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Abstract

A newmachine-learning based multiscale method, called k-means FE2, is introduced
to solve general nonlinear multiscale problems with internal variables and load-
ing history-dependent behaviors, without use of surrogate models. The macro scale
problem is reduced by constructing clusters of Gauss points in a structure which are
estimated to be in the same mechanical state. A k-means clustering - machine learn-
ing technique is employed to select the Gauss points based on their strain state and
sets of internal variables. Then, for all Gauss points in a cluster, only one micro non-
linear problem is solved, and its response is transferred to all integration points of
the cluster in terms of mechanical properties. The solution converges with respect
to the number of clusters, which is weakly depends on the number of macro mesh
elements. Accelerations of FE2 calculations up to a factor 50 are observed in typical
applications. Arbitrary nonlinear behaviors including internal variables can be con-
sidered at the micro level. The method is applied to heterogeneous structures with
local quasi-brittle and elastoplastic behaviors and, in particular, to a nuclear waste
package structure subject to internal expansions.
KEYWORDS:
Multiscale; FE2; k-means clustering; Nonlinear; Homogenization; Machine learning

1 INTRODUCTION

Machine learning, Artificial Intelligence andData Sciences have recently attracted a lot of attention in the computationalmechan-
ics community. These techniques may offer new possibilities like reducing computational times, automating construction of
models from data, or automating mappings between models and material characteristics or microstructural patterns.
One first example of use of machine learning in mechanics is the construction of models from data. For example, Artificial

Neural Networks (ANN) have shown promising results to reproduce stress-strain curves of behaviors in complex configura-
tions like high temperatures loadings1, design of steel structures2, vibrational behavior of structures3,4, or structural stability
problems5.
Another application importing techniques from machine learning is the recognition of patterns and the construction of a

relationship between material topological features and some models. For examples in6,7, machine learning was used to relate
microstructures to their effective thermal or mechanical effective properties. In8 Ryckelynck et al. used image recognition and
non supervised machine learning techniques for classification issues and the construction of digital twins of material defects in
nonlinear mechanical simulations.
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More recently, Ortiz et al.9 developed a fully data-driven approach to replace constitutive law in finite elements simulations
by direct use of data, by searching in a data base the closest data point to be used at the local Gauss points, then removing the use
of empirical constitutive laws. In10, Carrara et al. constructed fracture models where modeling assumptions were removed and
the governing equations stemming from variational principle were combined with discrete data points, leading to a model-free
data-driven method for solving fracture problems.
Strategies using machine learning have also recently been developed to describe complex phenomena like dynamics

trajectories or fluid sloshing without solving the partial differential equations11,12.
Another exciting field of application of these techniques is multiscale modeling. One major difficulty in multiscale numerical

simulation occurs when dealing with nonlinear materials. One direct approach to simulate the behavior of a nonlinear heteroge-
neous structure resorts to the so-called FE2 technique13,14, where two levels of Finite Element simulations are conducted, one
at the scale of the whole structure, and the other at the microscale where nonlinear simulations are performed over Representa-
tive Volume Elements. The major drawback of such an approach is its computational cost, related to the unacceptable number
of nonlinear calculations to be performed. Among the different strategies to reduce these calculations, one method, initiated
in15,16, makes use of so-called data-driven approaches in which micro scale calculations are performed during an off-line stage,
and which are then used as data in an on-line stage to reconstruct the macroscopic (effective) behavior. For this purpose, several
techniques have been proposed, including interpolation methods15,17, Neural Networks16,18,19,20,21,22,23, Bayesian inference24,
Fourier series expansions25, Gaussian process26, or self-clustering analysis27,28. In the related techniques, the off-line data col-
lection is used in a regression process to construct an accurate surrogatemodel whose evaluation is of several orders of magnitude
lower than performing one micro scale nonlinear calculation. A critical comparison of several regression techniques used in
data-driven multiscale approaches can be found in29. In30, Avery et al. investigated and discussed several regression methods
with ANN in homogenization problems of hyperelastic woven composites, and demonstrated its use in advanced dynamic/fluid
structure applications. Recent advances of data driven techniques, including handling loading history-dependent behaviors like
plasticity can be found in31,11,23. On-the fly construction of the surrogate model by probabilistic machine learning was proposed
in26. Developments of neural networks techniques in FE2, including Feed-Forward and recurrent Neural Networks can be found
in19,31. In32,33, both homogenization and localization of heterogeneous hyperelastic materials were performed using a digital
database and the manifold-based nonlinear reduced order model (MNROM).
However, the main challenge in the aforementioned techniques is that they are adapted only to some classes of constitutive

behaviors and lack generality. More specifically, handling internal variables and loading-dependent behaviors still remains deli-
cate. In addition, neural networks and related surrogate model techniques lack error estimation, especially when the parameters
are out of the training parameter data set34.
The objective of this paper is then to propose a new machine-learning based multiscale method, called k-means FE2, to

solve general nonlinear multiscale problems with internal variables and loading-dependent behaviors, without use of surrogate
models. For this purpose, we employ a new paradigm: instead of reducing the microscale problem calculations, we reduce the
macro scale problem by constructing clusters of Gauss points in a structure which are assumed to be in the same mechanical
state. A k-means clustering - machine learning technique is employed to select the Gauss points based on their strain state and
sets of internal variable. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is
transferred to all points of the cluster. The operation is repeated until convergence is reached at both macro and micro scales.
Drastic computational reductions can be achieved, and error can be controlled by gradually increasing the number of clusters
at the macro scale. Note that the present method is totally different from the so-called Self-Clustering analysis proposed by Liu
et al.27,28, which involves clustering algorithms at the micro scale, and which uses a Lippmann-Schwinger integral equation to
accelerate micro equations. We summarize the main features of the proposed technique as follows:

• Convergence is obtained with respect to the number of clusters.
• Validation is made with respect to direct FE2 solutions.
• Convergence is given with respect to the macro mesh size.
• Computational gains between 1 and 2 orders of magnitude can be achieved for similar accuracy when compared to full

FE2 solutions. Larger gains can be obtained if larger errors are accepted.
• A simple error analysis can be achieved by gradually increasing the number of clusters.
• Nonlinear behaviors can be arbitrary (plasticity, damage, etc.) with internal variables.
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• The number of clusters weakly depends on the one of macro mesh elements.
The organization of the paper is as follows. In section 2, the basics of k − means clustering analysis are recalled. In section

3, the k-means FE2 method is presented. In section 4, numerical examples are provided to illustrate the aforementioned features
of the method and its potential use for industrial applications.

2 K-MEANS CLUSTERING

In this section, we briefly recall the basics of the k-means clustering method35. This algorithm is used to classify data into
groups, or clusters, with similar features. Clustering methods are widely used in data mining36, data compression37, and pattern
classification38. Given a set ofN vectors

 =
{

v1, v2, ..., vN
}

, (1)
the k-means algorithms aims at defining K clusters k , k = 1, 2, ..., K:

k =
{

vk1 , v
k
2 , ..., v

k
Nk

}

, (2)
each containingNk vectors vki , whereNk can be different for each cluster k. We define the centroid of a cluster according to

vk = 1
Nk

∑

i∈k

vki (3)
and the Euclidean distance between one data point (vector) vj and the centroid of a cluster k by

dkj = ‖vj − vk‖. (4)
where ‖u‖ = √

u ⋅ u. Mathematically, the objective of the k-means algorithm is to find the sets k such that the following
objective function

J =
∑

k

∑

i∈k

‖vi − vk‖2 (5)
is minimized. The number K is chosen by the user. The centroids are initialized by choosing K arbitrary vectors vkm ∈  , and
assigning vk = vkm at the first iteration. Then, the algorithm runs as follows39. At each iteration r, for each data point vi ∈  , the
Euclidean distance to the centroid of each cluster is computed according to (4). A data point (vector) vi is simply assigned to a
cluster k if its distance to the cluster is minimal among all clusters

k =
{

vi| ‖vi − vk‖ ≤ ‖vi − vm‖,∀m with m ≠ k
}

. (6)
The process goes on until a criterion is reached. Here, we choose the simple stopping criterion:

ΔJ = |J (r) − J (r−1)| = 0 (7)
where J (r) is given by (5) at iteration r of the algorithm. The k-means algorithm is summarized in Algorithm 1.
An illustration in the context of a 3D linear finite element calculation is provided in Fig. 1. Here, the algorithm is applied

to classify the Gauss points in the finite elements mesh according to their strain components values. A perforated plate under
uniaxial tension is considered, whose dimensions, boundary conditions, and loading are described in section 4.2. Figs. 1a, 1b,
1c show the distributions of the strain components "11, "22 and "12 in the elements of the mesh. Here, as one Gauss point per
element is used, the elements are associated to the Gauss points. After solving the FEM problem, the strain components are
obtained in each element in a vector form as:

vTi =
[

"11, "22, "33, 2"13, 2"23, 2"12
]

. (8)
Here the number of clusters is chosen as k = 5. Fig. 1d depicts the initial data points (elements) selected to initialize the

clusters. Figs. 1e-1l show the positions of the clusters at different iterations. In this example, the convergence is achieved in 25
iterations. Note that the convergence rate of the algorithm depends on the number of clusters k and on the number of vectorsN
in  (here the number of elements in the FEM mesh).
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(a) "11 (b) "22 (c) "33

(d) iteration 0 (e) iteration 1 (f) iteration 2

(g) iteration 3 (h) iteration 5 (i) iteration 9

(j) iteration 15 (k) iteration 20 (l) iteration 25

FIGURE 1 Application of the k-means algorithm for classifying the elements in a FEM linear calculation according to their
strain components: (a), (b), (c): components of the strain tensor; (d): initialization of the clusters by choosing arbitrary elements
in the structure; (e)-(l): positions of the clusters at iterations 1, 2,3,5,9,15,20 and 25 respectively.
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Algorithm 1 k-means clustering
1: Initialize vk = vkm, where vkm are randomly chosen vectors in  .
2: Set the number of clusters K .
3: WHILE ΔJ (R) ≠ 0
4: Assignment phase: assign each data point to the cluster k according to the nearest cluster centroid criterion.

k =
{

vi| ‖vi − vk‖ ≤ ‖vi − vm‖,∀m, m ≠ k
}

.
5: Update centroids:

vk = 1
Nk

∑

i∈k vki
6: Test convergence:

J (r) =
∑

k
∑

i∈k,(r) ‖vi − vk,(r)‖2
ΔJ = |J (r) − J (r−1)|

7: END

(a) (b)

FIGURE 2 (a) Classical FE2 method: one nonlinear RVE calculation is required at each Gauss point of the macro mesh; (b)
k-means FE2: only one RVE calculation is required for each cluster (depicted in different colors).

3 A K-MEANS FE2

3.1 Brief review of the FE2 method
The multilevel finite-element method13,14, also called FE2 in the literature, as it involves two levels of finite-element simulations,
and independently proposed by several other authors and groups40,41,42,43,44,45, was introduced as a general multiscale method for
solving nonlinear heterogeneous structural problems. The basic underlying idea is that two levels of finite element simulations
are concurrently solved, one for each scale. At the macroscale, each integration point of the finite-element mesh is associated
with a representative volume element (RVE). Boundary conditions depending on the macroscopic strain are prescribed on the
boundary of each RVE. After solving each nonlinear RVE problem at each integration point, the macroscopic stress is averaged
over the RVE and provided at the macro integration point. Then, the macroscopic constitutive law is available only through
solving a nonlinear problem. These operations are repeated until convergence is reached at both scales (see Figure 2 (a)).
We consider a macroscopic structure associated with a domain Ω ⊂ ℝ3, with a boundary )Ω. The assumption of scale

separation is adopted (an extension of FE2 to second-order homogenization can be found in43). The microstructure is assumed
to be characterized by an RVE associated with a domain Ω ⊂ ℝ3, with boundary )Ω. For a general nonlinear constitutive law,
the strain "(x) is related to the stress �(x) by a nonlinear local constitutive relationship, where x is a material point within Ω.
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In the following, (.) notations will denote macroscale quantities. In the absence of body forces, for a given macroscopic strain "
and a set of microscopic internal variables defined by a vector �(x), the RVE problem is to find "(x), such that

∇ ⋅ �(x) = 0 ∀x ∈ Ω, (9)
where ∇ ⋅ (.) is the divergence operator. The constitutive law is given by

�(x) = nl ("(x),�(x)) . (10)
where nl is a local nonlinear operator. Under the assumption of sufficient displacement smoothness, the strain macroscopic
strain is defined by

" = 1
V ∫

Ω

"(x)dΩ, (11)

where V is the volume of Ω. Equation (11) holds, e.g. for the following boundary conditions (see e.g.46):

u(x) = "x + ũ(x) on )Ω, (12)
where ũ(x) is a periodic function over Ω. Again upon a sufficient stress regularity, the macroscopic stress is defined by

� = 1
V ∫

Ω

�(x)dΩ. (13)

In the so-called FE2 method, the constitutive law � - " is unknown, but can be obtained numerically by solving a nonlinear
problem over the RVE, as follows (see Figure 2 (a)):
Given ",�(x):
1. Prescribe boundary conditions (12) on )Ω.
2. Use a numerical method such as FEM with an iterative solver such as the Newton method to solve the nonlinear problems

(9), (10), and (12) (see details in the following).
3. Compute the spatial average of the stress over the RVE to obtain �.
In what follows, a detailed numerical implementation of the FE2 method is presented to better understand where problems

(9), (10), and (12) have to be solved within finite-element calculation at the macroscopic scale. In the absence of body forces,
the problem at the macroscale is given by

∇ ⋅ � = 0 in Ω, (14)
and completed with boundary conditions such as prescribed tractions F∗ over )ΩF and prescribed displacemnts u = u∗ over
)Ωu. The weak form associated with (14) is given by:

∫
Ω

�
(

",�
)

∶ "(�u)dΩ − ∫
)ΩF

F
∗
⋅ �udΓ = R(u) = 0. (15)

In a nonlinear context, Eq. (15) must be solved using an iterative method, e.g. a Newton method, as described in the following.
The linearized problem related to (15) is given by:

∫
Ω

ℂtan
(

"
(

up
)

,�p
)

∶ "
(

Δu
)

∶ "
(

�u
)

dΩ = −∫
Ω

�
(

"
(

up
)

,�p
)

∶ "(�u)dΩ + ∫
)ΩF

F
∗
⋅ �udΓ, (16)

where up and�p denote the displacement solution and the set of internal variables at the previous p−th iteration, respectively, and
ℂtan =

)�
)"

is the tangent elastic tensor. Solving (16), we obtain the correction to be carried out on the macroscopic displacements:

up+1 = up + Δu. (17)
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Problem (16) is solved until a convergence criterion is reached, i.e. when the norm of the residualR is lower than a prescribed
tolerance. Introducing an FEM discretization into (16), we obtain a linear system of equations in the form:

KtanΔU = −R (18)
where ΔU is the vector containing all nodal corrections of displacement components in the macroscopic mesh,

Ktan = ∫
Ω

B
T
Ctan

(

up
)

BdΩ (19)
and

R = −∫
Ω

B
T [
�
(

up
)]

dΩ + ∫
)ΩF

NTF
∗
dΩ, (20)

where Ctan is the matrix form of ℂtan,
[

�
] is the vector form of �, and B and N are matrices of FEM shape functions and shape

functions derivatives related to the macroscopic mesh. The components of ℂtan can be evaluated numerically by perturbation
using:

(

ℂtan

)

ijkl
(") =

)�ij
)"kl

(") ≃
�ij

(

" + �(kl)
)

− �ij
(

"
)

�
(21)

with
�(kl) = �

2
(

ek ⊗ el + el ⊗ ek
) (22)

where � is a small parameter such that � << |

|

"|
|

and ek, k = 1, 2, 3 are unitary basis vectors. We can see that at each point of
the macroscopic mesh, determining � requires solving one nonlinear problem over the RVE while determining Ctan requires
solving 6 additional calculations in 3D. We can provide an estimation of the total number of RVE calculations to be performed
within a whole FE2 simulation as follows:

Ntot ≃ (1 + �) ×Nint ×Ne ×Niter ×Nevol, (23)
where � = 3 in 2D and � = 6 in 3D, Nint is the number of integration points per element in the macroscopic mesh, Ne is the
number of elements in the macroscopic mesh,Niter is the average number of macroscopic Newton iterations before convergence
at each time step, andNevol is the number of time steps for the whole simulation (loading steps in a quasi-static simulation). As
an illustration, considering a 3D mesh containing 100,000 elements (which is a rather coarse mesh for practical applications),
Nint = 1,Niter = 4 and 10 time steps,Nevol = 10, we obtainNtot = 28×106 nonlinear calculations on the RVE during the whole
simulation. This simple example shows that for most applications, the classical FE2 method is not applicable, unless very coarse
meshes at both micro and macro levels are used. To drastically reduce this complexity, the k-means FE2 method is proposed in
the next section.

3.2 k-means FE2

One bottleneck in the above FE2 procedure is the total number of nonlinear problems associated with the numberNint ×Ne of
macroscopic integration points. In practical calculations, several RVEs are subjected to very close macroscopic strains ". During
a typical multiscale simulation, many redundant problems are then solved unnecessarily. Then, the idea is to identify clusters of
integration points in the macro mesh according to the k-means algorithm described in section 2 and to associate a single RVE
to each cluster k. The macroscopic strain is defined for the cluster k by:

"k = 1
∑

i∈k V i!i
∑

i∈k

"iV i!i (24)
where "i is the macroscopic strain at one integration point i in the cluster k, V i is the volume of the element containing the inte-
gration point i, and!i is its associated Gauss weight. Then, after solving the RVE problem, the correspondingmacroscopic stress
�k is affected to all integration points in k. The k-means algorithm has negligible cost as compared to the RVE calculations.
Then, the new number of nonlinear RVE problems to be solved within the k-means FE2 method can be evaluated as:

Ntot ≃ (1 + �) ×Nclust ×Niter ×Nevol, (25)
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whereNclust is the average number of clusters along the whole simulation. IfNclust << Nint ×Ne, a drastic time reduction can
be achieved.

3.3 Clusters updating in presence of internal variables
At each loading step, the k-means algorithm is used to identify the K clusters of macroscopic Gauss points in the macro mesh.
It is worth noting that between two iterations of the macro Newton scheme, the number and distributions of clusters might
evolve. In the case of nonlinear behavior with internal variables at the micro scale, precautions must be taken. The most general
approach would be to include the internal variable state �(x) in the clustering analysis. However �(x) is a field defined in all
point x ∈ Ω of the RVE and its description would involve a high-dimensional vector. Due to this issue, we choose not to include
the micro internal variable state �(x) in the cluster analysis, but to assign the RVEs that do not belong to the same cluster from
one iteration to another to a new sub-cluster. Then, at one new macro Newton iteration, all RVEs belonging to one sub-cluster
have close macroscopic strain " and similar internal variables distributions �(x). In the following we define the clusters as the
sets of RVEs grouped according to their macroscopic strain values " as defined in section 2 and the sub-clusters as those grouped
according to both strain " and internal variables states �(x). Then, the actual number of RVE computations to be performed is
associated with the number of sub-clusters.
To summarize:
• The clusters define regions of the macroscopic mesh with close strain states;
• Sub-clusters are regions of the macroscopic mesh with similar strain state and history of internal variables. Then, each

sub-cluster is associated with one RVE calculation;
• The number ofK clusters is defined by the user and does not change through the iterations. At each iteration, the intersec-

tion between the previous and the actual sets of clusters defines the new sub-clusters, whose number may increase during
the simulation.

Fig. 3 shows an illustrative example of the evolution of clusters and the number of RVEs (sub-clusters) in a schematic macro-
scopic structure, where each square represents a Gauss point. Fig. 3(a) displays the position of 3 initial clusters (red, blue and
green) which are identical to the sub-clusters. Fig. 3(b)(c)(d) depicts an evolution of the 3 clusters at respective p + 1, p + 2,
p + 3-th iterations. The number of sub-clusters in the macroscopic structure has evolved, so that at the p + 1-th iteration, clus-
ter 1 contains 3 sub-clusters (3 RVEs) with different internal variable distributions, and cluster 3 comprises two sub-clusters
(2 RVEs) with different internal variable distributions. At the end of the p + 3-th iteration, the total number of sub-clusters is
updated to 13. This procedure of updating the number of RVEs is integrated in the k-means FE2 method. This approach has
the drawback of splitting the clusters into sub-clusters at each change of cluster distributions. However, we will show in the
numerical applications that this number still remains much lower thanNint.
It is important to note that the present approach does not depend on the number or type of internal variables within the RVE. As

the generation of new sub-clusters is purely algorithmic (intersections of current and previous clusters), no a priori mechanical
analysis is required. New generated sub-clusters then have the same strain history when they are created, but are subsequently
submitted to different strain histories. As shown in the numerical examples, we can then apply this approach to arbitrary local
history-dependent behaviors (damage, plasticity, etc.).
The k-means FE2 procedure has been implemented in the finite element code Cast3m47. A summary of the k-means FE2 is

provided in Algorithm 2.

3.4 Additional remarks
• Note that for nonlinear behaviors without internal variables, the number of sub-clusters remains identical to the one of

clusters and even larger gains of computational times can be achieved.
• The above approach can be combined with parallel computing to perform all RVE simulations associated to sub-clusters

on different processors.
• If model reductions or surrogate model methods are available to replace the nonlinear RVE calculations, they can be

combined with this framework.
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FIGURE 3 Schematic evolution of the clusters and number of RVE problems to be solved during a simulation. The square
domains represent the elements of a macrcoscopic mesh. At first iteration of the Newton scheme (a), clusters are determined on
the sole definition of macroscopic strains. At the second iteration (b), the clusters may be modified. The elements intersecting
old and new clusters are splits into new "sub-clusters". Each sub-cluster is associated wih a nonlinear RVE calculation. For the
next iterations (c) and (d), new sub-clusters can be formed.

4 NUMERICAL EXAMPLES

In this section, we present several numerical examples to demonstrate the following features of the method and its interests for
nonlinear multiscale computations: (a) the convergence of the method with respect to the number of clusters; (b) the validation
of the method with respect to direct FE2 simulations; (c) the low dependence of the number of clusters on the macro mesh, (d)
the computational gains compared with FE2 method and (e) the potential of the method for arbitrary micro nonlinear behaviors
with internal variables.

4.1 Material modeling at the micro scale
Small strains are assumed. We consider in the following microstructures composed of a nonlinear quasi-brittle matrix in which
are distributed linear elastic or thermoelastic inclusions. As a result, the effective behavior of the material is nonlinear. It is
computed by the multiscale method described in the previous sections. Linear and thermoelastic inclusions are described by the
following constitutive law:

�(x) = ℂ(x) ∶ (" − "(Δℎ)) (26)
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Algorithm 2 k-means FE2
1: For n = 1 ∶ N (Loop over all time steps)
2: n = n + 1
3: Initialize: un+10 = un

4: While Err > TOL (Macro Newton Loop).
5: p = p + 1 (iterations)
6: Input: "e(un+1j ) e = 1, 2...Ne.
7: Define clusters k k = 1, 2, ..., K using Algorithm 1.
8: Define sub-clusters bks ; ( s = 1 in the first time step, see section 3.3).
9: Compute "k according to (24) .

10: For k = 1 ∶ K (Loop over all clusters) .
11: Input "k
12: For s = 1 ∶ S (Loop over all sub-clusters in k)
13: Solve the nonlinear problem (9)-(12).
14: Output: �s,Ctan.
15: �e(un+1p ) = �s, ∀e ∈ bks .
16: C

e
tan(u

n+1
p ) = C

s
tan, ∀e ∈ bks .

17: Compute
(

K
e
tan

)n+1

p+1
,
(

R
e)n+1

p+1
.

18: Assemble
(

K
e
tan

)n+1

p+1
in

(

Ktan

)n+1

p+1
.

19: Assemble
(

R
e)n+1

p+1
in

(

R
)n+1

p+1
.

20: End.
21: End.
22: Solve

(

Ktan

)n+1

p+1
ΔU = −

(

R
)n+1

p+1
.

23: un+1p+1 = un+1p + Δu.
24: Err = ||R

n+1
p+1||.

25: un+1p = un+1p+1.
26: End.
27: un = un+1p .
28: End.

where ℂ(x) is the elastic fourth-order tensor at point x, and "(Δℎ) is an eigenstrain whose evolution is assumed to be given as a
function of a parameter Δℎ associated with the evolution of the system. The matrix is assumed to be quasi-brittle and described
by the phase field model for fracture, which is briefly reviewed in Appendix A. Then, here, the field of internal variables within
the RVE which induces the creation of new sub-clusters (see section 3.3) is the damage field, �(x) ≡ d(x).

4.2 Perforated plate in traction: local quasi-brittle behavior
The objective of this first example is to demonstrate the accuracy of the method and its convergence with respect to the number
of clusters. We consider a plate of dimension 80 × 80 × 3 mm3 with a hole of radius r = 15 mm at its center. Due to symmetry,
only a quarter of the structure is taken into account. The geometry and the boundary conditions are depicted in Fig. 4 (a). The
mesh is composed of 401 linear tetrahedral elements (see Fig. 4 (b)). On the upper end of the sample, a displacement along the
z-direction is prescribed, while the degrees of freedom in the other directions are blocked.
In this example, the RVE is composed of aggregates embedded in a cement matrix. A view of aggregates (inclusions) is

depicted in Fig. 5 (a). The mesh is generated by using the python script Combs48 operating in the CAD code Salome49, see
e.g.50,51 and references therein. The mesh contains a total of 28042 tetrahedral elements. The volume fraction of inclusions is
f = 10%. The inclusions are assumed to be linear elastic with the following properties: Ei = 80GPa, �i = 0.19, which denote
the Young’s modulus and the Poisson’s ratio of inclusions, respectively. The matrix is assumed to be isotropic quasi-brittle and
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FIGURE 4 Perforated plate macro structure: (a): geometry and boundary conditions; (b) mesh.

(a) (b)
FIGURE 5 (a) RVE of a sand-cement microstructure. The aggregates are depicted in dark grey; (b) RVE mesh.

described by the phase field damage model provided in Appendix A with Em = 20 GPa, �m = 0.2 and gmc = 0.12 N/mm
denoting the Young’s modulus, Poisson’s ratio and toughness of the matrix, respectively. The length scale parameter is chosen
as l = 2.8 × 10−2 mm.
The k-means FE2 method is applied for different numbers of clusters and its convergence is verified regarding the maximum

vonMises stress in themacroscopic meshwith respect to the number of clusters in Fig. 6.We can note that 9 clusters are sufficient
here to reach the convergence with regard to the chosen criterion, and that this converged solution is close to the reference FE2
solution. In Fig. 7, we depict the force-displacement curve of the macro structure with respect to the number of clusters, again
illustrating the convergence to the reference solution when increasing the number of clusters.
Figure 8 shows the evolution of the clusters during the simulation, respectively at the first loading step and at the final loading

step. It is worth noting that as stated in section 3.3, the position of the clusters evolves during the simulation with the macro
strain field.
We show the convergence of the local macro stress with respect to the number of clusters at the final loading step in Fig. 9,

by depicting the von Mises stress fields in the structure for k = 5, 6, 8 and comparing it with the reference FE2 solution.
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FIGURE 6 Convergence of the k-means FE2 solution (von Mises stress) with respect to the number of clusters.

Finally, we report in Table 1 the total number of nonlinear RVE problems to be solved using the k-means FE2 for different
numbers of clusters, as well as the corresponding computational times, and compare it to the full FE2 method. We can note a
drastic reduction of computational times, with a ratio of about 15 for 8 clusters, which corresponds to the converged solution in
Fig. 7.

k Total number
of calculated
RVE problems
(number of
sub-clusters)

Final computation
time (hours)

5 234 3.85 h
6 291 4.87 h
8 481 8.02 h
9 540 9.01 h
10 611 10 h
FE2 7426 123 h

TABLE 1 Total number of nonlinear RVE problems and computational times on 32-cores LInux PC with 256 Go RAM with
respect to the number of clusters for k-means and FE2 solutions.

4.3 3-point bending beam: local quasi-brittle behavior
In this next example, we show an additional feature of the method: the low dependence of the number of clusters with respect
to the mesh size. For this purpose, we consider a homogeneous beam of dimensions 200 × 40 × 2 mm3 in 3-point bending, as
depicted in Fig. 10 (a). On (x = 0, z = 0) mm, all degrees of freedom are blocked, whereas on (x = 200, z = 0) mm the z and
y displacements are blocked. A displacement in the z− direction is prescribed at the middle of the beam. To test the influence
of the macroscopic mesh refinement on the number of obtained clusters, 3 macroscopic meshes have been tested, including,
respectively, 262, 431 and 786 tetrahedral elements (see Fig. 10). In this example, the RVE consists into a spherical elastic
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FIGURE 7 Perforated plate: convergence of the load-displacement curve with respect to the number of clusters k and reference
FE2 solution.

(a) 5 Clusters at first step (b) 6 Clusters at first step (c) 8 Clusters at first step

(d) 5 Clusters at final step (e) 6 Clusters at final step (f) 8 Clusters at final step

FIGURE 8 Cluster positions for the medium mesh at the first step (a) (b) (c) , and the final step (d) (e) (f) in the macroscopic
structure for K = 5, 6, 8.
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(a)von Mises stress: 5 Clusters (b)von Mises stress: 6 Clusters

(c)von Mises stress: 8 Clusters (d)von Mises stress: FE2

FIGURE 9 von Mises stress in the macroscopic structure for K = 5, 6, 8 clusters, k-means solutions (a), (b) and (c), and FE2
reference solution (d).

inclusion embedded into a quasi-brittle matrix. The dimensions of the RVE are 1 × 1 × 1 mm2. The inclusion is centered in the
cubic RVE and has a radius r = 0.14 mm. The mechanical properties of the inclusion and the matrix are the same than in the
previous example.
The k-means FE2method is applied for the different meshes and for different numbers of clusters. Convergence of the solutions

with respect to the number of clusters for the different meshes is presented in Fig. 11, where the maximum von Mises stress
is indicated at the final loading step of the simulations. For meshes 1 and 2, we have verified that the converged k-means
solutions are in good agreement with the reference FE2 solution. We did not perform this verification for the finest mesh, as
the corresponding FE2 computational costs was evaluated as too high (see table 2). As another observation, the total number of
clusters required to converge to the reference solution does not increase significantly with the macro mesh size. This constitutes
another important asset of the present method, even though this is obviously dependent on the regularity of the macro strain
field. As another remark, it is worth pointing out that in the applications of the k-means FE2 involving local damage, numerical
regularization should be included at the macroscopic scale to guarantee convergence with respect to the macro mesh. For the
sake of simplicity we did not implement such process here. Extensions with techniques like nonlocal damage model52, gradient
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FIGURE 10 3-point bending beam; (a) geometry and boundary conditions; (b) coarse mesh; (c) medium mesh; (d) fine mesh.

enhanced damage53, or gradient damage54 could be considered in future studies. In addition, the existence of an RVE in the case
of softening behavior is still a matter of debate in the literature and appropriate averaging techniques or analyses (see e.g.55)
may be required in future extension of the present method in the case of local damage. As there is no macro regularization here,
the 3 different meshes studied above are considered as 3 distinct cases and we do not intend to show a convergence with respect
to the macro mesh in this example.
Figs. 12(a), (b) and (c) show the load-displacement curve of the beam subjected to 3-point bending for the 3 meshes and

different numbers of clusters, and Fig. 12(d) shows the load-displacement curve of the 3 structures at convergence (K=8).
According to these results the convergence of the model is reached for 8 clusters for the 3 meshes. The convergence with respect
to the mesh refinement is also appreciated.
In Fig. 13, we illustrate the evolution of the clusters for the medium mesh when 5, 6 and 8 clusters are considered, for initial

and final loading steps. As mentioned in section 3.3, the position of clusters changed in the macroscopic structure at the initial
and final step, therefore the number of nonlinear RVE problem (sub-clusters) evolved.
In Fig. 14, we compare the macroscopic damage fields on the mediummesh for different numbers of clusters and the reference

FE2 solution. To better visualize the crack, a pseudo macro damage field D is defined as D = 1 −
√

ℂ1111(t)

ℂ
0
1111

, where t denotes
pseudo time (loading evolution). We can see a crack initiating in the middle of the beam and propagating from the bottom to the
top. The shape of the damaged area depends on the number of clusters K , and converges to the reference solution (FE2) when
K = 9.
Finally, we compare the computational times on the same Linux machine as in the previous example in Table 2, as a function

of RVE calculations and number of clusters. Results show that the number of RVEs and thus the computational times are directly
impacted by the mesh density in FE2, while it affects in a minor way the computational times in k-means FE2. The results show
that keeping 8 clusters (corresponding to a converged solution), a speed-up ratio of almost 30 in comparison with FE2 can be
achieved for a similar accuracy. For the finest mesh, we only estimate the computational times, as the duration of the full FE2
is not affordable. Then, the present technique allows solving problems with mesh sizes which are too costly in direct FE2. Note
that in the present work we have chosen damage as a local nonlinear behavior, but any other arbitrary local behaviors can be
considered, like elastoplasticity or viscoplasticity.
As a final remark, if no FE2 reference solution is available, the low computational costs of the method allow to use it for

checking the convergence with respect to the number of clusters. In that case, the total computational costs must be calculated
as the sum of the times related to several successive k-means analyses, with increasing numbers of clusters K . For example, in



16 BENAIMECHE ET AL

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3E+05

4E+05

5E+05

6E+05

7E+05

8E+05

9E+05

1E+06

1E+06

 Coarse mesh  (K-means FE2)
 Medium mesh (K-means FE2)
 Fine mesh (K-means FE2)
 Coarse mesh (FE2)
 Medium mesh (FE2)

s m
ax

  (
Pa

)

Number of clusters

FIGURE 11 Convergence of the k-means FE2 solutions with respect to the number of clusters for different meshes. The symbols
indicate the maximum von Mises stress at the final loading step.

the present case, considering the 3 successive cases K = 5, K = 6, K = 8, the gains are still 5.4, 7.1 and 10.8 for meshes 1, 2
and 3, respectively, then yet an order of magnitude as compared to a direct FE2 computation.

Number
of clusters

Coarse mesh Medium mesh Fine mesh
Total number
of nonlin-
ear RVE
problems
(number of
sub-clusters)

Final com-
putation time
(hours)

Total number
of nonlin-
ear RVE
problems
(number of
sub-clusters)

Final com-
putation time
(hours)

Total number
of nonlin-
ear RVE
problems
(number of
sub-clusters)

Final com-
putation time
(hours)

5 100 2.6 h 144 3.4 h 168 3.8 h
6 142 3.67 h 183 4 h 250 5.16 h
8 218 4.02 h 279 5.65 h 343 6.71 h
9 254 5 h 340 6.6 h 438 8 h
FE2 3406 56 h 5603 93.38 h 10218

(estimated)
231.12 h (esti-
mated)

TABLE 2 Comparisons of computational costs for both k-means FE2 and FE2 methods for the 3 meshes and different numbers
of clusters.

4.4 Perforated plate in traction: local elastoplastic behavior
In this example, the k-means FE2 method is employed to solve the same macroscopic structure than in section 4.2 with the same
boundary conditions, but with an elastoplastic behavior within the RVE. At the microscopic scale, a porous RVE of dimensions
(1 × 1 × 1 mm3) is considered, with a pore in the center of radius r = 0.15 mm. The behavior of the matrix is elastoplastic with
linear isotropic hardening under the J2-flow theory. In that context, the constitutive law is given by:

� = ℂ ∶ (" − "p) (27)



BENAIMECHE ET AL 17

0,0E+00 8,0E-04 1,6E-03 2,4E-03 3,2E-03 4,0E-03
0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07
Lo

ad
 (N

)

Displacement (m)

 5 clusters
 6 clusters
 8 clusters
 9 clusters
 FE2

(a) Coarse mesh
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FIGURE 12 (a)-(c): Load-displacement curves of the 3 meshes with different number of clusters and FE2 reference solution
(except for (c)) and (d): comparison of the curves for the three meshes at convergence with respect to the number of clusters
ssumed to be obtained for 8 clusters.

where "p is the plastic strain and where ℂ is the elastic tensor, assumed to be isotropic. The elastic domain is defined by

f (�, p) = J2(�) − �Y −Hp ≤ 0 (28)
where J2(�) =

(

3
2
s ∶ s

)

, s = � − 1
3
T r(�), T r(.) being the trace operator, �Y is the yield stress, H is the linear hardening

modulus and p the cumulated equivalent plastic strain expressed by:

p(t) =

t

∫
0

ṗ(�)d� (29)

with ṗ =
(

2
3
"̇p ∶ "̇p

)1∕2. The evolution of the plastic strain "p is given by the normality rule:

"̇p = ṗ )f
)�

(30)
The mesh contains a total of 30452 tetrahedral elements. The mechanical properties of the matrix are as follows : Em =

15GPa, �m = 0.2, �Y = 60MPa andH = 1GPa.
The k-means FE2 method is applied for different numbers of clusters. Here, the field of internal variables within the RVE

which induces the creation of new sub-clusters (see section 3.3) is the plastic strain field, �(x) ≡ "p(x). The convergence is
verified with respect to the maximum vonMises stress in the macroscopic structure for different number of clusters in Fig. 15(a).
Convergence with respect to the number of clusters is reached for 9 clusters. In Fig. 15(b), the force-displacement curve of the
macro-structure for different number of clusters is presented.
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(a) 5 Clusters at first step (b) 6 Clusters at first step (c) 8 Clusters at first step

(d) 5 Clusters at final step (e) 6 Clusters at final step (f) 8 Clusters at final step

FIGURE 13 Cluster positions at the first step (a) (b) (c) , and at the final step (d) (e) (f) in the structure 2 for K = 5, 6, 8.

Figure 16 shows the von Mises stress field in the macroscopic structure for K = 7, 8, and 9 clusters and for the reference
solution FE2 at the final loading step, where again the convergence with respect to the number of clusters can be appreciated.
Table 3 summarizes the total number of nonlinear RVE problems solved by the k-means FE2 method and the correspond-

ing computation times for k = 6,7,8, and 9 clusters, as compared to a full FE2 computation. A significant gain in terms of
computational time is noticed, with a ratio of 17 for 9 clusters which corresponds to the converged solution.

k Total number
of calculated
RVE problems
(number of
sub-clusters)

Final computation
time (hours)

7 873 13.7 h
8 1062 17.87 h
9 1155 19.02 h

FE2 19862 331 h
TABLE 3 Elastoplastic problem : Total number of nonlinear RVE problems and computational times on 32-cores Linux PC
with 256 Go RAM with respect to the number of clusters for k-means and FE2 solutions.

4.5 Industrial example: waste package bahavior
The objective of this last example is to show the potential of the present method for industrial applications.
We are concerned here with contaminated wastes generated by industrial processes, containing different types of materials

including metallic particles. In order to immobilize these wastes, a solidification process may be used to aggregate them into
packages that have to fulfill minimal mechanical characteristics. The choice of the matrix material mainly depends on the type
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FIGURE 15 (a) Convergence of the k-means FE2 solution (maximum von Mises stress) with respect to the number of clusters
(b) convergence of the load-displacement curve with respect to the number of clusters k and reference FE2 solution.

and the behavior of the particles in contact with the matrix. We consider a waste package where the matrix is made of hydrated
cement paste, used for its low porosity and low permeability to liquids and gases in the hardened state, and then for its resistance
to aggressive environments. However, the presence of free-water in the pores induces a progressive corrosion of reactive metal
inclusions56. The corrosion reaction forms an expansivemetal oxide layer around themetal inclusions, usually accompaniedwith
a significant release of hydrogen gas57,58,59. Moreover, the thickness of the developed corrosion product layer can be important
with respect to the metal inclusion, and the transformation process may in theory be complete if reactants are available (the whole
inclusion can be transformed into corrosion products). This volume expansion associated with the formation of the corrosion
products (metal oxide) can generate spurious micro-cracks in the cement matrix59,60.
The studied macro structure is depicted in Fig. 17 where only a quarter is considered due to symmetry. The constitutive

material is composed of a matrix of cement paste in which are dispersed non-reactive inclusions (graphite) andmetallic particles.
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(a)von Mises stress: 7 Clusters (b)von Mises stress: 8 Clusters

(c)von Mises stress: 9 Clusters (d)von Mises stress: FE2

FIGURE 16 von Mises stress in the macroscopic structure for K = 7, 8, 9 clusters, k-means solutions (a), (b) and (c), and FE2
reference solution (d).

This mixture is solidified within a cylindrical container (see Fig. 17). The thickness of the external metallic shell is 15 mm in
the cylindrical area and 20 mm in flat bottom area.
The RVE corresponding to the mixture is depicted in Figs. 18. Three cases are considered: (a) a single metallic inclusion in

a cement paste matrix with equivalent initial radius of 3.5 mm representing a volume fraction of 0.05 %; (b) 10% in volume
of graphite and 0.05% of metallic inclusions and (c) 20% of graphite and 0.05% of metallic inclusions. The metallic inclusions
have an equivalent radius r = 2.5 mm in the last 2 cases. The graphite inclusions have polyhedral shapes. The size of the cubic
RVE is 100 mm .
At the micro scale, the behavior of the graphite inclusions is assumed to be linear elastic, with properties provided in Table 4.

The cement paste matrix is assumed to be quasi-brittle and described by the damage phase field model given in Appendix A. The
behavior of uranium is linear thermoelastic, with linear properties described in Table 4 and with a constitutive law in the form:
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FIGURE 17 Waste package structure: (a) geometry and (b) macro mesh.

FIGURE 18 3 RVEs in the waste package structure problem; a) a single metallic inclusion in a cement paste matrix; (b) graphite
(10 % and metallic inclusion 0.05%) and (c) graphite (20 % and metallic inclusion 0.05 %).

Young Modulus Poisson Coefficient
Cement paste matrix 20 GPa 0.2
Metallic inclusions 205 GPa 0.19
Graphite 15 GPa 0.25
Metal container 210 GPa 0.25

TABLE 4 Elastic parameters of the different phases.
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FIGURE 19 Macroscopic strain components under effective expansion "∗ = 9.1 × 10−7 .

� = ℂ ∶ (" − "∗) (31)
where "∗ = �effΔℎ is an eigenstrain associated with the swelling of the oxidized metallic inclusions, with �eff = 0.182 m−1

(details on the calculation of such coefficient can be found e.g. in50). In Eq. 31, Δℎ is the thickness of the corrosion product
layer. In our simulations,Δℎwas taken as the loading parameter. WhenΔℎ increases, the local strains near the inclusions within
the RVE create damage which modifies the macro behavior. In what follows, we study the evolution of the local stiffness within
the structure for increasing values of the corrosion thickness using the proposed k-means FE2.
For illustrative purposes, Fig. 19 shows the macroscopic strain components with the effective expansion of "∗ = 9.1 × 10−7.

4.5.1 Application 1
In this example the convergence of the k-means FE2 with respect to the number of clusters in the macro structure is tested. The
microstructure illustrated in figure 18 (a) is considered in the microscopic computations. The convergence of the k-means FE2
method is verified by two different ways: (i) convergence with respect to the maximum von Mises stress within the structure
at the final loading step and (ii) convergence with respect to the effective stiffness in chosen macro elements (when the value
becomes quasi-constant as a function of Δℎ). Elements 1©, 2©, 3©, and 4© are considered (see Fig. 17 (b)). Fig. 20 shows the
position of clusters in the structure for K = 5, 6, 8 clusters at the final loading step.
Fig. 21 shows the decrease of effective stiffnesses as a function of the thickness of the corrosion product layerΔℎ for different

numbers of clusters. For elements 1© and 4©, convergence is verified for 6 clusters. A faster convergence in element 1© than in
the element 4© is observed, which can be explained by the size of the cluster to which the element 1© belongs, which remains
unchanged for the different k values (see the red cluster in Fig. 20). As a comparison, an estimated computational time for this
problem using the full FE2 method would take 759 hours (45570 RVE calculations), while for k = 8 clusters the k-means FE2
only uses 8.9 hours (538 RVE calculations).

4.5.2 Application 2
In this second case, we consider both swelling metallic inclusions and graphite inclusions (Fig. 18). The RVEs meshes in Figs.
18 (b) and (c) contain 53706 and 73389 tetrahedral elements, respectively. HereK = 8 clusters have been used. Fig.22 shows the
effective stiffness as a function of the thickness of the corrosion product layerΔℎ. WhenΔℎ = 0, the effective elastic moduli are
the one of the undamaged material. A decrease of the effective stiffnesses is observed with the increase of the corrosion reaction
in all elements of the package. In addition, the effective behavior of the material becomes progressively anisotropic because of
the local distribution of graphite inclusions. Furthermore, a larger decrease is observed for all stiffnesses in the element 4© as
compared to the elements 1©, 2©, and 3© in the two microstructures (b) and (c).
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FIGURE 20 Clusters position for (k = 5, 6, 8) at the final loading step.
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FIGURE 21 Effective stifnesses C1111 and C3333 as a function of Δℎ for the elements 1© and 4© (see Fig. 17 (b)) for different
numbers of clusters K=5,6 and 8.

The damage distribution of microstructures (b) and (c) in the elements 1©, 3©, and 4© is shown in Fig. 23, in which as expected,
cracks appear around the metallic inclusions, and then they propagate within the microstructure. In addition, the damage is
localized where the metallic inclusions are close to each other, and has a tendency to propagate in the direction of the nearest
inclusion.
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FIGURE 22 Effective stifnesses C1111, C2222 and C3333 as a function of Δℎ for the microstructures (b) and (c).

5 CONCLUSION

In this work, we have presented a new machine-learning based multiscale method, called k-means FE2, to solve general non-
linear multiscale problems with internal variables and loading history-dependent behaviors, without use of surrogate models.
In contrast with machine learning multiscale methods where a surrogate model is constructed to describe the micro nonlinear
effective behavior, we reduce here the macro scale problem by constructing clusters of Gauss points in the structure which are
assumed to be in the same mechanical state. A k-means clustering - machine learning technique is employed to select the Gauss
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FIGURE 23 Local damage in RVEs designated by 1©, 3© and 4© (see Fig. 17(b) for the definition of these elements), for
microstructures (b) and (c) (see Fig. 18).

points based on their strain state and sets of internal variable. Then, for all Gauss points in a cluster, only one micro nonlinear
problem is solved, and its response in terms of effective mechanical properties is transferred to all points of the cluster. The
operation is repeated until convergence is reached at both macro and micro scales. The method presents several advantageous
features. First, its solution is convergent with respect to the number of clusters. This is expected since in the limit of one clus-
ter for one single macro mesh element, we recover the direct FE2 solution. We have shown in the different numerical examples
that even for a low number of clusters, a very accurate solution can be achieved as compared to the full FE2 solution taken as
a reference. In addition, we have shown that the total number of clusters, which is directly related to the computational time, is
only weakly dependent on the mesh refinement in the macro structure. In fact, it only depends on the regularity of the fields at
the macro level. We have demonstrated accelerations of FE2 calculations up to a factor 50 in typical applications involving local
fracture within a Representative Volume Element. It is worth noting that arbitrary nonlinear behaviors can be considered at the
micro level including internal variables and loading history-dependent behaviors. In contrast, in surrogate-based machine learn-
ing methods, handling loading history-dependent local behaviors is delicate. Finally, the convergence of the method with respect
to the number of clusters allows determining the necessary number of clusters without any knowledge about the final solution
by gradually increasing the number of clusters and checking the convergence. The method has been applied to heterogeneous
structures with local quasi-brittle behavior described by damage, and to a nuclear waste storage structure of industrial interest.
As a final remark, this framework can be complementary to parallel computing and to machine-learning surrogate models to
reduce the RVE calculations for nonlinear multiscale calculations.
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APPENDIX

A BRIEF REVIEW OF PHASE FIELD METHOD FOR QUASI-BRITTLE FRACTURE

The phase field method61,62,63,64,65,66,67 is adopted here at the microscale to model the damage through microcracking within the
microstructure. The formulations are briefly reviewed in this appendix.
For an elastic cracked body defined in a domain Ω ⊂ ℝ3 containing sharp cracks denoted collectively as Γ, the total energy

of the system is defined as:

E = ∫
Ω

Ψ(",Γ)dΩ + gc ∫
Γ

dΓ − ∫
)ΩF

F∗ ⋅ udΓ (A1)
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where Ψ(",Γ) is the elastic strain density function and gc is the critical energy release rate in the sense of Griffith. In Eq. (A1),
)ΩF denotes the portion of the boundary )Ω where tractions F∗ are prescribed. The above energy form can be replaced by a
regularized one, given by:

E = ∫
Ω

Ψ(", d)dΩ + gc ∫
Ω


(d,∇d)dΩ − ∫
)ΩF

F∗ ⋅ udΓ, (A2)

where 
 is a crack density function, whose model can be chosen among several possible forms, leading to a class of shapes for
the regularized damage field near the crack (see e.g.67). In this regularized framework, the cracks are no more described by
surfaces but by a smooth field d(x). For an isotropic elastic solid, Ψ can be decomposed according to:

Ψ(") = g(d)Ψ+ + Ψ− (A3)
to only affect the damage to traction modes, and where g(d) is a degradation function such that g(0) = 1, g(1) = 0 and g′(1) = 0
andΨ+("+) andΨ−("−) denote parts of the strain density related to tensile and compressive parts of the strain tensor, respectively,
which are defined here following Miehe67 by:

Ψ±(") = �(⟨T r(")⟩±)2∕2 + �T r{("±)2}. (A4)
This form allows avoiding interpenetration when the cracks are closed without any special algorithm for auto-contact, which

renders the implementation very simple. In (A4), � and � denote the elastic Lamé’s constants in each phase. The operator ⟨.⟩±
is defined as ⟨x⟩± = (x ± |x|)∕2, "+ is the tensile part while "− is the compression part of the strain tensor obtained by the
spectral decomposition:

"± =
n
∑

i=1
⟨T r(")⟩±vi ⊗ vi (A5)

in which vi are the eigenvectors of the strain tensor ". Other decompositions have been proposed as in66,68,69.
Variational approach to damage in tandem with regularization, called in the literature "phase field method", implies the

minimization of the total energy with respect to the displacement field u and the minimization of the energy with respect to the
scalar field d describing the crack surface in a smooth manner. This second minimization is subjected to an inequality constraint
ḋ ≥ 0. To formulate this minimization problem in a simpler setting, a time-stepping  =

{

t0, t1, ..., tn, tn+1, ..., tN
} can be

introduced. At each time step tn+1, the problem is to find the displacement fields un+1 and dn+1 such that

un+1, dn+1 = Argmin
u∈A

0≤dn≤dn+1≤1

E (A6)

where A is a set of kinematically admissible fields. One possible algorithm to solve this problem is to use sequential solving
of both minimization problems as

D�uE = 0 (A7)

D�dE = 0, 0 ≤ dn ≤ dn+1, (A8)
where D�vf (u) is the Gateaux derivative, defined as:

D�vf (u) =
{

f
d�

(f (u + � �v))
}

�=0
. (A9)

The first equation (A7) defines the mechanical problem while the second one (A8) defines the phase field problem. These two
problems are coupled as both involve the fields u and d.
Eq. (A7) can be developed according to:

∫
Ω

)Ψ
)"
(", d) ∶ "(�u)dΩ − ∫

)ΩF

F ⋅ �udΓ = 0, (A10)

where
)Ψ
)"
(", d) = �. (A11)
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For g(d) = (

(1 − d)2 + k
), where k is a small scalar parameter introduced to avoid ill-conditioning when elements are fully

damaged, and with Ψ defined as in (A3) we obtain:
� =

(

(1 − d)2 + k
) {

� ⟨T r"⟩+ 1 + 2�"+
}

+ � ⟨T r"⟩− 1 + 2�"−. (A12)
It yields the classical weak form of the mechanical problem as follows: find u ∈  =

{

v|v = u on )Ωu, v ∈ H1(Ω)
} such

that:
∫
Ω

� ∶ "(�u) dΩ = ∫
)ΩF

F∗ ⋅ �u dΓ (A13)

for all �u ∈ H1
0 (Ω) =

{

v|v = 0 on )Ωu, v ∈ H1(Ω)
}, where )Ωu denotes the portion of )Ωwhere Dirichlet boundary conditions

are prescibed. The Euler-Lagrange equation (strong form) associated with Eq. (A13) is given by:
∇ ⋅ � = 0, �n = F∗ over )ΩF , u = u∗ over )Ωu, (A14)

where u∗ are prescribed displacements. The first equation in (A8) can be developed as:

∫
Ω

)Ψ
)d
�d dΩ + gc ∫

Ω

D�d
dΩ = 0. (A15)

Choosing 
 as


(d,∇d) = 1
2l
d2 + l

2
∇d ⋅ ∇d (A16)

we obtain, after some calculations (see e.g.70):

∫
Ω

(

2
[

Ψ+
]

+
gc
l

)

d�d + gcl∇d ⋅ ∇(�d)dΩ = ∫
Ω

2
[

Ψ+
]

�ddΩ. (A17)

The associated Euler-Lagrange equations to (A17) are given by:
(

2
[

Ψ+
]

+
gc
l

)

d − lgcΔd = 2
[

Ψ+
]

,

∇d ⋅ n = 0 over )Ω, (A18)
where Δd denotes the Laplacian operator. We follow the classical Miehe’s approach67 to enforce the irreversibility condition
by introducing a history function  which substitutes Ψ+ to handle loading and unloading and defined as:

(x, t) = max
�∈[0,t]

{

Ψ̃+ (x, �)
}

. (A19)
It leads to:

(

2 +
Gc
l

)

d − lGcΔd = 2, ∇d ⋅ n = 0 on )Ω, (A20)
and to the corresponding weak form: find d ∈ H1(Ω) such that

∫
Ω

(

2 [] +
gc
l

)

d�d + gcl∇d ⋅ ∇(�d)dΩ = ∫
Ω

2 [] �ddΩ (A21)

for all �d ∈ H1(Ω). The problem can be solved by classical Finite Elements (see e.g.70).
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