can be
attributed to the high development of plasticity. In this case, the proposed model makes it possible to select
the optimal direction for improved mechanical resistance as θ = 90◦. It is not always intuitive to define the
optimal angle orientation by simply considering the geometry of the sample and loading orientation. Thus,
such a model can greatly aid the design of 3D-printed samples.
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Figure 14: Load-displacement curves for a Type II L-shaped bracket (non-optimized geometry). The angle θ denotes the
orientation of the layers in the structure due to the 3D printing process.

To illustrate this point better, the maximum load before failure and the cumulative external work,
interpreted here as the fracture resistance, were computed as a function of the orientation angle θ for both
structures (Type I bracket and Type II bracket structures), as shown in Figs. 15 and 16, respectively. These
figures show that there is an optimal resistance with respect to the angle, which corresponds to approximately
θ = 95◦ for the Type I bracket and θ = 80◦ for the Type II bracket. The experimental observations in [10, 81]
also illustrate that the fracture resistance for 3D-printed samples significantly depends on the printing angle,
and the maximal fracture resistance tends to occur around the crack-vertical printing orientation.
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Figure 15: Maximum load to failure in two structures (Type I and Type II L-shape structures) as a function of the layer
orientation angle θ chosen during the 3D printing process.
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Figure 16: External work (interpreted as fracture resistance) in two structures (Type I and Type II L-shape structures) as a
function of the layer orientation angle θ chosen during the 3D printing process.

For the Type I bracket, an increase in the external work (fracture resistance) of approximately a factor
4 can be obtained by appropriately choosing the orientation of the sample. Such optimization clearly brings
large gains at no additional cost.

Figs. 17-19 show, respectively, the design evolutions and associated final crack patterns for θ = 0◦,
θ = 90◦, and θ = 120◦. for the θ = 0◦ and θ = 120◦ cases, the objective values gently improved while
the material was removed for the first 13 design iterations, and both had a sharp decrease and reached the
final convergence. This resulted from material removal in the path of the crack in the sample, as two ”legs”
were formed on the bottom of the sample (see, for example, Fig. 17). In all cases, global convergence was
achieved.

J=29.0 mJ

Figure 17: Evolution of the design during topology optimization of the Type II L-shape bracket, for an orientation of the 3D
printed layers θ = 0◦. Final crack patterns (interfacial damage field α) are depicted for different steps of the optimization
procedure. The evolution of the final external work and volume of solid are depicted in blue and red colors, respectively.
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J=127 mJ

Figure 18: Evolution of the design during topology optimization of the Type II L-shape bracket, for an orientation of the 3D
printed layers θ = 90◦. Final crack patterns (interfacial damage field α and bulk damage field d) are depicted for different
steps of the optimization procedure. The evolution of the final external work and volume of solid are depicted in blue and red
colors, respectively.

Fig. 20 shows the final interfacial damage, bulk crack, and equivalent plastic strain field for the corre-
sponding final designs. The final designs for θ = 0◦ and θ = 120◦ failed mainly because of micro interfacial
cracking mechanisms. However, for θ = 90◦, the activation of the bulk damage d indicates that the mecha-
nism was, in this case, the cracking of bulk layers. The corresponding load-displacement curves are shown
in Fig. 21. In this case, it is obvious that the orientation angle θ = 90◦ is again the optimal orientation of
the sample in the 3D-printing process to maximize the mechanical resistance.

J=31.5 mJ

Figure 19: Evolution of the design during topology optimization of the Type II L-shape bracket, for an orientation of the 3D
printed layers θ = 120◦. Final crack patterns (interfacial damage field α) are depicted for different steps of the optimization
procedure. The evolution of the final external work and volume of solid are depicted in blue and red colors, respectively.
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Figure 20: Optimized designs for the Type II L-shape structure. The final interfacial damage fields α, bulk crack d and
equivalent plastic strains p are indicated for different orientation angles θ of the deposited layers during the 3D printing
process: (a) θ = 0◦; (b) θ = 60◦; θ = 90◦.
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Figure 21: Load-displacement curves for a Type II L-shaped bracket (optimized design). The angle θ denotes the orientation
of the layers in the structure due to the 3D printing process.
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Figure 22: Final crack patterns (interfacial crack damage α and bulk crack damage d) for optimized designs of the type II
L-shape bracket structure. ”IL” indicates that the topology optimization has been conducted using Isotropic Linear fracture
behavior. ”AEF” indicates that the topology optimization has been conducted using anisotropic fracture behavior.
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Figure 23: Load-displacement curves for optimized designs of the type II L-shape bracket structure. The red curves correspond
to the optmized design obtained using a classical linear isotropic fracture behavior (IL). The blue curves are obtained using
the present fully anisotropic Fracture behavior (AEF). The values J indicate the values of the objective function. The curves
are depicted for different orientation angles of deposited layers during the 3D process.

As in Section 4.1, the improvements provided by the proposed analysis compared with a design obtained
by TO were demonstrated under a linear assumption. Fracture patterns for different orientations are shown
in Figs. 22. The corresponding comparisons of the load-displacement curves and design objective values for
the IL and AEF designs are shown in Figs. 23. For θ = 0◦ and θ = 120◦, a reasonable improvement in the
external work ( 20% and 18%, respectively) was found. However, for the case θ = 90◦, an improvement of 51%
was obtained over the simple IL analysis, fully justifying the consideration of the anisotropic elastoplastic
damage model in the proposed TO framework.

5. Conclusion

A TO framework that considers the orientation of the deposited layers in 3D-printed structures and an
elastoplastic anisotropic fracture model was proposed. The model can describe the transition from quasi-
brittle to elastoplastic fracture behavior according to the layer orientation. A large increase in the fracture
resistance (cumulated external work and maximum stress to failure) can be obtained by optimizing the
deposited layer orientation (angle in 2D) in the 3D printing process. Furthermore, the present framework
makes a significant increase in the fracture resistance possible for a minimal amount of material owing to the
TO process in comparison with simpler, isotropic linear TO. Such a framework should facilitate the design
of 3D-printed parts with increased fracture resistance while lowering costs because of material saving, which
is of major interest to industry. Experimental validations of the proposed simulations constitute an exciting
perspective for this work.
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