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ANALYSIS OF COMPRESSIBLE BUBBLY FLOWS.

PART I : CONSTRUCTION OF A MICROSCOPIC MODEL.

M. HILLAIRET, H. MATHIS, AND N. SEGUIN

Abstract. In this note, we introduce a microscopic model for the motion of gas bubbles in a

viscous fluid. By interpreting a bubble as a compressible fluid with infinite shear viscosity, we
derive a pde/ode system coupling the density/velocity/pressure in the surrounding fluid with the

linear/angular velocities and radii of the bubbles. We provide a 1D analogue of the system and

construct an existence theory for this simplified system in a natural regularity framework. The
second part of the paper is a preparatory work for the derivation of an averaged or macroscopic

model.
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1. Introduction

This note is the first of two papers in which we extend the derivation of averaged compressible
multiphase flows in presence of jumps at interfaces between the phases. For this purpose, we focus
in these papers on the construction of 1D models describing a mixture made of a leading viscous
compressible fluid transporting compressible gas bubbles. To this aim, we follow a classical scheme
for deriving averaged models. Firstly, we write a so-called ”microscopic” model, also refered as
“local instant configuration” in the literature [8, 9, 14, 21], where the two phases are separated
and occupy disjoint domains. We prescribe equations for both phases and fix interface conditions.
Secondly, we perform averaging operators on this microscopic model to derive an averaged or
macroscopic model. The terms ”microscopic” and ”macroscopic” are borrowed from large particle
systems. It should be noticed that, in our setting, the ”particles” are the gas bubbles so that we
keep continuum mechanics equations to describe the fluids in presence.

It is well known that the averaging method contains different severe difficulties. Beyond the
writing of a relevant microscopic model, the action of mean operators on nonlinear quantities
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is classically problematic. In particular, ad hoc modelling assumptions are usually added after
averaging to fix the values of some interaction terms and close the system [8, 11, 13, 14, 21]. A
fully rigorous approach preventing from this problem is proposed in [4, 5, 6, 7], see also [1, 12, 16]
for previous tentatives. However, it is restricted to ideal interface conditions between the phases.
In particular, the interface is supposed to behave as a perfect transducer: it transmits with no
alteration the effort of one phase on the interface to the other phase, leading besides to a unique
velocity field in opposition to the full Baer-Nunziato model [2]. In this series of papers, we tackle
the introduction of more complex interface behavior. In particular, we shall consider different
families of models for the two phases: one phase is modelled with pdes while the other one is
modelled by a discrete set of odes. Surface tension effects are also considered in transmission
condition at interfaces.

In this first note, we tackle the writing and analysis of the microscopic model. The second
step, namely the averaging process, is the content of the next paper. This note splits then into
two parts. In the next section, we propose the derivation of the 3D microscopic bubbly flow
model. One originality of this model is that, focusing on the property that the bubbles remain
spherical, we propose to restrict the gas equations to a set of three odes per bubble: one equation
for the center of mass, one equation for the angular motion of the bubble and the last one for
the radius of the bubble. One key question is then to fix the influence of the surrounding fluid in
these equations. This question is now completely classical for what concerns the center of mass
and angular motion of the bubbles but we found no equivalent derivation for the radius equation.
For this, we propose herein to extend one method that is classically used in the case of rigid
bubbles [10, 17]: we identify formally spherical compressible bubbles as a compressible viscous
fluid whose shear viscosity is infinite (following [20, Lemma 1.1, Chapter 1] in the case of rigid
particles). So we start from a microscopic model where the two phases are viscous compressible
fluids. We write classical interface conditions: no mass transfer, continuity of velocity, jump of
normal stress proportional to surface tension. In passing, we derive a global weak formulation
for this set of equations. Then, we assume that the bubble remain spherical and send the shear
viscosity to infinity in the gas phase and compute formally a limiting model by considering special
test-functions in the weak formulation.

With this analysis at-hand, we propose an interpretation of the different terms involved in the
resulting set of equations from which we derive a 1D analogue system. This sytem reads as follows.
In Ω = (−1, 1), the bubble domains are:

Bi = (ci −Ri, ci +Ri), ∀ i = 1, . . . , N

where ci is the center of the i-th bubble and Ri its radius. We write then the fluid equation

(1)

{
∂tρf + ∂x(ρfuf ) = 0

∂t(ρfuf ) + ∂x(ρfu
2
f ) = ∂xΣf

in F := Ω \
⋃N

i=1 B̄i and where:

(2) Σf = µf∂xuf − pf (ρf ).

We denote here by µf > 0 and pf : (0,∞)→ (0,∞) the viscosity and pressure respectively of the
fluid phase. The fluid equations are then complemented by boundary conditions:

(3) uf (t,±1) = 0 uf (t, ci ±Ri) = ċi ± Ṙi, ∀ i = 1, . . . , N.

As for the gas bubbles, we obtain equations for the centers of mass ci and radii Ri (note that in
this 1D setting, there is no rotation). These equations read for i = 1, . . . , N :

(4)

mic̈i = Σf (t, ci +Ri)− Σf (t, ci −Ri)
mi

3
R̈i = Σf (t, ci +Ri) + Σf (t, ci −Ri)− 2Σi + κi
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where Σi is the gas bubble stress tensor:

(5) Σi = µg
Ṙi

Ri
− pg

(
mi

2Ri

)
.

Here we introduced the positive constants mi > 0 and µg standing respectively for the mass
(depending on i) and viscosity (independent of i) of the gas bubbles. We also introduced pg :
(0,∞)→ (0,∞) the gas pressure law. The argument of pg is computed from the mass and radius
of the bubble noting that the density is constant in each bubble. Finally the surface tension in
the bubble i reads:

(6) κi =
κ

Ri

where κ > 0 is a given parameter.

In the last section of the paper, we construct a Cauchy theory for system (1)–(6). We stick
to a classical regularity framework : we have L∞t H

1
x × (L∞t H

1
x ∩ L2

tH
2
x) regularity for the pair

(ρf , uf ) and H2
t regularity of the bubble unknowns. However, the system being posed on a time-

dependent unknown domain, some preliminary work is performed to design a suitable regularity
framework for our solution. As in the classical case of rigid bodies moving in a viscous fluid [19], we
construct our notion of solution by fixing the fluid domain with a suitable change of unknown and
write the above regularity framework in this fixed-domain formulation. As classical (again) with
compressible 1D equations, a good choice for fixed-domain framework is to work with time/mass
lagrangian coordinates. Since there is no mass transfer through liquid/gas interfaces, this change
of variable also fixes the bubble domains. Section 3 then splits into two parts. Firstly, we write
the system in a fixed domain and analyse the regularity requirement in the moving frame that
corresponds to a classical solution in the fixed one (see Corollary 1). In the second step, we
prove local-in-time existence and uniqueness of solutions to the system in a fixed frame. We
remark here that in the fixed frame (1)–(6) becomes a standard quasilinear system with non-
standard boundary conditions (see (31)–(33)). We obtain then the existence/uniqueness result via
a standard perturbation approach (see Theorem 1).

Acknowledgement. The first author acknowledges support of the Institut Universitaire de
France and project ”SingFlows” ANR-grant number: ANR-18-CE40-0027. This paper was finished
while M.H. was benifiting a ”subside à savant” from Université Libre de Bruxelles. He would like
to thank the mathematics department at ULB for its hospitality.

2. Derivation of microscopic model for compressible bubbly flows

In this section we provide the formal derivation of a 3D microscopic compressible model for
bubbly flows. We start from a mixture of compressible fluids filling a container Ω. We assume that
the mixture is made of one leading fluid – whose density/velocity/pressure are denoted (ρf , uf , pf )
– that fills a subset

F = Ω \
N⋃
i=1

Bi

which stands for the container Ω deprived from a finite number of inclusions Bi — the bubbles.
Further on, we will assume that the Bi are balls of radius Ri. The bubbles Bi are disjoint and
contain a different compressible fluid. Typically, the following model applies to a liquid (modeled
by the surrounding fluid) containing gaseous drops (modeled by the bubbles). We denote (ρi, ui, pi)
the respective densities/velocities/pressures of this second fluid in the bubble Bi. We impose in the
model that this second phase is the same in all inclusions by assuming that the physical parameters
(shear/dynamic viscosity and pressure law) do not depend on i. Namely, we write the Newtonian
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barotropic compressible Navier Stokes equations for all phases, and we obtain the systems:

(7)


∂tρf + div(ρfuf ) = 0

∂t(ρfuf ) + div(ρfuf ⊗ uf ) = div

[
2µf

(
D(uf )− 1

3
divuf I3

)
+ (λfdivuf − pf )I3

]
pf = pf (ρf )

in F , and

(8)


∂tρi + div(ρiui) = 0

∂t(ρiui) + div(ρiui ⊗ ui) = div

[
2µg

(
D(ui)−

1

3
divuiI3

)
+ (λgdivui − pi)I3

]
pi = pg(ρi)

in Bi, for i = 1, . . . , N. In these systems, we introduce (µf , λf ) and (µg, λg) the respective shear
and volume viscosities of the two phases. The index f stands for ”fluid” and g for ”gas”. We use
similar conventions for the pressure laws pf and pg. We also introduce the symbol D to denote
the symmetric part of the gradient:

D(u) =
1

2

(
∇u+∇>u

)
.

The symbol div stands for the classical divergence of vector-fields. In case we apply the divergence
to a matrix-application, it stands for the straightforward extension that one obtains by applying
the vector operator row-wise.

We prescribe then the continuity of velocities through the interfaces between both fluids and
a jump of stress due to a (constant) surface-tension. Precisely, we set:

(9)

{
uf − ui = 0

(Σf − Σg)n = κin
on ∂Bi for i = 1, . . . , N,

In these conditions, we denote with n the normal to ∂Bi and we use the shortcut:

Σf = 2µf

(
D(uf )− 1

3
divuf I3

)
+ (λfdivuf − pf )I3

and the corresponding definition for Σg. We emphasize that, with this convention, we can rewrite
the momentum equation for the fluid phase:

∂t(ρfuf ) + div(ρfuf ⊗ uf ) = divΣf

and similarly with the gas phase. The κi are positive constants modelling the surface tension
at the interface ∂Bi. It can be related to the state of Bi (further on we will assume that it is a
function of the bubble radius) but it is constant over ∂Bi. We also prescribe that the fluid and
bubble domains follow the characteristics associated with velocities uf and ui:

(10)

{
∂t1F + uf · ∇1F = 0

∂t1Bi + ui · ∇1Bi = 0
in Ω.

We complement the system with boundary conditions:

uf = 0 on ∂Ω.

Since we have (9) we note that, if uf and ui are sufficiently smooth, we keep the property that
the (Bi)i=1,...,N together with F realize a partition of Ω.

We enforce now the further assumption that the Bi are balls of gas with a constant density.
We denote Xi the center of Bi and Ri its radius. Since the state of the bubbles is completly fixed
by their centers and radii, we propose to reduce the coupled problem (7)-(8)-(9)-(10) to a coupled
system in terms of (ρf , uf , pf ) and ((Xi, Ri))i=1,...,N . Our derivation is based on the following
remark
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Proposition 1. Let X ∈ R3 and R > 0. If u ∈ H1(B(X,R)) satisfies

D(u)− 1

3
divuI3 = 0 on B(X,R)

then u ∈ C∞(B̄(X,R)). If we assume furthermore that:

(u(x)− u(X)) · n = cstt, on ∂B(X,R)

there exists (V, ω,Λ) ∈ R3 × R3 × R such that:

u(x) = V + ω × (x−X) +
Λ

3
(x−X) , ∀x ∈ B(X,R).

This proposition is an extension of [20, Lemma 1.1, Chapter 1]. A proof is provided in Appendix
A. We point out that we choose the normalization factor 1/3 so that:

div

(
Λ

3
(x−X)

)
= Λ.

With this proposition, we can interpret formally a bubble as a compressible fluid with infinite shear
viscosity. Then, for our derivation we propose to reverse the method yielding a weak formulation
for fluid/solid interaction system, see [18]. Namely, first, we write a unified weak formulation for
the coupled system in terms of a (composite) density/velocity/pressure ρ, u, p. Assuming that the
bubbles remain spherical, we send then formally µg to ∞ and compute a reduced system in terms
of ((Xi, Ri)i=1,...,N , (ρf , uf , pf )) with a good choice of test functions.

2.1. Unified system. Assume that (ρi, ui, pi)i=1,...,N with (ρf , uf , pf ) is a classical solution to
(7)-(8)-(9)-(10). Let us define:

ρ := ρf1F +

N∑
i=1

ρi1Bi
, u := 1Fuf +

N∑
i=1

1Bi
ui, p := pf1F +

N∑
i=1

pi1Bi
.

Then, because of the coupling condition (9), we can formally combine (7)-(8) with (10) to derive
that (ρ, u, p) satisfies:

(11)


∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) = divΣ +∇κ

Σ = 2µ

(
D(u)− 1

3
divuI3

)
+ (λdivu− p)I3

on Ω

with

µ = µf1F +

N∑
i=1

µg1Bi , λ = λf1F +

N∑
i=1

λg1Bi , κ =

N∑
i=1

κi1Bi .

To address the well-posedness of the derived system, we should complement our system with a
pressure law:

p = p(1F , ρ), p(c, ρ) = cpf (ρ) + (1− c)pg(ρ)

where 1F and 1Bi
are all solutions of the transport equation (with generic unknown 1)

∂t1+ u · ∇1 = 0.

In particular, assuming that there exist functions qf : (0,∞) → (0,∞) and qg : (0,∞) → (0,∞)
such that:

d

dz

[
qf (z)

z

]
=

pf (z)

z2
and

d

dz

[
qg(z)

z

]
=

pg(z)

z2
, on (0,∞),

we derive that the ”composite potential energy”:

q := q(1F , ρ) , q(c, ρ) = c qf (ρ) + (1− c)qg(ρ).

satisfies the equation:

(12) ∂tq + div(qu) = pdivu.
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Hence, multiplying the second equation of (11) with u and combining with (12), we conclude that

e := e(ρ, u, q) =
1

2
ρ|u|2 + q,

satisfies:

(13) ∂te+ div

(
ρu
|u|2

2
− (Σ + κI3)u

)
+ 2µ|D(u)− 1

3
divuI3|2 + λ|divu|2 + [κ · ∇]u = 0.

We underline that the state-law that we write above for the composite pressure and the com-
posite energy is reminiscent of the idea that the indicator function plays the role of an order
parameter c (see [3]).

2.2. Identification of bubbles and their mechanical properties. In (13), the κ term can be
handled by the positive dissipation. Hence, setting µg =∞, we conclude that

D(u)− 1

3
divu = 0 on Bi for all i.

With the further assumption that Bi remains spherical, we enforce also that

(u(x)− u(Xi)) · (x−Xi) = 2ṘiRi on ∂Bi

and thus, from Proposition 1, there exists (Vi, ωi,Λi) ∈ R3 × R3 × R for which

u(t, x) = Vi + ωi × (x−Xi) +
Λi

3
(x−Xi), on Bi.

We recall here that Xi is chosen to be the center of Bi (and we denote by Ri its radius). In
particular, we can replace u by this identity in the transport equation (10) satisfied by 1Bi

.
Solving the characteristics problem associated with the right-hand side, we get that, at time t > 0,
there holds Bi = B(Xi(t), Ri(t)) where Xi, Ri are computed by integrating the odes:

Ẋi = Vi, Ṙi =
Λi

3
Ri.

For later purpose, we introduce now some mechanical quantities characterizing the momentums
of the bubbles. Since ρi1Bi

is a solution to:

∂t(ρi1Bi
) + div(ρi1Bi

ui) = 0.

and we assumed ρi is constant on Bi, we get that ρ̇i = −Λiρi. Next, we introduce the three
important quantities associated with the kinetic energy related to the possible motion of Bi.
First, we define the mass:

(14) mi =

∫
Bi

ρi =
4π

3
ρiR

3
i .

Given the differential equations satisfied by ρi and Ri, we get that mi is a constant, independent
of time-evolution (as could be expected). Second, we introduce the inertia matrix Ji ∈ M3(R)
standing for the unique (positive) symmetric matrix such that:

(15) (Jiω) · ω̃ =

∫
Bi

ρi(ω × (x−Xi)) · (ω̃ × (x−Xi))dx , ∀ (ω, ω̃) ∈ R3 × R3.

We will see below that this matrix is related to the computation of the kinetic energy coming from
the bubble rotations. In the case of a homogeneous ball that we consider here, we have:

Ji =
8π

15
ρiR

3
i I3 =

2

5
miR

2
i I3.

In particular, we remark that contrary to the case of a rigid ball, this quantity is time-dependent.
Finally, we introduce Ki ∈ R the equivalent characteristics to Ji measuring the contribution of
dilation to kinetic energy. It reads:

(16) Ki =

∫
Bi

ρi
9
|x−Xi|2dx
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and satisfies:

Ki =
4π

45
ρiR

5
i =

mi

15
R2

i .

According to the previous formulas, we have some specific algebraic identities that will come
into play in future computations. First, given (ω, ω̃) ∈ R3 × R3, applying the classical formula:

ω̃ · ω = (ω · e)(ω̃ · e) + (ω × e) · (ω̃ × e) ∀ e ∈ S2

with e = (x−Xi)/|x−Xi| and integrating in space, we obtain that

(17) (Jiω) · ω̃ +

∫
Bi

ρi(ω · (x−Xi))(ω̃ · (x−Xi)) =

∫
Bi

ρiω · ω̃|x−Xi|2.

Second, differentiating with respect to time the explicit formulas for Ji and Ki and applying the
differential equations for Ri (as well as the fact that mi is constant) we deduce that:

(18) K̇i =
2

3
ΛiKi, J̇i =

2

3
ΛiJi.

To conclude, we illustrate our definition of (mi,Ji,Ki), by simply stating that, whatever the
value of (V, ω,Λ) ∈ R3 × R3 × R, there holds:∫

Bi

ρi(V + ω × (x−Xi) +
Λ

3
(x−Xi)) · (V + ω × (x−Xi) +

Λ

3
(x−Xi))dx

= mi|V |2 + (Jiω) · ω +Ki|Λ|2.

2.3. Extraction of dynamical equations for (Xi, Ri). We want now to understand the dy-
namics of the bubbly flow in the regime µg =∞. We first remark that, by construction, we keep
the dynamical equations in the fluid domain (7) as well as the continuity of fluid velocities, with
the restriction:

(19) u = Vi + ωi × (x−Xi) +
Λi

3
(x−Xi), on ∂Bi, ∀ i = 1, . . . , N.

where:

(20) Vi = Ẋi, Λi = 3
Ṙi

Ri
, ∀ i = 1, . . . , N.

To proceed, we still assume that the Bi are disjoint far from ∂Ω, we consider a distribution of
velocities (Ṽi, ω̃i, Λ̃i) ∈ R3 × R3 × R and we construct a w that vanishes on ∂Ω and such that:

w(t, x) = Ṽi + ω̃i × (x−Xi) +
Λ̃i

3
(x−Xi), on Bi , ∀ i = 1, . . . , N.

We note that, though the distribution of velocities is time-independent, we obtain a time-dependent
w because the Bi move inside the fluid domain (with time-varying radii and centers). Multiplying
(11) with w and integrating by parts, we obtain that:∫

Ω

(∂t(ρu) + div(ρu⊗ u)) · w = −
∫

Ω

Σ : D(w) +

∫
Ω

∇κ · w.

We compute now independently the left-hand side and right-hand side of this identity. On the
right-hand side, we apply the definition of Σ:

RHS =

∫
F

Σf : D(w) +

N∑
i=1

∫
Bi

2µg

(
D(u)− 1

3
divuI3

)
:

(
D(w)− 1

3
divwI3

)
+

∫
Bi

(λgdivu− pg(ρi))divw +

∫
∂Bi

κiw · n.
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Here, we argue that D(w) − (divw/3)I3 = 0 so that the term in factor of µg vanishes. Then, we
integrate by parts the first identity and replace w by its explicit value. This yields:

RHS = −
∫
F

divΣf · w

+

N∑
i=1

(∫
∂Bi

Σfn · Ṽi +

∫
∂Bi

((x−Xi)× Σfn) · Ω̃i

+

∫
∂Bi

((x−Xi) · Σfn) · Λ̃i + (λgΛi − pg(ρi) + κi) Λ̃i|Bi|
)
.

As for the left-hand side, we split:

LHS =

∫
F

(
∂t(ρfuf ) + div(ρfuf ⊗ uf )

)
· w +

N∑
i=1

LHSi

with

LHSi =

∫
Bi

∂t(ρiui) · w + div(ρiui ⊗ ui) · w

Applying that Bi moves with the velocity-field ui, we can integrate by parts

LHSi =
d

dt

[∫
Bi

ρiui · w
]
−
∫
Bi

ρiui · (∂tw + ui · ∇w) .

In this identity, we use the explicit formulas:

ui = Vi + ωi × (x−Xi) +
Λi

3
(x−Xi),

w = Ṽi + ω̃i × (x−Xi) +
Λ̃i

3
(x−Xi),

∂tw + ui · ∇w = ω̃i ×
(
ωi × (x−Xi) +

Λi

3
(x−Xi)

)
+

Λ̃i

3

(
ωi × (x−Xi) +

Λi

3
(x−Xi)

)
,

and, after tedious but straightforward computations, we obtain∫
Bi

ρiui · w = miVi · Ṽi + (Jiωi) · ω̃i +KiΛiΛ̃i,

and ∫
Bi

ρiui · (∂tw + ui · ∇w) = T1 + T2 + T3,

where

T1 =

∫
Bi

ρiVi · (∂tw + ui · ∇w) = 0,

because Xi is the center of Bi, and

T2 =
Λi

3
(Jiωi) · ω̃i +

Λ̃i

3
(Jiωi) · ωi,

T3 =
Λi

3

∫
Bi

ρiω̃i · (x−Xi)ωi · (x−Xi)−
∫
Bi

ρiω̃i · ωi|x−Xi|2 +
Λ̃i

3
Ki|Λi|2.

Here, we apply (17) to yield that:

T2 + T3 =
Λ̃i

3

(
(Jiωi) · ωi +Ki|Λi|2

)
.

Finally, this entails that:

LHSi =
d

dt

[
miVi · Ṽi + (Jiωi) · ω̃i +KiΛiΛ̃i

]
− Λ̃i

3

[
(Jiωi) · ωi +Ki|Λi|2

]
.



ANALYSIS OF COMPRESSIBLE BUBBLY FLOWS. PART I. 9

Combining the previous computations for LHS and RHS and recalling that (ρf , uf , pf ) satisfies
the Navier-Stokes equations on F , we conclude that:

N∑
i=1

d

dt

[
miVi · Ṽi + (Jiωi) · ω̃i +KiΛiΛ̃i

]
− Λ̃i

3

[
(Jiωi) · ωi +Ki|Λi|2

]
=

N∑
i=1

(∫
∂Bi

Σfn · Ṽi +

∫
∂Bi

((x−Xi)× Σfn) · ω̃i

+

∫
∂Bi

((x−Xi) · Σfn)Λ̃i + (λgΛi − pg(ρi) + κi)Λ̃i|Bi|
)
.

Choosing sequentially that only Ṽi or ω̃i or Λ̃i does not vanish, we end up with the system:

(21)


miV̇i = −

∫
∂Bi

Σfn,

d

dt
[Jiωi] = −

∫
∂Bi

(x−Xi)× (Σfn),

and

(22)
d

dt
[KiΛi]−

1

3

[
(Jiωi) · ωi +Ki|Λi|2

]
= −

∫
∂Bi

((x−Xi) · Σfn) + (λgΛi − pg(ρi) + κi)|Bi|.

The two first equations are the classical Newton laws of solid dynamics. The latter one is new
to our knowledge. We point out that, in the last identity, all the quantities can be computed in
terms of Ri and Ṙi. In particular, the second term on the left-hand side is a geometrical term
that is induced by the fact that Ji and Ki are time-dependant because of the time evolution of
Ri.

2.4. Conclusion. We conclude with a reformulation of our system in terms of the only unknown
(ρf , uf , pf ) for the fluid and (Xi, Ri)i=1,...,N for the bubbles. Concerning the fluid, we have:{

∂tρf + div(ρfuf ) = 0,

∂t(ρfuf ) + div(ρfuf ⊗ uf ) = divΣf ,

in the fluid domain

F(t) = Ω \
N⋃
i=1

Bi,

where Bi = B(Xi, Ri). This system is completed with boundary conditions:

(23)

uf = Ẋi + ωi × (x−Xi) +
Ṙi

Ri
(x−Xi), on ∂Bi,

uf = 0, on ∂Ω.

It is also coupled with the dynamical equations for the bubbles:

(24)



miẌi = −
∫
∂Bi

Σfn,

d

dt

[
2mi

5
R2

iωi

]
= −

∫
∂Bi

(x−Xi)× (Σfn),

d

dt

[mi

5
ṘiRi

]
− miR

2
i

3

2

5
ω2
i +

3

5

∣∣∣∣∣ Ṙi

Ri

∣∣∣∣∣
2
 = −

∫
∂Bi

((x−Xi) · Σfn)

+

(
3λg

Ṙi

Ri
− pg

(
3mi

4πR3
i

)
+ κi

)
4

3
πR3

i .
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where mi is the mass of bubble Bi, λg is its volumic viscosity, pg its pressure law and Σf is the
fluid stress tensor given by

(25) Σf = 2µf

(
D(uf )− 1

3
divuf I3

)
+ (λfdivuf − pf )I3, pf = pf (ρf ).

We mention here that, in these latter Newton-like equations, the geometric term on the left-hand
side of the last equation handles the fact that the inertia parameters of Bi depend on Ri. As
for the right-hand side, it measures the different actions of the bubbles and fluid. We note in
particular that, in the last equation, the last term can be rewritten:

−
∫
∂Bi

(x−Xi) ·
(

Σf −
Σg − κi

3

)
ndσ.

The factor 1/3 is here a dimensional artefact due to the algebra relating the dependencies of ui
and divui in Λi. In particular, the right-hand side is not properly the surface force applied on ∂Bi

(because the (x−Xi) term appearing in the latter integral is homogeneous to a length).

2.5. 1D analogue. We propose now a 1D analogue to the system derived previously. So, we
consider a mixture that fills the 1D container Ω = (−1, 1). We denote the bubbles

Bi = (ci −Ri, ci +Ri), ∀ i = 1, . . . , N,

where ci ∈ Ω, Ri > 0 for all i, and

F = Ω \
N⋃
i=1

Bi.

Following the previous notations, we introduce (ρf , uf ) the fluid density/velocity which solve the
1D compressible Navier Stokes system:

∂tρf + ∂x(ρfuf ) = 0

∂t(ρfuf ) + ∂x(ρfu
2
f ) = ∂xΣf

Σf = µf∂fuf − pf (ρf ).

The motion of the bubbles is given by:

ui(t, x) = ċi +
Ṙi

Ri
(x− ci), on Bi

so that we add the no-slip boundary conditions:{
u(t, ci ±Ri) = ċi ± Ṙi for i = 1, . . . , N

u(t,±1) = 0

For the bubble dynamics, we introduce ρi the density and mi the mass of the bubble Bi. Requiring
again that mi is constant, we obtain that the kinetic energy of the bubble Bi is given by:

1

2

∫
Bi

ρi

(
ċi +

Ṙi

Ri
(x− ci)

)2

dx =
1

2
mi|ċi|2 +

1

2

miR
2
i

3

∣∣∣∣∣ Ṙi

Ri

∣∣∣∣∣
2

.

So, following the computations in the 3D case, we propose the following extended Newton laws
(note that there is no rotation here):

mic̈i = Σf (ci +Ri)− Σf (ci −Ri),

mi

3

d

dt
[ṘiRi]−

mi

3
|Ṙi|2 = Ri [(Σf (ci +Ri) + Σf (ci −Ri))− 2Σi + κi] ,

where the bubble stress tensor is given by:

Σi = µg
Ṙi

Ri
− pg

(
mi

2Ri

)
, on Bi.

We note that the second equation simplifies:
mi

3
R̈i = [(Σf (ci +Ri) + Σf (ci −Ri))− 2Σi + κi] .
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Below, we assume that κi is computed for bubbles thanks to a Laplace-Young law [15, Chapter
VII]:

κi =
κ

Ri
for some paramater κ > 0.

Hence, from now on, we drop κi in the system and we incorporate the surface-tension effects in
the pressure law pg.

3. Cauchy theory for 1D compressible bubbly flows

In this section, we address the existence and uniqueness of classical solutions to the 1D com-
pressible bubbly-flow model that we derived in the previous section. We focus on the particular
case of polytropic pressure laws (in the fluid and in the bubbles). Precisely, we consider the sytem
with unknown (ρ, u) and (ci, Ri)i=1,...,N given by the 1D Navier Stokes equations:

(26)

{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2) = ∂x(µf∂xu− pf (ρ)),
on (−1, 1) \

N⋃
i=1

[ci −Ri, ci +Ri],

with the boundary conditions:

(27)

{
u(t, ci ±Ri) = ċi ± Ṙi, for i = 1, . . . , N,

u(t,±1) = 0,

and complemented with generalized Newton laws:

(28)


mic̈i = [µf∂xu− pf (ρ)]ci±Ri

,

mi

3
R̈i = {µf∂xu− pf (ρ)}ci±Ri

− 2

(
µg
Ṙi

Ri
− pg(Ri)

)
,
∀ i = 1, . . . , N.

In this system, we introduced the physical parameters: µf , pf (resp. mi, µg,pg) characterizing the
fluid properties (resp. the bubble properties). We emphasize that mi stands for the mass of the
bubble i and can vary between the bubbles. We also constructed the pressure law with respect to
the radius Ri since, the mass being conserved and the density constant in the bubbles, the density
of each bubble is directly related to its radius. This enables to incorporate also surface tension
effects thanks to a Laplace-Young law for instance. Finally, for a function f defined on the fluid
domain, we denoted:

[f ]ci±Ri
= (f(ci +Ri)− f(ci −Ri)), {f}ci±Ri

= (f(ci +Ri) + f(ci −Ri)), ∀ i = 1, . . . , N.

We complete the system with initial conditions:

(29)

{
ci(0) = c0i , ċi(0) = ċ0i ,

Ri(0) = R0
i , Ṙi(0) = Ṙ0

i ,
∀ i = 1, . . . , N,{

ρ(0, x) = ρ0(x),

u(0, x) = u0(x),
∀x ∈ (−1, 1) \

N⋃
i=1

(c0i −R0
i , c

0
i +R0

i ).

We state this system formally, but we obviously need that the bubble domains (ci −Ri, ci +Ri),
i = 1, . . . , N , remain well separated initially and with time-evolution so that all these equations
are meaningful.

This section splits into two parts. Firstly, we provide a functional framework for solving (26)-
(27)-(28)-(29). To this aim, we use a Lagrangian formulation with time/mass coordinates and
provide a unified formulation of the fluid+bubble system. We prove the equivalence between the
two formulations and we state our main result. The last subsection is devoted to the proof of our
main result.
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3.1. Functional setting and main result. We assume that the full system has unit mass. This
property does not restrict the generality up to a scaling of the viscosity and pressure laws.

As classical in the 1D setting, we look for a solution to (26)-(27)-(28) in the time/mass coordi-
nates:

(30)

(
t,m =

∫ x

−1

ρ̄(t, z)dz

)
where ρ̄ is the extension of ρ by ρi = mi/2Ri in the bubble domains. Denoting

m±i =

∫ ci±Ri

−1

ρ̄(t, z)dz, ∀ i = 1, . . . , N,

and introducing the specific volume v = 1/ρ, our system reads in these new coordinates:

(31)


∂tv = ∂mu,

∂tu = ∂m

(
∂mu

v
− πf (v)

)
,

on F0 := (0, 1) \
N⋃
i=1

[m−i ,m
+
i ],

with the boundary conditions:

(32)

{
u(m±i ) = ċi ± Ṙi, for i = 1, . . . , N,

u(0) = u(1) = 0,

and complemented with generalized Newton laws:

(33)


mic̈i =

[µf

v
∂mu− πf (v)

]m+
i

m−i

,

mi

3
R̈i =

{µf

v
∂mu− πf (v)

}m+
i

m−i

− 2

(
µg
Ṙi

Ri
− pg(Ri)

)
,

∀ i = 1, . . . , N,

with previous notations for brackets. We also introduced in this system the specific volume pressure
law πf (v) = pf (1/v) for v > 0. We point out that, by construction, m+

i and m−i are constant and
that m+

i = m−i +mi for all i.

In order to handle the previous Lagrangian formulation of our problem, we work with extended
unknowns. First, we set:

v̄(t,m) =


v(t,m), in F0,

2Ri

m+
i −m

−
i

, in (m−i ,m
+
i ) for i = 1, . . . , N,

and

ū(t,m) =


u(t,m), in F0,

(ċi − Ṙi) + 2Ṙi
m−m−i
m+

i −m
−
i

, in (m−i ,m
+
i ) for i = 1, . . . , N.

In the classical regularity setting for Navier Stokes equations, we look for a solution such that
the velocity-field u has CtH

1
x ∩ L2

tH
2
x regularity in the fluid domain. Correspondingly, we must

have that v is W 1,∞
t L2

x ∩H1
tH

1
x. On the other hand, the bubbles prescribe that v is constant and

u affine in the intervals (m−i ,m
+
i ). Combining both remarks leads to the following construction of

function spaces. We introduce the symbol m which encodes the list of interval ((m−i ,m
+
i ))i=1,...,N

and we denote, for p ∈ [1,∞]:

Lp
m := {v ∈ Lp((0, 1)) s.t. v|

(m
−
i

,m
+
i

)
is constant ∀ i} ,

as well as, for k ≥ 1:

Hk
m := {u ∈ Hk

0 ((0, 1)) s.t. u|
(m
−
i

,m
+
i

)
is affine ∀ i}.
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We emphasize that, a priori L2
m and H0

m do not coincide. In particular, contrary to the classical
setting, the differential operator ∂m maps H1

m into L2
m (and not H0

m). With the above remarks,
we will require that a solution satisfies

(34)
v̄ ∈ H1(0, T ;H1(F0)) ∩ C([0, T ];L2

m),

ū ∈ H1(0, T ;L2(0, 1)) ∩ C([0, T ]; H1
m) ∩ L2(0, T ;H2(F0)).

We encode then the full system (31)-(32)-(33) into one system in terms of v̄, ū. Indeed, if
((u, v), (ci, Ri)i=1,...,N ) is a solution to (31)-(32)-(33) we first remark that we can compute explicitly
∂tv̄ and ∂mū on the bubbles (m−i ,m

+
i ). This entails that we have the transport equation:

(35) ∂tv̄ = ∂mū

on the whole interval (0, 1). Second, given w̄ ∈ H1
m we multiply the momentum equation in (31)

with w̄. After integration by parts and application of the continuity condition (32) and extended
Newton laws (33), we obtain:

(36)
d

dt

[∫ 1

0

ūw̄

]
+

∫ 1

0

(µ
v̄
∂mū− π(m, v̄)

)
∂mw̄ = 0

where:

(37) µ = µf1F0
+ µg(1− 1F0

) π(m, v) = 1F0
πf (v) +

N∑
i=1

1(m−i ,m+
i )πi(v)

with πi(v) = pg(miv/2) for i = 1, . . . , N. We point out that, contrary to the eulerian setting, we
cannot write the pressure law in terms of the indicator functions 1F0 only, since the quantity mi

is involved in the computation.

In conclusion, the solutions we are looking for are pairs (ū, v̄) with the regularity (34) such that
v̄ > 0 on (0, T ) × (0, 1) and that satisfy simultaneously (35) on (0, T ) × (0, 1) and (36) on (0, T )
for any w̄ ∈ H1

m. We perform our construction with viscosity and pressure law of the form (37).
In that respect, our main result reads:

Theorem 1. Consider viscosities (µf , µg) ∈ (0,∞) and pressure laws (πf , (πi)i=1,...,N ) that are
C1 on (0,∞). Then, given v̄0 ∈ L∞m ∩ H1(F0) such that inf(0,1) v̄0 > 0 and ū0 ∈ H1

m, there
exists T0 > 0 (depending only on inf(0,1) v̄0, ‖v̄0‖L∞((0,1)), ‖v̄0‖H1(F0), ‖ū0‖H1((0,1))) such that, for
arbitrary T ∈ (0, T0),there is a unique pair (ū, v̄) satisfying

i) condition (34) with inf(0,T )×(0,1) v̄ ≥ min v̄0/2,

ii) equations (35) on (0, T )× (0, 1), and (36) on (0, T ) for any w̄ ∈ H1
m,

iii) initial condition v̄(0, ·) = v̄0 and ū(0, ·) = ū0 on (0, 1).

We provide a proof of this result in the next section. Before going to this content, we note
that it implies existence and uniqueness of solutions to our initial system. Namely, we have the
following corollary:

Corollary 1. Consider viscosities (µf , µg) ∈ (0,∞), strictly positive masses (mi)i=1,...,N and
pressure laws (pf ,pg) that are C1 on (0,∞). Then, assume that initial data (c0i , R

0
i )i=1,...,N and

(ċ0i , Ṙ
0
i )i=1,...,N ensure the non-overlap condition:

(c0i −R0
i , c

0
i +R0

i ) ∩ (c0j −R0
j , c

0
j +R0

j ) = ∅ , ∀ i 6= j

R0
i > 0 , (c0i −R0

i , c
0
i +R0

i ) b (−1, 1) , ∀ i.

Denoting F0 := (−1, 1)\∪Ni=1(c0i −R0
i , c

0
i +R0

i ), assume also that initial data (ρ0, u0) ∈ H1(F0)×
H1(F0) satisfy the compatibility conditions:∫

F0

ρ0 +

N∑
i=1

mi = 1, min ρ0 > 0 ,

u0(c0i ±R0
i ) = ċ0i ± Ṙ0

i , ∀ i = 1, . . . , N, u0(±1) = 0 .
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Then, there exists T0 > 0 (depending only on inf(0,1) ρ0,minRi, ‖ρ0‖H1(F0), ‖u0‖H1(F0) and the
minimal distance between bubbles and between bubbles and container boundaries) such that, for
any T < T0 there exists a unique ((ρ, u), (ci, Ri)i=1,...,N ) satisfying:

a) (ci, Ri) ∈ H2(0, T ) with the non-overlap condition on (0, T ) :

(ci −Ri, ci +Ri) ∩ (cj −Rj , cj +Rj) = ∅ , ∀ i 6= j ,

Ri > 0 , (ci −Ri, ci +Ri) b (−1, 1) , ∀ i,

b) the pair (ρ, u) has the regularity:

(ρ, u) ∈ H1

 ⋃
t∈(0,T )

{t} × ((−1, 1) \
N⋃
i=1

(ci −Ri, ci +Ri))


∂xxu ∈ L2

 ⋃
t∈(0,T )

{t} × ((−1, 1) \
N⋃
i=1

(ci −Ri, ci +Ri))


c) (ρ, u) satisfies equations (26)-(27)-(28) almost everywhere on their respective set of defi-

nitions and initial condition (29).

Proof. Consider initial data as in the previous statement and construct

ρ̄0 =

(
1−

N∑
i=1

1(c0i−R0
i ,c

0
i +R0

i )

)
ρ0 +

N∑
i=1

mi

2R0
i

1(c0i−R0
i ,c

0
i +R0

i ).

Then set:

m±i =

∫ c0i±R
0
i

−1

ρ0(z)dz , m0(x) =

∫ x

−1

ρ̄0(z)dz.

We note that, by construction m0 is continuous piecewise C1 with inf ∂xm0 ≥ C0 > 0. This shows
that m0 realizes a one-to-one mapping between (−1, 1) and (0, 1) with an inverse continuous
piecewise C1 mapping. We can then fix:

v̄0(m) =
1

ρ̄0(m−1
0 (m))

∀m ∈ (0, 1).

Under the assumption that ρ0 has H1-regularity outside the bubbles, we get an initial data v̄0 ∈
L∞m ∩H1(F0). Similarly, we set:

ū0(m) = u0(m−1
0 (m)) ∀m ∈ (0, 1) \

N⋃
i=1

(m−i ,m
+
i ).

With the regularity of u0 and m−1
0 there holds:

ū0 ∈ H1((0, 1) \
N⋃
i=1

(m−i ,m
+
i )).

Furthermore, since initial data are assumed to satisfy the no-slip condition on fluid/bubble inter-
faces, we have:

ū0(m±i ) = u0(c0i ±R0
i ) = ċ0i ± Ṙ0

i .

Consequently, extending ū0 with:

ū0(m) = (ċ0i − Ṙ0
i ) +

2(m−m−i )

m+
i −m

−
i

R0
i ∀m ∈ (m−i ,m

+
i )

we obtain ū0 ∈ H1
m.We have constructed initial data (v̄0, ū0) that match the regularity assumptions

of Theorem 1. We have then at-hand T > 0 and (ū, v̄) that satisfy items i)-ii)-iii). We show now
that there is a correspondence between these solutions and a ((ρ, u), (ci, Ri)i=1,...,N ) satisfying the
items a)-b)-c) of our corollary.
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Let consider (v̄, ū) the solution constructed via Theorem 1. Thanks to the transport equation
satisfied by v̄ and homogeneous boundary conditions for ū we have that the mass of v̄ is constant
on (0, T ). We can then construct:

x(t,m) = −1 +

∫ m

0

v̄(t, ζ)dζ.

With this definition, x is piecewise C1 on (0, T )× (0, 1) with:

∂tx = ū ∂mx = v̄.

In particular, for arbitrary t ∈ (0, 1), we have that x realizes a W 1,∞-change of variables with
W 1,∞-inverse mapping. Actually, for t = 0 we can replace ∂mx(0, ·) with the initial change of
unknowns to realize that x(0, ·) = m− 0−1. Since the mass of v̄ does not depend on time, we have
that x(t, ·) realizes an homeomorphism between (0, 1) and (−1, 1) for all t ∈ (0, T ).

At this point, for i = 1, . . . , N, we fix:

Ri =
1

2

∫ m+
i

m−i

v̄(t,m)dm ci(t) = c0i +

∫ t

0

1

mi

∫ m+
i

m−i

ū(s,m)dmds.

We note here that v̄ is constant on (m−i ,m
+
i ) as well as ∂mū. In particular, theH1(0, T ;L2(m−i ,m

+
i ))-

regularity of ū implies that Ri ∈ H2(0, T ). Similarly, we obtain that:

ċi =
1

mi

∫ m+
i

m−i

ū(t,m)dm,

inherits the H1(0, T )-regularity of ū so that ci ∈ H2(0, T ).
We prove now that the non-overlap condition holds on (0, T ). First, since v̄ is bounded from

above and by below, we have that Ri > 0. Second, we fix Bi = x((m−i ,m
+
i )). Since x is an

homeomorphism between (0, 1) and (−1, 1) we obtain that Bi is an interval and that Bi ∩Bj = ∅
for i 6= j and Bi b (−1, 1) for all i. It remains to prove that Bi = (ci − Ri, ci + Ri) on (0, T ).
To this end, let denote x−i , x

+
i the endpoints of Bi. We emphasize that these are continuous

time-dependent functions. We have:

x+
i − x

−
i =

∫ m+
i

m−i

v̄(t, ζ)dζ = 2Ri.

Then, applying the definition of the change of variable, the transport equation for v̄ together with
the fact that it is constant on (m−i ,m

+
i ) (equal to 2Ri/mi) we infer that:

1

2Ri

∫ x+
i

x−i

zdz =
1

2Ri

∫ m+
i

m−i

x(t, ζ)v̄(t, ζ)dζ =
1

mi

∫ m+
i

m−i

x(t, ζ)dζ.

We can thus differentiate wrt time to yield that:

d

dt

[
1

2Ri

∫ x+
i

x−i

zdz

]
=

1

mi

∫ m+
i

m−i

∂tx(t, ζ)dζ =
1

mi

∫ m+
i

m−i

ū(t, ζ)dζ = ċi.

Since we have initially that Bi = (c0i −R0
i , c

0
i +R0

i ) we conclude that:

1

2Ri

∫ x+
i

x−i

zdz = ci on (0, T ),

and Bi = (ci −Ri, ci +Ri). This concludes the proof of a).
To obtain b), we simply argue by change of variables. For t ∈ (0, T ) and y ∈ (−1, 1), we fix:

u(t, y) = ū(t, x−1(t, y)) ρ(t, y) =
1

v̄(t, x−1(t, y))
.
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By classical change of variable arguments (since x(t, ·) and x−1(t, ·) are L∞t W
1,∞
x with norms

bounded by sup v̄ and inf v̄) we obtain then that u, ρ enjoy the regularity of b). In particular, we
have that:

∂xu(t, x(t,m)) =
∂mū(t,m)

v̄(t,m)
∂tu(t, x(t,m)) + u(t, x(t,m))∂xu(t, x(t,m)) = ∂tū(t,m).

To conclude with c), we first reproduce the change of variables above to yield that outside the
(ci −Ri, ci +Ri) there holds

1

ρ(t, y)2
(∂tρ(t, x) + u(t, x)∂xρ(t, x)) = −∂tv̄(t, x−1(t, y))

∂xu(t, y)

ρ(t, y)
= ∂mū(t, x−1(t, y)),

and thus we have:

∂tρ+ ∂x(ρu) = 0 on (−1, 1) \
⋃

(ci −Ri, ci +Ri).

Finally, we can plug in (36) any w̄ ∈ C∞c (F0). Equation (36) then implies that we have:

∂tū = ∂m

(µf

v̄
∂mū− πf (v̄)

)
on (0, 1) \

⋃
(m−i ,m

+
i )

and, by change of variable:

∂t(ρu) + ∂x(ρu2) = ∂x(µf∂xu− pf (ρf )) on (−1, 1) \
⋃

(ci −Ri, ci +Ri).

Furthermore, by taking arbitrary w̄ that is affine on (m−i ,m
+
i ) we get (33) and, after change of

variable (28). Thanks to the existence part of Theorem 1 we have finally the existence part of
our corollary.

The proof of uniqueness follows the same line. From a candidate solution ((ρ, u), (ci, Ri)i=1,...,N )
we construct the extension:

ρ̄(t, x) = ρ(t, x)(1−
N∑
i=1

1(ci−Ri,ci+Ri)) +

N∑
i=1

mi

2Ri
1(ci−Ri,ci+Ri)

and construct the change of variable m as in the formula (30). A similar analysis as previously
yields that m is a W 1,∞-homeomorphism between (−1, 1) and (0, 1) with W 1,∞ inverse. We
construct then:

v̄(t, ζ) =
1

ρ̄(t,m−1(t, ζ))

and

ū(t, ζ) =


u(t,m−1(t, ζ)), if ζ ∈ (0, 1) \

⋃
(m−i ,m

+
i ),(

ċi − Ṙi

)
+

2Ṙi(ζ −m−i )

(m+
i −m

−
i )

, in (m−i ,m
+
i ).

With the regularity of b) we obtain with similar computations as in the previous part of the proof
that

ū ∈ H1

(
(0, T )×

(
(0, 1) \

N⋃
i=1

(m−i ,m
+
i )

))
∂mmū ∈ L2((0, T )×

(
(0, 1) \

N⋃
i=1

(m−i ,m
+
i )

)
).

In particular, there holds:

ū ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(F0)),

and thus ū ∈ C([0, T ];H1(0, 1)− w). To obtain continuity for the strong topology, we prove now
that ‖ū‖H1((0,1)) is continuous. For this, we remark that we already have continuity of the L2-norm

and of the H1-norm of the restriction to the bubbles. So, we focus on the ‖∂xū‖H1((m+
i ,m−i+1)), for

i ∈ {1, . . . , N − 1} (computations on (0,m−1 ) and (m+
N , 1) are similar).
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We fix i and 0 < t1 < t2 < T. By a multiplier argument and computation of the traces of ∂tū
on m+

i ,m
−
i+1, we infer:

1

2

[∫ m−i+1

m+
i

|∂mū(t2, ζ)|2 −
∫ m−i+1

m+
i

|∂mū(t1, ζ)|2
]

=

∫ t2

t1

[∂tū(t, ·)∂mū(t, ·)]m
−
i+1

m+
i

−
∫ t2

t1

∫ m+
i

m−i

∂tū(t, ζ)∂mmū(t, ζ)dζ

=

∫ t2

t1

[
(c̈i+1 − R̈i+1)∂mū(t,m−i+1)− (c̈i + R̈i)∂mū(t,m+

i )
]
−
∫ t2

t1

∫ m+
i

m−i

∂tū(t, ζ)∂mmū(t, ζ)dζ.

Hence, introducing:

φi(t, ζ) = (c̈i + R̈i) +
(c̈i+1 − c̈i)− (R̈i+1 + R̈i)

m−i+1 −m
+
i

(ζ −m+
i )

we obtain finally that:

1

2

[∫ m−i+1

m+
i

|∂mū(t2, ζ)|2 −
∫ m−i+1

m+
i

|∂mū(t1, ζ)|2
]

=

∫ t2

t1

∫ m+
i

m−i

∂mφi(t, ζ)∂mū(t, ζ) +

∫ t2

t1

∫ m+
i

m−i

φi(t, ζ)∂mmū(t, ζ)

−
∫ t2

t1

∫ m+
i

m−i

∂tū(t, ζ)∂mmū(t, ζ)dζ.

At this point we argue that φi ∈ L2(0, T ;H1(m+
i ,m

−
i+1)) because of the time-regularity of the ci

and Ri. Since we also have

∂tū, ∂mū, ∂mmū ∈ L2((0, T )× (m+
i ,m

−
i+1)),

the latter identity entails that:

lim
t1−t2→0

[∫ m−i+1

m+
i

|∂mū(t2, ζ)|2dζ −
∫ m−i+1

m+
i

|∂mū(t1, ζ)|2dζ

]
= 0.

We conclude that ū ∈ C([0, T ]; H1
m). Hence, up to restrict T , we have that (ū, v̄) satisfies item i)

of Theorem 1. We can then reproduce the computations in the introduction of this section to
yield that (v̄, ū) satisfies also the item ii) and that it satisfies the item iii). We apply now the
uniqueness part of Theorem 1 to yield that (v̄, ū) is the solution provided by Theorem 1. This
concludes the proof. �

3.2. Proof of Theorem 1. We conclude this section by providing a proof of Theorem 1 on the
basis of a standard perturbation approach. In the whole section we fix a N -uplet m1, . . . ,mN of
strictly positive masses and

v̄0 ∈ L∞m ∩H1(F0) ū0 ∈ H1
m

such that inf(0,1) v̄0 > 0. We construct solutions as a fixed-point of a mapping C : (ṽ, ũ) 7→ (v̄, ū) on
some sufficiently small time-interval (0, T ). Precisely, we fix T > 0. Given K ∈ (0,∞) we denote
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by S̄T [K] the set of pairs (ū, v̄) satisfying (34) with ū(0, ·) = ū0, v̄(0, ·) = v0 and

1

2
inf
(0,1)

v̄0 ≤ inf
(0,T )×(0,1)

v̄ ≤ sup
(0,T )×(0,1)

v̄ ≤ 2 sup
(0,1)

v̄0

sup
(0,T )

‖v̄‖L2((0,1)) + sup
(0,T )

‖v̄‖H1(F0) ≤ 2
(
‖v̄0‖L2((0,1)) + ‖v̄0‖H1(F0)

)
∫ T

0

‖∂tv̄‖2L∞((0,1)) ≤ 2K2

sup
(0,T )

‖ū‖2H1((0,1)) +

∫ T

0

‖∂mmū‖2L2(F0) ≤ K
2.

With standard arguments, we have that, whatever the values of T > 0 and K ∈ (0,∞), the set
S̄T [K] is a convex complete metric space when endowed with the distance:

dS((v̄1, ū1), (v̄2, ū2))

= sup
(0,T )

(
‖v̄1 − v̄2‖L2((0,1)) + ‖ū1 − ū2‖L2((0,1))

)
+

(∫ T

0

‖∂m(u2 − u1)‖2L2(0,1)

) 1
2

Below, we endow S̄T [K] with this topology. Now for fixed K ∈ (0,∞) we define C on S̄T [K] as
follows. Given (ṽ, ũ) ∈ S̄T [K], we compute (v̄, ū) := C[(ṽ, ũ)] in two steps. First v̄ is the solution
to

(38)

{
∂tv̄ = ∂mũ on (0, T )× (0, 1)

v̄(0, ·) = v̄0 on (0, 1)

Then, we compute ū by solving the weak formulation:

(39)


d

dt

[∫ 1

0

ūw̄

]
+

∫ 1

0

(µ
ṽ
∂mū− π(m, ṽ)

)
∂mw̄ = 0 for all w ∈ H1

m,

ū(0, ·) = ū0 on (0, 1).

We recall here that µ and π are defined by (37).

With these conventions, our proof reduces to the following Proposition:

Proposition 2. There exists a constant C0
∞ depending only on sup(0,1) v̄0, inf(0,1) v̄0 and the

physical parameters of the system such that, defining

K0 =
[
C0
∞

(
‖ū0‖2H1((0,1)) + 1

)] 1
2

there exists T0 > 0 such that C realizes a contraction on S̄T0 [K0].

We split the proof of this proposition into two lemmas whose proofs are detailed below.

Lemma 1. There exists T0 > 0 (depending only on inf(0,1) v̄0, ‖v̄0‖L2((0,1)), ‖v̄0‖H1(F0) and
‖ū0‖H1((0,1))) such that, given T < T0 the following statements hold true.

a. For any (ṽ, ũ) ∈ S̄T [K0], there exists a unique

v̄ ∈ C([0, T ];L2
m) ∩H1(0, T ;H1(F0))

solution to (38).
b. Moreover the solution v̄ satisfies:

• the uniform bounds:

1

2
inf
(0,1)

v̄0 ≤ inf
(0,T )×(0,1)

v̄ ≤ sup
(0,T )×(0,1)

v̄ ≤ 2 sup
(0,1)

v̄0 ,

sup
(0,T )

‖v̄‖L2((0,1)) + sup
(0,T )

‖v̄‖H1(F0) ≤ 2
(
‖v̄0‖L2((0,1)) + ‖v̄0‖H1(F0)

)
,



ANALYSIS OF COMPRESSIBLE BUBBLY FLOWS. PART I. 19

• the control from above:∫ T

0

‖∂tv̄‖2L∞((0,1)) ≤ 2|K0|2

c. Furthermore, for any pairs (ṽ1, ũ1) ∈ S̄T [K0] and (ṽ2, ũ2) ∈ S̄T [K0] we have (with obvious
notations)

sup
(0,T )

‖v̄2 − v̄1‖L2((0,1)) ≤
1

4

(∫ T

0

‖∂m(ũ2 − ũ1)‖2L2((0,1))

) 1
2

.

Lemma 2. There exists a constant C0
∞ (depending only on sup(0,1) v̄0, inf(0,1) v̄0 and physical

parameters) and T0 > 0 (depending only on inf(0,1) v̄0, ‖v̄0‖L2((0,1)), ‖v̄0‖1H(F0) and ‖ū0‖H1((0,1)))
for which, given T < T0, the following statements hold true.

a. For any (ṽ, ũ) ∈ S̄T [K0] there exists a unique

ū ∈ H1(0, T ;L2((0, 1))) ∩ C([0, T ]; H1
m) ∩ L2(0, T ;H2(F0))

solution to (39).
b. Moreover the solution ū satisfies:

sup
(0,T )

‖ū‖2H1((0,1)) +

(∫ T

0

‖∂mmū‖2L2((0,1))

)
≤ C0

∞

(
‖ū0‖2H1((0,1)) + 1

)
.

c. Furthermore, for all pairs (ṽ1, ũ1) ∈ S̄T [K0] and (ṽ2, ũ2) ∈ S̄T [K0] we have (with obvious
notations)

sup
(0,T )

‖ū2 − ū1‖L2((0,1)) +

(∫ T

0

‖∂m(ū2 − ū1)‖2L2((0,1))

) 1
2

≤ 1

4
sup
(0,T )

‖v̄2 − v̄1‖L2(0,1).

Proposition 2 yields as a straightforward combination of these two lemmas. So, we end up
this section with the proof of these lemmas.

Proof of Lemma 1. To begin with, we consider Lemma 1. We pick T > 0. We shall comment
on the smallness of T which will fix T0 in order that a., b. and c. hold simultaneously.

We start with a. and b.. For this, we fix (ṽ, ũ) in S̄T [K0]. Equation (38) is integrated straight-
forwardly:

v̄(t,m) = v̄0 +

∫ t

0

∂mū(t, ζ)dζ.

Since v̄0 ∈ L∞m ⊂ L2
m and, by differentiation, ∂mū ∈ C([0, T ];L2

m), there holds v̄ ∈ C([0, T ];L2
m).

Furthermore, we have v̄0 ∈ H1(F0) and, by differentiation again, ∂mū ∈ L2(0, T ;H1(F0)), so that
v̄ ∈ H1(0, T ;H1(F0)). In conclusion, v̄ satisfies the expected regularity. This completes the proof
of a.

We proceed with estimates. Below we introduce C∞ that depends on the physical parameters
of the system only. It may vary between lines. First, since v̄ is constant on the (m−i ,m

+
i ) and H1

on the complement, we have that v̄(t, ·) is piecewise continuous for all t > 0 and thus bounded
from below. Then, we compute inf v̄(t, ·) by considering differently m ∈ (m−i ,m

+
i ) and m ∈ F0.

First, when m ∈ (m−i ,m
+
i ), since v̄(t, ·) is constant, there holds:

inf
(0,1)

v̄0−
1
√
mi

∫ T

0

‖∂tv̄‖L2((0,1)) ≤ v̄(t,m) =
1

mi

∫ m+
i

m−i

v̄(t, ζ)dζ ≤ sup
(0,1)

v̄0 +
1
√
mi

∫ T

0

‖∂tv̄‖L2((0,1)).

Replacing ∂tv̄ with the time-evolution equation, we infer that:

inf
(0,1)

v̄0 − C∞TK0 ≤ v̄(t,m) ≤ sup
(0,1)

v̄0 + TC∞K
0.



20 M. HILLAIRET, H. MATHIS, AND N. SEGUIN

On F0, we apply the embedding H1 → L∞ to yield:

|v̄(t,m)− v̄0(t,m)| ≤ C∞
∫ T

0

(
‖ũ‖H1((0,1)) + ‖∂mmũ‖L2(F0)

)
≤
√
TC∞K

0,

up to assume that T < 1. Consequently, for T sufficiently small wrt K0 we obtain that:

1

2
inf
(0,1)

v̄0 ≤ inf
(0,T )×(0,1)

v̄ ≤ sup
(0,T )×(0,1)

v̄ ≤ 2 sup
(0,1)

v̄0.

Then, we have:

‖v̄(t, ·)‖L2((0,1)) ≤ ‖v̄0‖L2((0,1)) +

∫ t

0

‖ū‖H1
m
≤ ‖v̄0‖L2((0,1)) + TK0

‖v̄(t, ·)‖H1(F0) ≤ ‖v̄0‖H1(F0) +

∫ t

0

‖∂mū‖H1(F0) ≤ ‖v̄0‖H1(F0) +
√
TK0.

Hence, fixing T sufficiently small wrt K0 we obtain:

‖v̄(t, ·)‖L2((0,1)) + ‖v̄(t, ·)‖H1(F0) ≤ 2
(
‖v̄0‖L2((0,1)) + ‖v̄0‖H1(F0)

)
∀ t ∈ (0, T ).

Then, with similar computation as in the previous derivation of L∞-bounds, we use that v̄ is
constant on any (m−i ,m

+
i ) to bound as follows:∫ T

0

‖∂tv̄‖2L∞((m−i ,m+
i ))
≤ 1√

mi

∫ T

0

‖ũ‖2H1((0,1)) ≤ C∞T |K
0|2∫ T

0

‖∂tv̄‖2L∞(F0) ≤
∫ T

0

‖ũ‖2H2(F0) ≤ (1 + T )|K0|2.

This entails finally that, up to choose again T sufficiently small wrt K0 we have:∫ t

0

‖∂tv̄‖2L∞((0,1)) ≤ 2|K0|2.

This completes the proof of b.

Finally, consider (ṽ1, ũ1) and (ṽ2, ũ2) in S̄T [K0]. We have then:

v̄1(t, ζ) = v̄0(ζ) +

∫ t

0

∂mũ1(s, ζ)ds v̄2(t, ζ) = v̄0(ζ) +

∫ t

0

∂mũ2(s, ζ)ds

so that:

sup
(0,T )

‖v̄2 − v̄1‖L2(0,1) =
√
T

(∫ T

0

‖∂m(ũ2 − ũ1)‖2L2((0,1))

)
.

Hence, we get the expected property up to take
√
T sufficiently small again. This completes the

proof of c. �

Proof of Lemma 2. The proof of Lemma 2 deserves a little more details since the mapping
(ṽ, ũ)→ ū is nonlinear.

First, we obtain existence of a. and b. via a Galerkin method. Indeed, we remark that H1
m is

a closed subspace of H1
0 (0, 1) and, as such, is a separable Hilbert space. We can then introduce a

linearly independent family (w̄k)k∈N that is total in H1
m. Without restriction, we can assume that

w̄k is smooth for arbitrary k.

Given P ∈ N, we say that ūP is a P -approximate solution, if ūP ∈ C([0, T ]; 〈w̄1, . . . , w̄P 〉)
satisfies: 

d

dt

[∫ 1

0

ūP w̄

]
+

∫ 1

0

(µ
ṽ
∂mūP − π(m, ṽ)

)
∂mw̄ = 0 for all w̄ ∈ 〈w̄1, . . . , w̄P 〉,

ūP (0, ·) = PP [ū0].

In this system, we denote PP the projection (for the H1
0 (0, 1) scalar product) on 〈w̄1, . . . , w̄P 〉.

Decomposing ūP on the basis w̄1, . . . , w̄P we remark that the construction of ūP reduces to a
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finite-dimensional (linear) differential system. We have then existence and uniqueness of a P -
approximate solution for arbitrary P ∈ N.

We prove now estimates satisfied by the P -approximate solutions for arbitrary P ∈ N. We intro-
duce below the symbol C0

∞ for a constant that depends only on the initial quantities sup v̄0, inf v̄0

and the physical parameters of the system. It may vary between lines.
First, we remark that the system solved by ūP can be rewritten:

(40) ∂tūP − ∂mQP

[µ
ṽ
∂mūP − π(m, ṽ)

]
= 0

where Qp : L2((0, 1)) → 〈w1, . . . , wP 〉 is the (continuous) linear mapping defined by the duality
formula: ∫ 1

0

Qp[w̃]∂mw̄ =

∫ 1

0

w̃∂mw̄ ∀(w̃, w̄) ∈ L2((0, 1))× 〈w̄1, . . . , w̄P 〉.

In particular, we can multiply (40) with ūP . This entails that:

1

2

d

dt

[∫ 1

0

|ūP |2
]

+

∫ 1

0

µ

ṽ
|∂mūP |2 =

∫ 1

0

π(m, ṽ)∂mūP .

By a standard Cauchy-Schwarz inequality, we conclude that:

1

2
sup
(0,T )

∫ 1

0

|ūP |2 +
min(µf , µg)

2‖ṽ‖L∞((0,1))

∫ T

0

∫ 1

0

|∂mūP |2 ≤ ‖ū0‖2H1((0,1)) +

∫ T

0

∫ 1

0

ṽ|π(m, ṽ)|2

µ
.

Here we argue that π is continuous on (0, 1) × (0,∞). Consequently, since ṽ is bounded from
above and below by a constant depending only on initial data, ṽ(m), π(m, ṽ(m)) is also bounded
on (0, T )× (0, 1) by a constant depending only on initial data. We obtain then that:

(41)
1

2
sup
(0,T )

∫ 1

0

|ūP |2 +
min(µf , µg)

4‖v̄0‖L∞((0,1))

∫ T

0

∫ 1

0

|∂mūP |2 ≤
1

2
‖ū0‖2H1((0,1)) + TC0

∞.

We multiply now (40) with ∂tūP ∈ C([0, T ]; 〈w̄1, . . . , w̄P 〉). We infer that:∫ 1

0

|∂tūP |2 +

∫ 1

0

µ

ṽ
∂mūP∂m∂tūP =

∫ 1

0

π(m, ṽ(m))∂mtūP .

On the left-hand side, we have:∫ 1

0

µ

ṽ
∂mūP∂m∂tūP =

1

2

d

dt

[∫ 1

0

µ

ṽ
|∂mūP |2

]
+

∫ 1

0

µ

2ṽ2
∂tṽ|∂mūP |2

whilst we rewrite the right-hand side:∫ 1

0

π(m, ṽ(m))∂mtūP =
d

dt

[∫ 1

0

π(m, ṽ)∂mūP

]
−
∫ 1

0

∂2π(m, ṽ)∂tṽ∂mūP .

We conclude thus that:

(42)
d

dt
E1[ūP ] +

∫ 1

0

|∂tūP |2 = −
∫ 1

0

∂tṽ
(
∂2π(m, ṽ)∂mūP +

µ

2ṽ2
|∂mūP |2

)
where:

E1[ūP ] :=

∫ 1

0

µ

2ṽ
|∂mūP |2 +

∫ 1

0

π(m, ṽ)∂mūP .

In this latter quantity, we can again use an L∞-bound for ṽπ(m, ṽ). Introducing a standard
Minkowski inequality, we derive that:

E1[ūP ] ≥
∫ 1

0

µ

4ṽ
|∂mūP |2 −

sup(0,1) ṽ|π(m, ṽ)|2

min(µf , µg)
≥
∫ 1

0

µ

4ṽ
|∂mūP |2 − C0

∞.

At this point, we bound the right-hand side RHS of (42) as follows:

RHS ≤ ‖∂tṽ‖L∞((0,1))

(∫ 1

0

ṽ|∂2π(m, ṽ)|2

2µ
+

(
1 + ‖1

ṽ
‖L∞((0,1))

)∫ 1

0

µ

2ṽ
|∂mūP |2

)
≤ C0

∞‖∂tṽ‖L∞((0,1)) (1 + E1[ūP ]) .
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This entails that:

(43)

d

dt
[1 + E1(ūP )] ≤ C0

∞‖∂tṽ‖L∞((0,1)) (1 + E1[ūP ])∫ 1

0

|∂tūP |2 ≤ C0
∞‖∂tṽ‖L∞((0,1)) (1 + E1[ūP ]) .

Integrating the first inequality with a standard Gronwall lemma, we obtain, with the control on
∂tṽ,

E1[ūP ] ≤ (E1[PP (u0)] + 1) exp

(
C0
∞

∫ T

0

‖∂tṽ‖L∞((0,1))

)
≤ (E1[PP (u0)] + 1) exp

(
C0
∞
√
TK0

)
.

Hence taking T sufficiently small wrt K0, we can bound the exponential in the latter right-hand
side by 2. Recalling the above bound for E1[ūP ], we conclude that:

1

2

∫ 1

0

|∂mūP |2 ≤ C0
∞

(
1 + ‖ū0‖2H1((0,1))

)
.

Integrating now the second inequality of (43) we obtain that:∫ T

0

∫ 1

0

|∂tūP |2 ≤ C0
∞(1 + ‖ū0‖2H1((0,1))).

Combining (41) with the two latter inequalities, we obtain that, for T sufficiently small (depending
only on the norm of initial data), we have:

sup
(0,T )

‖ūP ‖2H1((0,1)) +

∫ T

0

(
‖∂mūP ‖2L2((0,1)) + ‖∂tūP ‖2L2((0,1))

)
≤ C0

∞

(
‖ū0‖2H1(F0) + 1

)
.

The sequence ūP is then bounded in

H1((0, T );L2((0, 1))) ∩ L∞(0, T ;H1((0, 1))) ∩ L∞((0, T ); H1
m).

We can thus extract a weak converging sequence. The limit ū enjoys then the inequality:

sup
(0,T )

‖ū‖2H1((0,1)) +

∫ T

0

‖∂tū‖2L2((0,1)) ≤ C
0
∞

(
‖ū0‖2H1((0,1)) + 1

)
.

and, by standard argument (since the problem is linear in ū) is a solution to (39). In particular,
extending the weak formulation to time-dependent w̄, which have compact support in F0, we
obtain that ū satisfies

∂tū = ∂m

(µf

ṽ
∂mū− πf (ṽ)

)
on (0, T )× (F0).

Consequently, we have:

µf

ṽ
∂mū− πf (ṽ) ∈ L2(0, T ;H1(F0)) and thus ∂mū ∈ L2(0, T ;L∞(F0))

with (because ṽ is bounded by initial data):∫ T

0

‖∂tū‖2L2((0,1)) ≤ C
0
∞

(
‖ū0‖2H1(F0) + 1

)
.

We rewrite then the pde on F0 as:

∂mmū =
ṽ

µf

(
∂tū+ π′f (ṽ)∂mṽ +

µf

ṽ2
∂mṽ∂mū

)
on (0, T )×F0.
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With the above regularity of ū and the assumed regularity of ṽ we conclude that ū ∈ L2(0, T ;H2(F0))
with∫ T

0

‖∂mmū‖2L2(F0)

≤ C0
∞

(∫ T

0

‖∂tū‖2L2((0,1)) + T sup
(0,T )

‖ṽ‖2H1(F0) + sup
(0,T )

‖ṽ‖H1(F0)

∫ T

0

‖∂mū‖2L∞(F0)

)
and we have finally: ∫ T

0

‖∂mmū‖2L2(F0) ≤ C
0
∞

(
‖ū0‖2H1(F0) + 1

)
,

when T < 1. This concludes the proof of the existence part of a. and b. Uniqueness in a. will
follow from the contraction estimate below.

To obtain uniqueness and c., we consider (ṽ1, ũ1) and (ũ2, ṽ2) in S̄T [K0] and ū1, ū2 associated
solutions to (39). In particular, taking the difference between the weak-formulations for ū1 and
ū2 we have that ū = ū2 − ū1 satisfies ū(0, ·) = 0 with

(44)
d

dt

[∫ 1

0

ūw̄

]
+

∫ 1

0

µ

ṽ1
∂mū∂mw̄

+

∫ 1

0

(
µ

(
1

ṽ1
− 1

ṽ2

)
∂mū2 − (π(m, ṽ1)− π(m, ṽ2))

)
∂mw̄ = 0

for all w ∈ H1
m. By a standard approximation procedure, we extend this weak formulation to

w̄ ∈ C([0, T ];H1((0, 1))) ∩H1(0, T ;L2((0, 1)))

so that we can test with w̄ = ū. This entails:

1

2

d

dt

[∫ 1

0

|ū|2
]

+

∫ 1

0

µ

ṽ1
|∂mū|2 =

∫ 1

0

(
µ

(
1

ṽ2
− 1

ṽ1

)
∂mū2 − (π(m, ṽ2)− π(m, ṽ1))

)
∂mū.

At this point, we note that, if ṽ1 = ṽ2, the right-hand side vanishes which entails that ū = 0. This
proves the uniqueness part of a..

For the proof of the contraction estimate, we use again that v̄1 and v̄2 are bounded from above
and by below by a constant that depends on initial data only. We can then bound the right-hand
side:

RHS ≤ 1

2

∫ 1

0

µ

ṽ1
|∂mū|2 + 2

(∫ 1

0

µ
ṽ1(ṽ2 − ṽ1)2

(ṽ2ṽ1)2
|∂mū2|2 +

∫ 1

0

ṽ1

µ
|π(m, ṽ2)− π(m, ṽ1)|2

)
≤ 1

2

∫ 1

0

µ

ṽ1
|∂mū|2 + 2C∞0 (1 + ‖∂mū2‖2L∞(0,1))‖ṽ2 − ṽ1‖2L2

where we applied that π(m, ·) ∈ C1 for all m ∈ (0, 1) with:

sup
(0,1)

‖∂2π(m, ·)‖L∞(inf(0,1) v0/2,2 sup(0,1) v0) ≤ C∞0 <∞.

Consequently, we obtain:

sup
(0,T )

‖ū‖2L2((0,1)) +
min(µf , µg)

4 sup(0,1) v̄0

∫ T

0

∫ 1

0

|∂mū|2 ≤ C∞0
∫ T

0

‖∂mū2‖2L∞((0,1)) sup
(0,T )

‖ṽ2 − ṽ1‖.

To conclude, it is sufficient to prove that we can make∫ T

0

‖∂mū2‖2L∞((0,1))
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as small as we want by taking T sufficiently small. For this, we remark first that, on any (m−i ,m
+
i ),

since ū2 is affine, we have:

|∂mū2(t,m)| ≤ 1

mi

∫ m+
i

m−i

|∂mū2| ≤ C∞0 ‖∂mū2(t, ·)‖L2((0,1)).

While, on F0 we apply a refined Sobolev estimates which guarantees again that:

|∂mū2(t,m)|2 ≤ C0
∞‖∂mū2‖2L2(F0) + ‖∂mū2‖L2(F0)‖∂mmū2‖L2(F0).

Consequently, we have, for any t ∈ (0, T ):

‖∂mū2(t, ·)‖2L∞((0,1)) ≤ C
0
∞‖∂mū2‖2L2((0,1)) + ‖∂mū2‖L2((0,1))‖∂mmū2‖L2(F0).

and thus, with the control from above yielding from b. of this lemma (applied to ū2), we conclude:∫ T

0

‖∂mū2(t, ·)‖2L∞((0,1))

≤ C0
∞

T sup
(0,T )

‖∂mū2‖2L2((0,1)) +
√
T sup

(0,T )

‖∂mū2‖L2((0,1))

(∫ T

0

|∂mmū2‖2L2(F0)

) 1
2


≤ C0

∞
√
T (1 + ‖ū0‖2H1((0,1))),

when T < 1. We can thus make the right-hand side of this inequality as small as we want by
taking T sufficiently small. This concludes the proof. �

Appendix A. Proof of Proposition 1

In this appendix we provide a proof of the proposition:

Proposition 3. Let X ∈ R3 and R > 0. If u ∈ H1(B(X,R)) satisfies

(45) D(u)− 1

3
divuI3 = 0 on B(X,R)

then u ∈ C∞(B̄(X,R)). If we assume furthermore that:

(u(x)− u(X)) · n = cstt, on ∂B(X,R)

there exists (V, ω,Λ) ∈ R3 × R3 × R such that:

u(x) = V + ω × (x−X) +
Λ

3
(x−X) , ∀x ∈ B(X,R).

Proof. Without restriction, we assume that X = 0 and R = 1 so that B(X,R) = B(0, 1) =: B.
Furthermore, up to a convolution argument that we sketch below, we first consider that u ∈
C∞(B).

Under the assumption of our theorem, we have that:

∇u(x) =

 λ λ12 λ13

−λ12 λ λ23

−λ13 −λ23 λ


where λ = 1/3divu and λi,j = ∂iuj . Let focus on λ12 to sart with. Following the method of [20,
Lemma 1.1, Chapter 1], we have that:

∂1λ12 = ∂12u1 = ∂2λ ∂2λ12 = ∂22u1 = −∂12u2 = −∂1λ

and:

∂3λ12 = ∂32u1

=
1

2
(∂32u1 − ∂31u2)

=
1

2
(∂2(∂3u1 + ∂1u3)− ∂1(∂3u2 + ∂2u3))

= 0.
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Eventually λ12 does not depend on x3 and its perpendicular gradient is the gradient of λ. We have
thus that ∂1λ, ∂2λ do not depend on x3 and satisfy:

∂11λ+ ∂22λ = 0

Arguing similarly with λ13 and λ12 we infer that there exists 3 functions λ1, λ2, λ3 such that:

∂iλ(x) = λi(xi) + cstt

that solve:

∂iλi(xi) + ∂jλj(xj) = 0 ∀ i 6= j.

Then, there exists three constants (a1, a2, a3) for which:

∂iλ(xi) = aixi + cstt ∀ i.

Eventually, we obtain that :

∇u(x) =

a1x1 + a2x2 + a3x3 a2x1 − a1x2 a3x1 − a1x3

a1x2 − a2x1 a1x1 + a2x2 + a3x3 a3x2 − a2x3

a1x3 − a3x1 a2x3 − a3x2 a1x1 + a2x2 + a3x3

+ cstt

and thus, with a = (a1, a2, a3) we have:

u(x) = ua(x) + uaff (x) , where ua(x) = (a · x)x− a |x|
2

2

and uaff is an affine mapping. In particular, we have that u ∈ C∞(B).
Let now make precise the convolution argument. If u ∈ H1(B) satisfies (45) and ε < 1/2 a

convolution uε of u with an approximation of identity having support in B(0, ε) will satisfy (45)
on B(0, 1− ε) and be smooth on B. Reproducing the previous arguments, we construct a(ε) ∈ R3

and an affine mapping u
(ε)
aff so that uε = ua(ε) + u

(ε)
aff on B(0, 1 − ε) However, we see that there

exists a constant C for which

|aε| = C

∫
B(0,1/2)

|divuε|2

while u
(ε)
aff is controlled by the skew-symmetric part of uε and the mean of uε on B(0, 1/2).

Eventually, we obtain that, when ε → 0 we have a(ε) → a in R3 and u
(ε)
aff → uaff in the set of

affine mappings with

u = ua + uaff on B.

Next, we realise that

D(ua)− 1

3
div(ua)I3 = 0

so that the same property holds for uaff . Combining this information with the fact that uaff is
affine, we obtain the existence of V, ω,Λ so that:

uaff (x) = V + ω × (x−X) +
Λ

3
(x−X).

At this point, we note that, on ∂B, there holds:

(u(x)− u(0)) · n = Λ + ua(x) · x = Λ +
a · x

2

which can be constant if and only if a = 0. This ends the proof.
�
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