
HAL Id: hal-03621227
https://hal.science/hal-03621227

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and Mitigation of Corrupted Information in
Distributed Model Predictive Control Based on

Resource Allocation
Rafael Accacio Nogueira, Romain Bourdais, Hervé Guéguen

To cite this version:
Rafael Accacio Nogueira, Romain Bourdais, Hervé Guéguen. Detection and Mitigation of Corrupted
Information in Distributed Model Predictive Control Based on Resource Allocation. 2021 5th Interna-
tional Conference on Control and Fault-Tolerant Systems (SysTol), Sep 2021, Saint-Raphael, France.
pp.329-334, �10.1109/SysTol52990.2021.9595927�. �hal-03621227�

https://hal.science/hal-03621227
https://hal.archives-ouvertes.fr


Detection and Mitigation of Corrupted Information in Distributed
Model Predictive Control Based on Resource Allocation

Rafael Accácio Nogueira, Romain Bourdais and Hervé Guéguen

Abstract— In distributed predictive control structures, com-
munication among agents is required to achieve a consensus
and approach an optimal global behavior. Such negotiation
mechanisms are sensitive to attacks on these exchanges. This
paper proposes a monitoring scheme that detects and mitigates
these attacks’ effects in a resource allocation framework. The
performance of the proposed method is illustrated through
simulations of the temperature control of multiple rooms under
power scarcity.

I. INTRODUCTION

Recent performance objectives require systems to be
driven not in isolation but in a coordinated way, emphasizing
large systems. These systems cover many applications, such
as energy distribution systems, traffic management in Smart
City environments, coordinated control of intelligent building
systems, and many others. Many works are built around
model predictive control [1] to integrate optimality and
constraints.

Furthermore, distributed model predictive control
(DMPC) [2] techniques are a promising way to handle
the optimization problem’s complexity. In these structures,
there is no longer a single controller for all systems.
Instead, we use a set of local communicating controllers.
These strategies thus reduce the computing burden while
increasing confidentiality.

Many works use distributed optimization techniques, such
as Lagrangian relaxation [3], Alternating Direction Method
of Multipliers (ADMM) [4], primal decomposition [5], dual
decomposition [6], [7], [8], and others [9], [10]. In these
methods, local agents interact with a coordinator who uses an
iterative process to ensure convergence towards the solution
of the initial problem.

Usually, it is assumed that all agents work in perfect
cooperation. However, when it is not the case, these un-
cooperative behavior have pernicious effects on the overall
system, and their impact can be studied. The cause of this
disruptive behavior can be either involuntary due to hacking
or malfunctioning, or voluntary, by developing selfish be-
havior. Recent work has begun to explore this issue. In the
article [6], the authors are interested in the vulnerabilities
induced when distributed predictive control is built on dual
decomposition. They analyze the impact of the deception de-
pending on where it occurs: either in the followed references
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or directly in the local cost functions or coupling constraints.
The same authors propose defense strategies against these
attacks, either by using secure scenarios based on reliable
historical data [7] or by ignoring extreme values of control
signals [6]. Then [9] extends the initial work to analyze the
vulnerabilities of the Jacobi-Gauss decomposition method.

Another way of dealing with these changes in behavior
can be using robust distributed control principles, coupled
with hierarchical identification of the attack [11], or the
introduction of probabilistic models that implement a re-
silient strategy if the information exchanged is outside the
confidence interval [12].

In this work, we analyze the exchange among agents
controlled by DMPC using primal decomposition, which
is perfectly adapted for agents that share resources. More
specifically, we are interested when malicious agent steers
these exchanges. By exploiting the nominal structure that
characterizes the communication between the agents and the
coordinator, we propose a monitoring scheme that detects an
attack, and if necessary, corrects it.

The remainder of this paper is organized as follows.
First, in Section II, the primal decomposition-based DMPC
is introduced. In Section III, we discuss a model of the
agents’ selfish behavior that exploits the vulnerabilities of
this DMPC structure. Then, in Section IV, we discuss the
structure of the DMPC and how we can exploit it to construct
a defense scheme to counteract the selfish agent. At last, we
present a particular mechanism to detect the agents’ selfish
behavior and mitigate its effects. Moreover, in Section V, an
application is given to illustrate and evaluate the algorithm’s
performance. Finally, in Section VI, we conclude, and we
give an outlook of future works.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notation: In this paper, ∥ · ∥ and ∥ · ∥F represent the ℓ2
and Frobenius norms. ∥v∥Y is the weighted norm, ∥Y 1

2v∥.
PT(·) is the Euclidean projection onto set T. ⊗ represents
the Kronecker product. 1m,n is a m× n matrix filled with
1. Ic is a c× c identity matrix. πv denotes the number of
elements in v. A vector vi, correspond to the i-th agent, and
these vectors can be stacked in a vector v.

A. Model Predictive Control

Our primary purpose is to control a system composed of
M subsystems using MPC. The dynamics of the state xi(k)
of i-th agent w.r.t input ui(k) are described by the following
linear discrete-time systems:

xi(k + 1) = Aixi(k) +Biui(k) (1)
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The M subsystems are coupled under linear input con-
straints. We assume as an interesting case when these con-
straints prevent the subsystems from meeting the systems’
needs. Consequently, the constraints will always be active,
yielding the same results from equality constraints [13]:

M∑
i=1

Γiui(k) = umax (2)

where Γi : Rπui(k)×πui(k) and umax : Rπui(k)×1.
A known formulation of the MPC structure [1], [6], [7],

[14], [9] with finite prediction horizon Np is the following:
Problem 1: Global MPC Problem.

minimize
ui(k:k+Np−1|k)

JG(k)︷ ︸︸ ︷
M∑
i=1

Ji(k)︷ ︸︸ ︷
Np∑
j=1

∥vi(k + j|k)∥2Qi
+ ∥ui(k + j − 1|k)∥2Ri

subject to (1) and (2)
}
∀i ∈ {1, . . . ,M}
∀j ∈ {1, . . . , Np}

with symmetric weight matrices Qi ≥ 0, Ri > 0.
vi(k) represents a control objective. It can either be
vi(k) = wi(k)− xi(k) for reference tracking, where wi(k)
is a state reference, or vi(k) = xi(k) for disturbance
rejection.

The optimal value of the problem 1 is denoted by
J⋆, and the optimal control sequences are represented by
u⋆
i (k : k +Np − 1|k). At each time k, the problem is solved,

and the u⋆
i (k|k) are applied in each respective i subsystem,

following a receding horizon strategy.
One can see that if the subsystems were not coupled

by (2), the overall system could be decomposed into M parts,
solvable in parallel. Multiple decomposition methods solve
this problem [4], [5], [8], [9]. Still, since we are interested
in resource constraints and the dual decomposition does not
enforce local feasibility [15], the primal decomposition is
chosen.

B. Distributed Model Predictive Control
The technique consists of decomposing the coupling con-

straints (or complicating constraints [15]) of the original
optimization problem into local versions with additional
variables that are shared among them, negotiating the value
of these variables until a consensus is reached.

Problem 1 is decomposed into multiple subproblems (3a),
solvable in parallel, and a master problem (3b), which is
equivalent to the original problem and uses information of
the subproblems [15]:

J⋆
i (θi(k)) = minimize

ui(k:k+Np−1|k)
Ji(k)

s.t. (1)
Γiui(k) = θi(k) : λi(k)


∀i ∈ {1, . . . ,M}
∀j ∈ {1, . . . , Np}

(3a)

J⋆ = minimize
θ(k:k+Np−1|k)

M∑
i=1

J⋆
i (θi(k))

s.t.
M∑
i=1

θi(k) = umax

(3b)

The subproblems (3a) are formed by the local objectives
Ji(k) and a set of local constraints, with a sequence of
allocations θi(k : k+Np − 1|k) and associated sequence of
dual variables (Lagrange multipliers) λi(k : k +Np − 1|k).
For brevity’s sake, we drop the (k : k+Np − 1|k) sequence
notation, using only where pertinent.

The variables θi represent the resource or the “quan-
tity” allocated for each subproblem; thus, the names
“quantity decomposition” and “resource allocation” are also
given for this decomposition [10].

The master problem shown in (3b) can be solved using an
iterative method that updates the allocation sequence θi.

Due to the form of the constraints, we use the projected
sub-gradient method whose recurrence equation is:

θ(p+1) = PH(θ
(p) − ρ(p)g(p)) (4)

where H = {θ | ∑M
i=1 θi = umax}, g(p) is a sub-gradient of

J⋆(θ(p)) at the instant p and ρ(p) is an iteration step, well-
chosen, so the method converges.

The sum
∑M

i=1 θi can also be represented by the ma-
trix multiplication IMc θ, where IMc = 1M,1 ⊗ Ic. Where
c = πui(k:k+Np−1|k) = Npπui(k).

Assuming strong duality holds, we can use the sensitivity
analysis of the problem [13, § 5.6.2], and we can conclude
that the opposite of the sequences of optimal dual vari-
ables, −λ⋆

i , which are θ
(p)
i dependent, is a sub-gradient of

J⋆
i (θ

(p)
i ), which can be used in (4) to solve the problem (3b).

Applying the Euclidean projection onto H [16] and using
−λ⋆

i (θ
(p)
i ) in (4) results in the complete expression for the

allocation’s update [10, §VI-C]:

θ
(p+1)
i = θ

(p)
i + ρ

(
λ⋆
i (θ

(p)
i )− IMc (IMc

T
IMc )

−1

IMc
T
λ⋆(θ(p))

)
(5)

In each step (p), the subproblems receive a sequence of
allocation of the total resources. Then they return their cor-
responding sequence of dual variables so the master problem
can be solved by updating the allocations, recommencing the
negotiation. Once a consensus is reached, the negotiation is
finished, each subsystem takes the last sequence of inputs
u⋆
i (k : k+Np−1|k) calculated and applies the first element

u⋆
i (k|k), following a receding horizon strategy.
Delegating the iterative process of allocation update to an

agent with the coordinator’s role, we have the scheme in
Fig. 1 that illustrates the negotiation. Observe that each block
negot solves (5) for a respective agent i. This way, the only
interaction that the coordinator has with the subsystems is
via the variables λ

(p)
i and θ

(p+1)
i , increasing the privacy of

the subsystems.
Algorithm 1 resumes the distributed control problem

solved to calculate the optimal input sequence at each time
k using quantity decomposition.

III. ATTACK IN DMPC SCHEME

As expected [15], [10], this decomposition method works
well when each agent cooperatively calculates its λi cor-
rectly. Here we study the effects when an ill-intentioned
agent exploits the scheme for its interest.
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Fig. 1. Scheme of DMPC using a coordinator and M agents.

Algorithm 1: Quantity decomposition based DMPC.

Coordinator initializes θ(0)

p := 0
repeat

Subsystems solve (3a), and send λ⋆
i (θ

(p))
Coordinator updates allocations (5)
p := p+ 1

until ∥θ(p) − θ(p−1)∥ ≤ ϵ

[6], [7], [9], [12] present 4 types of attacks, which can be
divided into 2 principal groups: changes in the optimization
parameters (selfish attack - multiply the objective function
by a scalar α, fake reference, and fake constraints) and
nonagreed control (liar agent). In the decomposition scheme
used in this work, the coordinator allocates the resources. So
we can discard the last kind of attack.

Although we could make the same analysis from the
mentioned works, we are interested in the coordinator’s point
of view, so any of these attacks will reflect as a change on
the λi received. Therefore, we propose that any selfish agent
sends a corrupted

λ̃i = γi(λi) (6)

to the coordinator instead of sending the agreed λi.
We give a unidimensional example where γi(λi) = τi λi

to illustrate such an attack. Here, 4 agents negotiate with the
coordinator, and agent 1 attacks the system (τ1 ̸= 1).

In Fig. 2, we see that when τi > 1, agents 1’s local cost
J⋆
1 decreases while all other costs, including the overall

J⋆, increase. This attack is comparable to the selfish attack
portrayed in [6]. This decrease in the cost justifies the attack
since the attacking agent has more comfort than all others.

On the other hand, when τ1 tends to 0, J⋆
1 increases and

all others Ji decreases, while still degrading the overall cost
J⋆. Such an agent could be considered as a benevolent agent
or an agent attacked by a malevolent one.

From this variation in the values of λ1 caused by τ1, we
can interpret its role in the negotiation: the values of λi
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Fig. 2. Change of J⋆ with respect to the non-cooperative coefficient τ1.

represent the dissatisfaction with the given allocation θi.
Since the negotiation (5) finds its stability when

λ(p) − IMc (IMc
T
IMc )

−1
IMc

T
λ(p) = 0, that means when all

λi are equal to the mean of the λi. We can interpret that the
coordinator’s role is to minimize the overall dissatisfaction.
This way, the selfish agent can lie about its dissatisfaction
(increasing λi by using an adequate γi(·)), driving the
negotiation to a value of θi that “satisfies” it more (lower
optimal value J⋆

i ).
Another effect we can expect from the observation of (5) is

that the negotiation may not converge for some values of λi.
We can find those values by the analysis of the eigenvalues of
the iterative process. This effect is illustrated in the hatched
area in Fig. 2.

IV. SECURE DMPC BASED ON RESOURCE ALLOCATION

As seen, a malicious agent can deviate the allocations
for its benefit, driving the negotiation or even destabilizing
it. Hence, it is needed to find a way to lessen the effects
caused by this agent. To fill this gap, we propose a detection
and mitigation mechanism to reduce the effects of any agent
malfeasance in the negotiation. However, before presenting
the mechanism, we need to analyze the problem structure to
sustain the proposition.

A. Quadratic Case — Formal Analysis

Another known form to represent the problems (3a) is
using matrix representation [9]:

minimize
Ui(k)

Ji(θi)︷ ︸︸ ︷
1

2
Ui(k)

T
HiUi(k) + fi(k)

T
Ui(k)

s.t. ΘiUi(k) = θi : λi

(7)

If we take reference tracking, for instance, we have:

Hi = DT
i Q̄iDi + R̄i

fi(k) = DT
i Q̄i(Mixi(k)−Wi(k))

(8)



The input and setpoint predictions for times k to k +Np

calculated in time k are adequately stacked in vectors Ui(k)
and Wi(k). Mi and Di are the prediction matrices of the
MPC. Q̄i, R̄i, and Θi are block diagonal matrices built
repeating Np times Qi, Ri, and Γi respectively.

Notice that the matrices Hi are not only symmetric
positive definite, but they are also time-invariant, unlike the
fi(k), which depend on xi(k) and Wi(k).

Observe that since Ji(θi) is quadratic, we can get an
explicit solution for its dual variables λi, which are affine
with respect to θi:

λi = −Piθi − si(k) (9)

where Pi = (ΘiH
−1
i ΘT

i )
−1

and si(k) = PiΘiH
−1
i fi(k).

We can observe that Pi are symmetric and depend only on
Θi and Hi, which are time-invariant.

B. Detection and mitigation

In this secure scheme, the exchange between coordinator
and agents is divided into two parts: first, to detect any
misbehavior, and second, the negotiation itself, which limits
the effects of eventual attacks.

Assumption 1: γi(·) is the same during the negotiation
phase for a given time k (it does not depend on p).

Assumption 2: We suppose the agent chooses a linear
function such as

λ̃i = γi(λi) = Ti(k)λi = −Ti(k)Piθi − Ti(k)si(k), (10)

and we define P̃i(k) = Ti(k)Pi and s̃i(k) = Ti(k)si(k).
Given that Pi does not change from time to time, we can

use the relation between θi and λi, shown in (9), to find
estimates ̂̃P i(k) such as:

λ̃i = γi(λi(θi)) = − ̂̃Pi(k)θi − ̂̃si(k) (11)

Remark 1: If the estimation does not converge, necessar-
ily there has been a change in Pi since the relation between
λi and θi has ceased to be affine.

If we estimate ̂̃P i(k) for two different times k and they
differ, then there has been a change in behavior in agent i.

Assumption 3: We have access to the nominal value of
Pi, denoted P̄i, from reliable attack-free historical data.

Using this strategy, we can detect a deviation from nominal
behavior using Ei(k) = ∥ ̂̃P i(k)− P̄i∥F , where ∥ · ∥F is the
Frobenius norm. Let di ∈ {0, 1} be an indicator that detects
the attack in agent i. If the disturbance Ei(k) respects an
arbitrary bound

Ei(k) ≤ ϵP , (12)

then di = 0, and no attack is detected. Otherwise, di = 1,
and a change in behavior of agent i is detected.

If the attack is detected and we want to counteract the
change in λi, one strategy would be to recover λi from an
inverse of γi(·).

Assumption 4: We suppose λ̃i = 0 only if λi = 0, which
implies Ti(k) invertible.

Using these assumptions, we can try to estimate the inverse
of Ti(k) as in

T̂i(k)−1 = P̄i
̂̃Pi(k)

−1, (13)

and from (9), we can derive a method to reconstruct λi:

λirec = T̂i(k)−1λ̃i = −P̄iθi − T̂i(k)−1̂̃si(k). (14)

Notice that we also need ̂̃si(k) to use this reconstruction.
This reconstructed λirec can be used in (5). Observe that,

as (14) does not depend on λ̃i, the rest of the negotiation
process takes place without taking the attacking agent’s
responses into account.

In case no attack is detected, the coordinator can use the
λ̃i during the negotiation phase.

This mechanic of detecting and choosing which version of
λ to use during the negotiation, corresponds to the inclusion
of a supervisor for each agent (Fig. 3),

Observe in Fig. 3 that the coordinator sends θ̊i to the
agents. These values may be the ones from the negotiation
or other. The reason to send different values is discussed in
the following subsection.

C. Considerations about parameter estimation

As seen, we need to estimate P̃i(k) and s̃i(k). This
estimation is achieved by the relation between θi and λi

shown in (9). As we suppose there is no noise in the
communication, we propose to use Recursive Least Squares
(RLS) with a forgetting coefficient ϕ to find simultaneously
unbiased estimates of P̃i(k) and s̃i(k).

If we try to estimate during the negotiation, the estima-
tion will fail since consecutive values of λp

i and θp
i are

necessarily linearly dependent (5), and estimators become
badly scaled. This fact is known and is described as low
input excitation [17, §5]. As a counter-measure, to enrich the
input excitation, the coordinator sends a sequence of random
values of θi until the estimation converges. It then resumes
the typical negotiation, eventually using the mitigation mech-
anism if an attack is detected.
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Fig. 3. Scheme for Secure DMPC



Assumption 5: Since Pi is expected to be symmetric (9),
we suppose that the attacker chooses a Ti(k) that does not
change the structure of the resulting matrix, so it can not
be discovered. In this case, we assume P̃i(k) symmetric and
invertible.
As P̃i(k) is symmetric, we estimate only the upper triangle,
reducing the number of estimated parameters from πP̃i(k)

to
πP̃i(k)+

√
πP̃i(k)

2 , and consequently the length of the estima-
tion sequence [17].

We stack the elements of ̂̃P i(k) and ̂̃si(k) estimated in
a step h in vectors ηhi . The estimation converges when
∥ηhi − ηh−1

i ∥ ≤ ϵ, with ϵ arbitrarily small.

D. Secure DMPC

After all the reflections about parameter estimation and the
detection and mitigation mechanism, we can finally propose
a secure DMPC based on the reconstruction of λi.

Algorithm 2 summarizes the process used to find the
optimal inputs u⋆

i (k|k) to be applied at each time k. We
can see the two phases: the detection phase, where the
coordinator detects if the system is attacked and by which
agent. And the second phase, where the usual negotiation
in algorithm 1 takes place, using different values of λi

depending on if the respective agent is an attacker.
In the next section, we present an example to illustrate the

performance of the mechanism.

Algorithm 2: Secure DMPC.

Detection Phase:
h := 0
repeat

Coordinator sets random θ
(h+1)
i

Subsystems solve (3a), and send λ⋆
i (θ

(h))

Coordinator estimates ̂̃P i(k)
(h) and ̂̃si(k)(h)

h := h+ 1
until ∥ηhi − ηh−1∥ ≤ ϵ
Coordinator computes di using (12)

Negotiation Phase:
Coordinator initializes θ(0)

p := 0
repeat

Subsystems solve (3a), and send λ⋆
i (θ

(p))
Coordinator updates allocation (5) using

adequate versions of λi for each agent:
λ⋆
i (θ

(p)), if di = 0 and λirec, if di = 1
p := p+ 1

until ∥θ(p) − θ(p−1)∥ ≤ ϵ

V. EXAMPLE: TEMPERATURE CONTROL

In this example, we want to control the temperature of
4 distinct rooms (called I, II, III, and IV) under power
scarcity using quantity decomposition. The systems are mod-
eled as continuous-time linear time-invariant systems using
the 3R-2C model [18].

The state-space model of each subsystem is given by:

˙[
xAi

xW i

]
= ẋi = Acixi +Bciui

yi = Ccixi

(15)

where

Aci =

[
− 1

Cresi
Rfi

− 1
Cresi

Rii
1

Cresi
Rii

1
CsiRii

− 1
CsiRoi

− 1
CsiRii

]
Bci =

[
10

Cresi
0
]T

Cci =
[
1 0

] (16)

We can see the meaning and the values of its parameters
in tables I and II.

The states xAi and xW i represent the mean temperatures
of the air and walls inside room i. The input ui is the heating
power for the corresponding room. The global coupling
constraint is

∑4
i=1 ui(k) = 4kW.

The subsystems are discretized using the zero-order hold
discretization method with sampling time Ts = 0.25h and the
quantity decomposition-based DMPC is implemented using
prediction horizon Np = 4.

Three scenarios are simulated for a period of 5 hours:
1) Nominal behavior.
2) Agent I presents constant non-cooperative behavior

TI(k) = 4 I√πPI
for k ≥ 6, without correction.

3) Agent I presents constant non-cooperative behavior
TI(k) = 4 I√πPI

for k ≥ 6, with correction,
ϵP = 10−4.

In Fig. 4, first, we compare the output of the agent I (air
temperature in the room) with its reference (20◦C), and then
the decision variable EI(k) with the threshold ϵP . All the 3
scenarios above are represented with indices N (for nominal),
S (for selfish), and C (for corrected).

Observe that in the nominal behavior, the reference wI is
not reached due to power scarcity since we deliberately set a
total power not sufficient to satisfy the needs of each agent.

TABLE I
MODEL PARAMETERS MEANINGS

Symbol Meaning

Cresi Heat Capacity of Inside Air
Csi Heat Capacity of External Walls
Rfi Resistance Between Inside and Outside Air (from windows)
Rii Resistance Between Inside Air and Inside Walls
Roi Resistance Between Outside Air and Outside Walls

TABLE II
MODEL PARAMETERS VALUES

Symbol I II III IV Unit

Cres 5 4 4.5 4.7 104J/K
Cs 8 7 9 6 104J/K
Rf 5 6 4 5 10−3K/W
Ri 2.5 2.3 2 2.2 10−4K/W
Ro 0.5 1 0.8 0.9 10−4K/W
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TABLE III
COMPARISON OF COSTS JN

i AND JN
G

Agent Nominal Selfish Selfish + correction

I 103 64 104
II 73 91 73
III 100 123 101
IV 132 154 131

Global 408 442 409

As expected, the decision variable lies under the threshold
ϵP = 10−4 with values of order EN

I (k) ≈ 10−10.
When the agent presents a selfish behavior, the tracking er-

ror wI − yI is reduced but insufficient to attain the reference.
In this case, the detection variable surpasses ϵP , ES

I = 9.762,
indicating the change of behavior of agent I.

When the correction is activated in the system, we see
that the corrected yCI approaches the nominal value yNI ,
illustrating the good performances of our proposition.

We can also evaluate the performance of the proposed
mechanism by comparing the local and global costs calcu-
lated using the initial cost function presented in (7) using
N as the total period of simulation, N = 20. The same 3
scenarios are compared in table III.

As in Section III, when agent I is selfish, we see the
decline of its cost at the expense of increasing all other costs.
This increase in cost degrades the global objective. When the
correction mechanism is activated, the differences between
costs are minimal, and the global cost stays close to the
nominal value, highlighting the mechanism’s performance.

VI. CONCLUSION AND FUTURE WORKS
In this paper, an algorithm for monitoring and correcting

exchanges between agents in a resource-sharing system has
been proposed. The algorithm exploits the particular structure
of exchanges, part of which must be constant over time.
The first phase consists of identifying this constant part and
checking if an attacker has modified it. From this identifi-
cation, it is possible to reconstruct the original mechanism

and find the centralized optimality. This principle should be
generalized to other types of decomposition structures, and
this is what we plan to do in the near future.
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[17] K. Åström and B. Wittenmark, Adaptive Control, ser. Addison-
Wesley series in electrical and computer engineering: Control
engineering. Addison-Wesley, 1989. [Online]. Available: https:
//books.google.fr/books?id=VJ0eAQAAIAAJ

[18] M. Gouda, S. Danaher, and C. Underwood, “Building thermal
model reduction using nonlinear constrained optimization,” Building
and Environment, vol. 37, no. 12, pp. 1255 – 1265, 2002.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0360132301001214

https://ieeexplore.ieee.org/document/8186925
https://www.sciencedirect.com/science/article/pii/S2405896320322916
https://www.sciencedirect.com/science/article/pii/S2405896320322916
https://books.google.fr/books?id=VJ0eAQAAIAAJ
https://books.google.fr/books?id=VJ0eAQAAIAAJ
http://www.sciencedirect.com/science/article/pii/S0360132301001214
http://www.sciencedirect.com/science/article/pii/S0360132301001214

	INTRODUCTION
	PRELIMINARIES AND PROBLEM STATEMENT
	Model Predictive Control
	Distributed Model Predictive Control

	Attack in DMPC scheme
	Secure DMPC based on resource allocation
	Quadratic Case — Formal Analysis
	Detection and mitigation
	Considerations about parameter estimation
	Secure DMPC

	Example: Temperature Control
	CONCLUSION AND FUTURE WORKS
	ACKNOWLEDGMENTS
	References

