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Abstract—The evolution of technologies in call centers towards
communications via ethernet is at the origin of a certain number
of perturbations. These perturbations can take different forms
but the most important one is the acoustic phenomena. In this
paper, we present an anomaly detection algorithm based on the
One-Class Support Vector Machines (OC-SVM), for the detection
of these acoustic phenomena. We are exploring different feature
functions and seeking to find the best pairing with the OC-SVM
to most effectively detect those acoustic problems that may pose
a risk to consultants. Our experimental results show a good
detection rate for amplitude levels equal or higher than -15 dB.

Index terms— acoustic phenomena, anomaly detection al-
gorithm, OC-SVM

I. INTRODUCTION

During the past ten years, telecommunications networks
have undergone major structural changes in order to move
from switched and synchronous technologies (TDM) to
packet-based technologies like the TCP/IP protocol, particu-
larly in the context of voice services. Call centers have mas-
sively adopted the Voice over IP (VoIP) technology following
unified communication trend (voice/data). It allows managing
with flexibility, autonomy and scalability all their communi-
cation flows. A certain number of problem then appeared in
conjunction with the development and implementation of this
technology partially due the coexistence of VoIP with former
technologies leading to mixed infrastructures (TDM/IP).

This leads two main problems which are the following :
• bad quality of telecommunications
• acoustic shocks during the communications
A bad quality or degradation of telecommunications is the

most frequently encountered problem. This degradation have
a minor impact on users (stress/tiredness) but they make
communication difficult to understand and generate a low
quality of service (QoS).

The acoustic shocks are more serious because they can
cause health problems for workers in call centers. In fact, some
communications are affected by severe degradation resulting
in acoustic phenomena or howling that are difficult to bear
for users (operator or call center customer). These health
problems can vary from slight hearing loss or tinnitus to severe
hearing disorders. In [1], the author details these physiological
consequences of exposure to acoustic shocks.

To solve this degradation communication problems, a sup-
pression system of these acoustic phenomena have to be

designed. Before these problems can be removed, they must
be first detected. In this paper, we only focus on this detection
part.

The rest of the paper is organized as follows : Section 1
presents a state of art on the howling detection. The features
extraction and SVM/OC-SVM algorithms are described in
sections 2 and 3 respectively. In section 4, we present an
evaluation, carried out on a large database. Finally, we will
conclude the paper and give some perspectives.

II. STATE OF THE ART

In the literature, there are several methods based on signal
processing using a combined spectral and temporal analysis
of the audio signal. As described in [2], most algorithms
select frequency components having the largest magnitude
to candidate howling components. Then, they use different
features on these candidates in order to exhibit the temporal
and spectral properties of the howling components. These
properties may be the power ratio, the entire spectrum, or the
persistence for a certain duration. To know if the component
is a howling component or not, they compare the computed
features to predefined thresholds, see [3], [4].

Signal processing methods have important flaws because of
predefined detection threshold and the detection of multiple
tones. Instead of declaring a fixed threshold for each param-
eters used, the solution is to use a method to automatically
find these optimal thresholds. Another category of method use
learning machine approach to solve this problems, has been
found in the literature and is described in the next paragraph.

A howling detection method is presented in [5], where the
author details an algorithm to detect pure and multiple tones in
an audio signal. This method is based on a SVM model with
the use of Hidden Markov Model (HMM), method inspired by
[6]. He uses a HMM with two states (Howling, No Howling),
using the output of the SVM to prevent some discontinuities
in the sequence of the decisions. As input to the SVM, it uses
3 different features : Local and Global Spectral Crest Factor
(LSCF and GSCF) and a novel feature, the stability frequency.
The stability frequency is to emphasize small variations of
amplitude between two consecutive frames Xt

k and Xt−1
k

together with high Xt
k for each frequency sub-band, see

equation in [5]. The Table I and II shows the obtained results
for the proposed method. The author uses 3 different datasets
PureOnSpeech, PureOnMixed and MultiOnMixed containing



speech or mixed signals (speech and music) and two howlings
types (Pure and Multiple tones).

TABLE I
DETECTION RATE AND FALSE ALARM RATE FOR THE PROPOSED METHOD

ON THREE DATASETS

Datasets Detection Rate (%) False Alarm Rate (%)
PureOnSpeech 97.80 0.5
PureOnMixed 92.90 1.60
MultiOnMixed 89.90 1.60

TABLE II
DETECTION RATE FOR DIFFERENT STR ON THE PUREONMIXED TEST SET

Signal to Tone Ratio (dB) Detection Rate (%)
[5 ; 0] 89.36

[15 ; 10] 80.56
[25 ; 20] 72.06

The Table I shows good results for any datasets. The Table II
shows the results for the dataset, SpeechOnMixed. We have the
results of detections according to different intervals of signal
to tone ratio (STR). The STR is the ratio between the frame
energy of the original signal and the tone. When the STR value
increases, the signal has more gain than the tone. If the STR
is equal to zero then the signal and tone have equal gains.
We can notice, from these results, the relation of detection
performance is dependent on the gain. We decide to propose a
less complex system than the method proposed in [5], allowing
a better implementation in a real system. The system that
we proposed is more generic since it will not be able to
learn all the anomalies but only learn the "normal" signal.
The acoustic problems will only be present in the evaluation
database. The architecture used is also less complex because it
uses only 2 stages (Features and Detection Algorithm) instead
of 3 (Features, SVM and HMM).

We propose to use a method based on SVM, called One-
Class SVM. An anomaly detection algorithm who uses only
two types of class (Normal, Anomaly). In our case, a "Normal"
signal will consist of voice and music while an "Anomaly" will
be the acoustic phenomena. We started from principle that a
phenomena acoustic may be considered is an anomaly because
the values in frequency and amplitude are different of speech
or music.

In parallel, we use signal pre-processing to highlight dif-
ferent features of the signal in order to improve the detection
performance.

III. FEATURES EXTRACTION

There are many possibilities to represent the speech signal
for the speech recognition system, as presents in [7]. We
have decided to use 4 features in your study : Spectrum,
Mel frequency cepstrum coefficients (MFCC), perceptual lin-
ear prediction (PLP) and relative spectral linear prediction
(RASTA-PLP). The purpose of speech features is to extract
different representations of the signal from the audio signal
and determine the best one for detecting anomalies. We will

explain these features below. The Fig. 1 to 4 show the
representation of speech with a 2 second pure tone at 1500
Hz for each feature.

A. Spectrum

The spectrum is obtained by the fast Fourier transform. This
algorithm is used to transform discrete data from the time
domain into the frequency domain. This representation of the
signal is the starting point for all other characteristics presented
later.

B. MFCC : Mel-Frequency Cepstrum Coefficients

MFCC is a method based on human auditory behavior.
The MFCC used the difference in frequencies that the human
ear can distinguish. The signal is expressed according to the
’Mel’ scale, which is based on the perception of pitches in
equidistant intervals judged by observers. This scale uses a
filter whose spacing is linear for frequencies below 1000 Hz
and logarithmic for frequencies above 1000 Hz.Thus for each
tone with an actual frequency, f , measured in Hz, a subjective
pitch is measured on a scale called the ‘Mel’ scale (1).

fmel = 2595× log10(1 + f/700) (1)

where fmel is the subjective pitch in Mels corresponding
to a frequency in Hz. A Discrete Cosine Transform (DCT)
is applied to the log filter bank energies to de-correlate the
energies. This last step allows to obtain the MFCC coefficients.
The set of coefficients is called acoustic vectors, see Fig. 2.

C. PLP : Perceptual Linear Prediction

The Perceptual Linear Prediction (PLP) is an algorithm
developed by Hermansky in 1990 [8]. The PLP method is a
combination of spectral analysis and linear prediction analysis.
PLP techniques use concepts from the psychophysic of hearing
to compute a simple auditory spectrum.

The bank of Bark filters performs the steps of frequency
warping, smoothing and decimation. Firstly, the power spec-
trum P (w) is warped along its frequency axis w into the bark
frequency Ω as follow :

Ω(ω) = 6 ln{ω/1200π + [(ω/1200π)2 + 1]0.5} (2)

where w is the angular frequency in rad/s. The resulting
warped power spectrum is then convolved with the power
spectrum of the simulated critical-band masking curve. In PLP,
the critical-band curve is given by :

Ψ(ω)


0 if Ω < −1.3

102.5(Ω+0.5) if −1.3 ≤ Ω ≤ −0.5
1 if −0.5 ≤ Ω ≤ 2.5

10−1.0(Ω−0.5) if 0.5 ≤ Ω ≤ 2.5
0 if Ω > 2.5

(3)

Subsequently, a convolution is performed among the speech
auditory warped spectrum and the power spectrum of the sim-
ulated critical-band masking curve. The discrete convolution
of Ψ(ω) with (the even symmetric and periodic function) P (ω)
yields samples of the critical-band power spectrum.



Fig. 1. Spectrogram Fig. 2. MFCC

Fig. 3. PLP Spectrum Fig. 4. RASTA-PLP Cepstrum

Θ(Ωi) =

2.5∑
Ω=−1.3

P (Ω− Ωi)Ψ(Ω) (4)

The filters bank outputs Θ are scaled with an equal-loudness
pre-emphasis weight giving a matrix Ξ with equalized values
as follows :

Ξ[Ω(ω)] = E(ω)Θ[Ω(ω)] (5)

The function E(ω) is an approximation of the non-equal
sensitivity of human hearing at different frequencies and
simulates the sensitivity of hearing at about the 40-dB level.
This particular approximation is given by :

E(ω) =
(ω2 + 56.8× 106)ω4

(ω2 + 6.3× 106)2 × (ω2 + 0.38× 109)
(6)

Then, a cubic-root amplitude compression is applied on the
equal-loudness preemphasis as follow :

Φ(Ω) = Ξ[Ω]0.33 (7)

In next step, the obtained equalized spectrum is treated
with Linear Prediction (LP) in order to obtain the predictor
coefficients, see Fig. 3.

D. RASTA-PLP : RelAtive SpecTrAl - PLP

Relative Spectral PLP (RASTA-PLP) is developed by Her-
mansky in 1991 [hermansky_rasta-plp_1991]. RASTA-PLP
is an extension of PLP and the only difference, is that a band-
pass filter is added at each sub band. The added filter improves

the robustness of the PLP feature as it smooths out short-
term noise variation and removes constant offset in the speech
signal.

The process involved in RASTA-PLP includes calculating
the critical power spectrum as in PLP. Then, the time trajectory
of each transformed spectral component is introduced to
a band pass filter. In the next step, the filtered speech is
transformed using expanding static non linear transformation.
Next, an equal loudness curve adjustment and application of
intensity-loudness power law, in order to mimic the human
auditory system. Finally, the RASTA-PLP coefficients are
computed by performing consecutively on the output of pre-
vious stage the inverse Fourier transform, the linear predictive
analysis and the cepstral analysis, see Fig. 4.

We will now present our unsupervised anomaly detection
algorithm, OC-SVM. This algorithm is based on the principle
of the SVM classification algorithm, so a brief description will
be made before presenting the OC-SVM algorithm.

IV. AN UNSUPERVISED ALGORITHM FOR ANOMALY
DETECTION

Support Vector Machines (SVMs) are interesting in anomaly
detection because of their ability to provide non-linear classifi-
cation through a kernel function. We briefly introduce the basic
concepts of SVMs then focus on OC-SVM that we adopted
in this work.

A. Support Vector Machines

The concept of SVMs is to find a decision boundary
between two classes. This algorithm maps the training sample



vectors onto a higher dimensional space and then determining
an optimal separating hyperplane. Let us consider a training
data set composed of M samples of D-dimensional feature
vectors xi, associated with a class label yi, such that: xi ∈
RD, yi ∈ {−1,+1}. The algorithm searches for an optimal
hyperplane that separates the data with a maximal margin by
solving the optimization problem :

min
w,b,ξi

1

2
‖w‖2 + C

∑
ξi (8)

subject to :

yi(〈w, xi〉+ b) ≥ 1− ξi, (9)

where 〈w, xi〉 denotes the dot product between normal vector
to the hyperplane w and a feature vector xi, b the offset and
the ξi are the slack variables to handle the case where data
are not separable. The parameter C is a constant determining
the trade-off.

When a linear decision boundary is not sufficient, we can
project the data onto a higher dimensional space using a
transformation function Φ(x) where it is possible to define
a linear hyperplane. Since the solution is formulated as a
dot product, we can define the kernel function such that
k(x, xi) = 〈Φ(x),Φ(xi)〉. Solving this problem, we obtain
the following decision function :

f(x) = sign(

M∑
i=1

αiyik(x, xi) + b), (10)

where the αi are the Lagrange multipliers associated with the
optimization problem. The label of a new input is obtained by
looking at the sign of f(x).

B. One-Class Support Vector Machines

One-Class SVMs are used to separate the data of one
specific class, the target class, from other data. They are trained
with examples without anomaly, i.e. data points from the target
class.

In the feature space F, OC-SVM method basically separates
all the data points from the origin by a hyperplane and
it maximizes the distance of this hyperplane to the origin.
This results in a binary function which captures the region
of the input space where the training data lives. Thus the
function returns +1 in a “small” region (capturing the training
data points) and -1 elsewhere. The quadratic programming
minimization function is slightly different from the original
stated :

min
w,ξi,ρ

‖w‖2

2
+

1

νn

n∑
i=1

ξi − ρ (11)

subject to :

(w · Φ(x)) ≥ ρ− ξi, ξi ≥ 0 (12)

Schölkopf et al. [9] has reformulated SVMs to take the new
regularization parameter ν who is always between [0;1[.The

term ν is a user predefined regularisation parameter that
governs the trade-off between the size of the hypersphere and
the fraction of datapoints falling outside the hypersphere. ν
characterizes the solution in a nice interpretable way: (1) sets
an upper bound on the fraction of outliers, e.g. the training
examples regarded out-of-class and (2) sets a lower bound on
the number of training examples used as support vectors.

Again by using Lagrange techniques and using a kernel
function for the dot-product computations, the decision func-
tion becomes:

f(x) = sign((wΦ(xi))− ρ)

= sign(

n∑
i=1

αik(x, xi)− ρ)
(13)

OC-SVMs thus create a hyperplane characterized by w and
ρ which has maximal distance from the origin in the feature
space F, hence, separating all the data points from the origin.

We choose the Radial Basis Function (RBF) kernel :
k(x, xi) = exp(−γ‖x−xi‖2), corresponding to the nonlinear
kernel.

In this following section, we will discuss the evaluation
stage. This section will be in 3 parts: the description of the
database, the method used and the analysis of the results
obtained.

V. EVALUATION

A. Datasets

Our database are generated under the same conditions that
the method proposed in [5]. These sets are created from a
database sampled at 8 kHz. It’s the most common sampling
rate used in audio communications. The database contains
speech sentences with different speakers and music. The
silences have been removed to keep only the speech or the
music. Each file is normalized to have a mean level of -26 dB
FS (Full Scale). This value is equivalent to 92 dB SPL (Sound
Pression Level) where the ear begins to be sensitive to high
frequencies. In our study, our database will only be based on
the MultiOnMixed database of the proposed method in [5].

Pure tones are generated randomly with a fundamental
frequency ranging from 900 Hz to 4 kHz. This interval is
chosen because it corresponds to the interval of the frequencies
of the medium (900-1500Hz) and high (1500-4000Hz) sounds.
These high-gain sounds can have serious consequences for
hearing. For multiple tones, we considered square and multiple
harmonic signals which were generated in the same way as the
pure tones.The level of a howling is drawn randomly within
the range of -40 to 0 dB FS. Each howling is two seconds
long.

TABLE III
COMPOSITION OF THE DATASETS

Datasets Howling type N Duration
Evaluation Pure 417 1400min
Evaluation Multi 140 484min
Training None 0 13min



TABLE IV
INFERENCE FEATURES, TRAINING AND EVALUATION FOR EACH FEATURES

Spectrum MFCC PLP RASTA_PLP
Steps Overall (s) W (s) Overall (s) W (s) Overall (s) W (s) Overall (s) W (s)
Features 74.5730 6.588e−6 100.9881 8.922e−6 169.3596 1.496e−5 886.7694 7.834e−5
Training 4366.6745 0.0547331 1190.4696 0.01492166 922.5154 0.01156305 710.54 0.008906097
Evaluation 152.9156 1.35e−5 3.5336 3.122e−7 17.6530 1.560e−6 51.2664 4.530e−6

In order to train our algorithm, we also created one set
(including speech and music only) without tones. OC-SVM
must train with normal samples to find the anomalies. We
separated the evaluation dataset in two datasets and each one
has a different howling. These datasets are summarized in table
III, according to their type of howling, number of tones (N)
and overall duration.

We will now present the method used for the training and
the evaluation.

B. Method

The audio signal is, first, segmented into frames of 20 ms
with an overlap of 10 ms. For each frame, a Fast Fourier
Transform (FFT) is computed using 256 samples equivalent
to 20 ms of samples at 8 kHz sampling. The result of the
FFT gives directly the spectrum of the signal. For the MFCC,
the signal is decomposed into 20 rectangular bands spaced in
the mel scale. The PLP and Rasta-PLP decompose the signal
into 18 rectangular bands spaced in the Bark scale. The OC-
SVM is applied on the training set for each feature. We used
the Lib-SVM library [10] as implementation of the OC-SVM.
A grid-search procedure is performed to find the best OC-
SVM’s parameter, η, by ten folds cross-validation (CV). This
approach, called k-fold CV, consists to split the training set
into k smaller sets. The following procedure is followed for
each of the k “folds”:

• A model is trained using k-1 of the folds as training data
• the resulting model is validated on the remaining part of

the data
The Fig. 5 shows a cross-validation example by 5-folds.

Source: https://scikit-learn.org/stable/modules/
cross_validation.html

Fig. 5. 5-folds Cross-validation Example

The Table IV shows the execution time for the evaluation
dataset for Features and Evaluation on your set up. The
training is based on the Training dataset only. The execution

time is given in seconds by windows (W) and for the overall
datasets.

The computer setup is presented in Table V. OC-SVM algo-
rithm is coded in python 3.7.6. The learning and deployment
of OC-SVM rely on the widely used Scikit-Learn, open source
ML framework. For the features MFCC, we used Librosa,
python package for music and audio analysis. The Features
PLP and RASTA-PLP are self coded.

TABLE V
SET UP

Set up Computer

Hardware
Intel i7-9700

8 cores at 3.0 GHz
24 GB of DDR4

Operating System Linux Debian 10

C. Results

The results presented in Table VI, gives the accuracy rate,
the false alarm rate and the anomaly detection rate for each
feature. The accuracy rate corresponds to the set of labels pre-
dicted for a sample that exactly matches to the corresponding
set of real label (Normal or Anomaly). The anomaly detection
rate is the number of correctly predicted anomalies out of
the total number of anomalies to be detected in the database.
The False Alarm rate is calculated as the ratio between the
number of anomalies wrongly categorized as normal and the
total number of actual anomaly. To have an efficient system,
the accuracy and detection rate must be as close to 100% as
possible and the false alarm rate must be close to 0%.

TABLE VI
COMPARISON ANOMALY DETECTION , FALSE ALARM AND ACCURACY

RATE

Features Accuracy (%) False Alarm (%) Detection (%)
Spectrum 92.29 7.21 69.29
MFCC 95.81 1.21 9.62
RASTA-PLP 96.07 0.53 1.67
PLP 95.17 3.67 57.26

The features in cepstral domain (MFCC and RASTA-PLP)
provide good prediction results (95-96%) and a low false alarm
rate (0.5-1.2%). However, we can notice that they have a very
bad anomalies detection rate. The RASTA-PLP detects only
1% of the anomalies, i.e. 5 anomalies out of the 557 anomalies
generated in the database. For the MFCC, the results are better
(9-10%) but not sufficient. It detects about 50 anomalies out
of 557. From these results, we can conclude that these features
are not effective to detect this kind of anomaly.



For the features in the spectral domain (Spectrum and
PLP), they provide better results. For the accuracy rate, the
PLP provides similar results as the RASTA-PLP and MFCC
equal to 95%. We can observe a decrease in accuracy of 3%
compared to the PLP (92%). The detection rate is better for
these features : 57% for PLP and 69% for spectrum. With the
spectrum, we detect 384 anomalies out of 557 against 317 for
the PLP. We can observe that the increase in the detection
rate leads an increase in the false rate. We have 3.67% for the
PLP and twice as much for the spectrum 7.21%. The Spectrum
and PLP have encouraging detection results without degrading
the performance of the accuracy and false alarm rates. In the
following results, we will focus on the anomaly detections
for the spectrum and the PLP. We will see the behaviour of
the detection rate in function of the gain for the two types of
anomalies generated: Pure and Multiple. The results are shown
in Fig. 6.

Fig. 6. Comparison of Anomaly Detection rate for Spectrum and PLP
according to the gain applied on the tones (Pulse and Multiple)

Fig. 6 shows the anomaly detection rate of pure and multiple
tones for the spectrum and PLP. For pure tones, the anomaly
detection is very good when the anomalies is higher than -
15 dB and stay good to -20 dB for PLP and spectrum. For
multiple tones, we have differences between spectrum and
PLP. The PLP detects all anomalies higher than -20 dB and
higher than -25 dB for the spectrum. There is a significant
difference between spectrum and PLP for gains below -15
dB. The spectrum detects approximately 50% of anomalies
between -25 and -35 dB and 25% at -40 dB. While the PLP,
the detection rate tends rapidly to zero as the gain decreases
from -20 dB. Our priority is to detect 100% of the anomalies
or to get as close as possible on high gains (from -15 dB).
These high gains can have serious consequences for hearing.
So from these results, we decide to retain the PLP feature,
although the spectrum has higher detection rates than the PLP
because the spectrum only detects 80% of the anomalies at 0
dB for pure tones.

VI. CONCLUSION AND PERSPECTIVES

We proposed a robust algorithm for the detection of the most
dangerous acoustic phenomena for users. This method is based
on an anomaly detection algorithm with a signal representation
used in speech processing. Evaluation carried out on a very
large database showed that our algorithm combined with the
PLP is able to detect loud tones efficiently. Frequencies that
have low level of gain can be less detected since their impact
on the users are less dangerous.

In our future work, we will try to develop a mechanism to
increase the algorithm robustness to improve the detection rate
for low level frequencies. Detection of these frequencies can
be used to prevent potential signal degradation. It will also be
necessary to implement an online system that will be able to
detect and remove these problems in real time.
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