
HAL Id: hal-03621081
https://hal.science/hal-03621081

Submitted on 27 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An AI-empowered framework for cross-layer softwarized
infrastructure state assessment

Alessio Diamanti, Jose Manuel Sanchez Vilchez, Stefano Secci

To cite this version:
Alessio Diamanti, Jose Manuel Sanchez Vilchez, Stefano Secci. An AI-empowered framework for
cross-layer softwarized infrastructure state assessment. IEEE Transactions on Network and Service
Management, 2022, 19 (4), pp.4434-4448. �10.1109/TNSM.2022.3161872�. �hal-03621081�

https://hal.science/hal-03621081
https://hal.archives-ouvertes.fr

1

An AI-empowered framework for cross-layer
softwarized infrastructure state assessment

Alessio Diamanti, José Manuel Sánchez Vı́lchez, Stefano Secci, Senior, IEEE

Abstract—Network softwarization technologies challenge
legacy fault management systems. Coordination and dependency
among different novel software components for orchestration,
switching, virtual machine and container management creates
novel monitoring points, besides novel sources of faults, bugs
and vulnerabilities. To cope with the high heterogeneity and
granularity of software components, we propose a modular
network AI framework to detect anomalies, toward closed-loop
automation. We design an AI-empowered anomaly detection
framework able to assess the running state and the state
deviations of a softwarized infrastructure, monitored through
different features grouped depending on their layer and connect-
compute stack component. Our framework learns the nominal
working conditions of the infrastructure, with respect to which
anomalies are detected, and characterized tracing back the layer
and component root cause; it includes a network state assessment
technique that leverages anomalies characterization through their
most visible symptoms. We implement and validate the proposed
framework through experimental tests on a containerized IP
Multimedia Subsystem platform.

Index Terms—Anomaly detection, Network function virtual-
ization, network automation, Artificial Intelligence, Autoencoder,
Autonomic and cognitive management.

I. INTRODUCTION

Network automation is a research area targeting the de-
ployment of auto-reconfiguration algorithms and protocols for
operational communication networks. Research works in this
area date back to a few decades ago. Only recently, network
automation become a viable industrial direction thanks to the
programmability capabilities offered by SDN (Software De-
fined Networking) and NFV (Networks Functions Virtualiza-
tion) architectures. Indeed, SDN advocates for open interfaces
to support network equipment programmability by moving
network intelligence out of the switches device to support
fine-grained flow configuration. NFV goes further beyond this
advances, with the support of additional flexibility in network
service deployment, namely the decoupling between network
functions and hosting hardware.

In the past few decades, the networking community has
addressed solutions to let distributed sets of agents self-
organize themselves based on the learned network states,
hence operating the necessary system reconfiguration. This
was the focus of many research projects in the area of
autonomic networks [2]. Also standardization activities ad-
dressed network automation requirements, as the ones related
to autonomic signaling protocols among distributed decision-
making agents [3].

A preliminary version of this article was presented at ITC 32, 2020 [1].
A. Diamanti and J.M. Sanchez are with Orange Labs, France. Email:

firstname.lastname@orange.com. A. Diamanti and S. Secci are with CNAM,
France. Email: firstname.lastname@cnam.fr

Recently, the relative maturity of network virtualization
and softwarization systems has focused the industry spec-
ification efforts on the interfaces required for network au-
tomation, somehow meeting the expectation of former au-
tonomic networking research, but now with an operational
environment ready for their integration. On the other hand,
network automation platforms recently emerged, notably the
Open Network Automation Platform, chosen by many op-
erators as a reference platform for network automation [4],
[5]. Network softwarization eases the adoption of so-called
‘cognitive network’ approaches, e.g. referring to a closed-loop
process consisting of ‘sense’ ‘learn’ ‘decide’ ‘policy’ and
‘act’ phases [6], [7]. The observations captured by the sensors
(sense) help to build a model from the useful observations
(learn), which is in turn used by a decision-making module
to choose (decide) the actions to be taken based on possible
moves and learned experience. Potential actions, i.e. strategies
stored in the policy module (policy), are shortlisted by the
planning module, so that, finally, the actuators execute (act)
selected re-configurations [8].

In a softwarized environment, modern monitoring tools now
allow retrieving thousands of metrics at different levels to
sense a connect-compute platform composed of both com-
puting and networking components. However, automatically
extracting relevant features from such a massive amount of
data to assess the system state is a challenge that we firstly
addressed in [1], where we set the base of the so-called
SYRROCA (System Radiography and Root Cause Analysis)
framework. In this article, we further develop the SYRROCA
framework, extending it to cover anomaly detection not only
at the virtual layer, but the physical layer as well. We also
propose a cross-layer system state characterization methodol-
ogy. We show how this novel framework allows characterizing
anomalies at any layer and their propagation across layers.
We run tests in a containerized IP Multimedia Subsystem
(IMS) architecture, that is the conventional network function
cluster used for voice-over-IP traffic routing and processing in
telecommunication networks. Simulated call distributions and
used datasets are available at [9].

In Section II, we detail the background on anomaly de-
tection in softwarized networks. We present our framework,
SYRROCA, in Section III, and discuss experimental results
in Section IV including analysis of state graphs and anomaly
propagation across layers. Section V concludes the paper.

2

II. BACKGROUND AND RELATED WORK

A common approach to qualify the running state of a
networking system is to link its numerical measure to a notion
of resilience. Commonly, resilience is the ability of a system
to maintain an acceptable level of service in presence of im-
pairments such as faults or attacks. Its modeling is challenging
because it is a system-wide property that can depend on many
factors. Authors in [10] deem that complexity in modeling
network resilience comes from the varied nature of provided
services, the numerous layers and related parameters, and the
possible impairments threatening the network stability.

Resiliency measurement in softwarized networks, such as
based on SDN and NFV technologies, is even more challeng-
ing due to the multi-layered and modular nature of softwarized
networks; indeed, SDN separates control-plane from the for-
warding plane functions [11], and NFV implies a layered
architecture composed of the NFV Infrastructure (NFVI) layer,
the Virtual Network Function (VNF) layer, and the network
service layer [12] .

In a softwarized network infrastructure, an intensive use of
NFV opens the way for new types of faults that either did
not exist, or had a negligible impact on legacy hardware-based
communication infrastructures. Novel software-originated vul-
nerabilities can be specific to hypervisor, VNF application,
SDN controller and SDN south-bound and northbound pro-
tocol subsystems. For example authors in [13] produce a
taxonomy of the possible security threats and attacks that
can affect an NFV system. Similarly, in [14] authors propose
another layer-specific threat taxonomy from which they build a
set of recommendations on securing NFV based services. They
also compare several security mechanisms that are applied in
traditional scenarios and in NFV environments. About SDN
systems, a detailed analysis in [15] reports on the amplitude
of factors impacting software reliability of SDN controllers,
not only related to software bugs but also the time required
to integrate updates. Furthermore, in both SDN and NFV
architectures, we observe a centralization of control, orches-
tration and configuration functions that makes them vectors of
attacks and failures [16]. Detecting system-level faults due to
overload, attacks and changing network and service conditions
is therefore of higher importance in softwarized infrastructures
than in legacy hardware-based systems.

The softwarized infrastructure environment favors an elastic
usage of the compute, storage and networking resource stacks,
such as for instance on-demand VNF instantiation, and related
traffic routing adaptation, to react to faults at the physical
substrate. The decision-making related to the provisioning and
reconfiguration of already-provisioned services is therefore
challenged by the dependencies of the delivered services from
the underlying resources. As the state of the connect-compute
stack continuously evolves with the changing demands, and in-
surgence of impairments, an adaptive real-time management of
network resources should be based on a data-driven approach,
where the overall stack is sensed to spot varying conditions.
These factors originate a complex dynamic, and heterogeneous
environment, with a high number of features, difficult to be
taken into account in a single model. This motivates a data-

driven framework rather than a model-based one, to scale
with the heterogeneity of infrastructure components. In this
direction, we propose a cross-layer machine learning approach
to detect and characterize anomalies in a softwarized network,
based on a potentially very large set of features related to
connect-compute stack monitoring, with the goal to then
trigger the appropriate orchestration actions to mitigate them
as fast as possible.

A. Network resilience modeling and anomaly detection

There are some attempts to model network resilience.
Authors in [17] use a measure of the network capability to
get back to a normal state after a disruptive event. Authors
in [18]–[20] model it with a multi-layer approach, with as
application use-case mobile ad-hoc networks. Network re-
silience is assessed as a function of the deviation between the
network states involved when anomalies occur. In [21] authors
formalize the notion of probabilistic resilience as the largest
number of component failures such that the network is still
connected with a given probability.

When modeling resilience, the nominal and the anomalous
states have to be recognized as such. When the system is
coupled with a monitoring solution, the current practice is
to intuitively establish a nominal baseline range for each
group of monitored features, to reflect what is the acceptable
behavior. Usually, the baseline limits are set by the network
administrator through manual observation. However, this is not
feasible in softwarized networks as the nominal behaviour may
vary with time [22] and the number of features to observe
may be huge [23]. A well-known solution consists of a set
of association rules and frequent episode patterns to classify
events as anomalous or normal ones.

Statistical approach show good performance when detecting
unknowable anomalies [24]. For example, in [25] the chi-
square (χ2) test value is used as a distance measure to detect
anomalies: when an observation chi-square value is greater
than a fixed threshold, the observation is tagged as an anomaly.
In [26] authors present a simple frequency-based approach to
calculate the ‘anomaly score’of a packet: the fewer times a
given packet was seen, the higher is its anomaly score.

With the growth in availability and in the amount of mon-
itoring data that characterize the latest and future networks,
Machine Learning (ML) started to be applied to anomaly
detection. Even though most of the ML AD techniques first
profile normal instances and then identifies anomalies as
instances that do not conform, authors in [27] propose the
Isolation Forest (IF) method that explicitly isolates anomalies
using binary trees. When dealing with high dimensional data,
the most widely used approach is to project the data into
a lower dimensionality sub-space where anomalies fall apart
from the spontaneous clusters of data. Principal Component
Analysis (PCA) and K-Means are the most used algorithms
respectively for dimensionality reduction and clustering [28],
[29]. For example, authors in [30] trained a k-mean algorithm
on unlabeled flow records to cluster normal traffic. Then, the
distance from clusters centroids is used to affect to samples
an anomaly score. In [31] instead, first PCA is applied to the

3

KDD99 dataset for network IDS, and then a Support Vector
Machine (SVM) is used to classify anomalous and nominal
samples. However, clustering-based algorithms showed to be
of low efficiency, mainly for a high false-positive rate [32].
Furthermore, PCA is recognized to fail in capturing temporal
correlation [33] and in analyzing non-linear correlated metrics.
Even though several non-linear approaches were proposed
in the literature, it is broadly recognized that Deep Neural
Networks (DNN) are very flexible and they can introduce
a theoretically infinite level of non-linearities by using non-
linear activation functions [34].

As in [24]–[33], we aim at defining a practical framework
for network anomaly detection. Nonetheless, differently from
previous works we aim at characterizing the detected anoma-
lies working on a potentially very large set of observed features
(i.e., thousands), coming from distinct network domains and
layers (e.g., virtualized and physical layers) concurrently,
while being able to trace back the root cause analysis of the
anomaly. The scales involved justifies our approach to use deep
neural networks to scale with the number and length of the
involved time-series. We also recommend how the fine-grained
cause analysis, by using our framework, can be employed
for reconfiguring the network stack, in a closed-loop network
automation setting.

B. Deep LSTM-based autoencoders for anomaly detection

An AutoEncoder (AE) is a multi-layer Neural Network
(NN), composed of two blocks, an encoder and a decoder.
The typical architecture of an AE is shown in Fig. 1.

Fig. 1: Autoencoder architecture to characterize anomalies

The encoder reduces the F dimensions of the input X to
a ‘latent-space’ composed of s < F dimensions, while the
decoder takes those s dimensions back to reconstruct the input.
The autoencoder is trained to learn to reproduce the input
vector X of F features ∈ IRF by optimization of:

minimize
f,g

|I − g ◦ f(I)| (1)

where f : I ∈ IRF 7→ Y ∈ IRs with s < F is the function
representing the encoder, and g : Y ∈ IRs 7→ Z ∈ IRF is
the function representing the decoder. During the learning
phase, weights and biases are tuned to minimize the recon-
struction error on I . Autoencoders are commonly used to
detect anomalies, as for instance in [35]–[38]. In fact, when

training autoencoders with anomaly-free data, anomalous sam-
ples projected into the latent space look significantly different
from nominal samples; as a result, their reconstruction error
is greater when compared to nominal samples. Autoencoders
are considered as an auto-supervised neural network, as the
target value used to train is the input itself, so no labels are
required in the training phase. For this reason, we consider
autoencoders particularly suitable for anomaly detection in
softwarized network infrastructures: labeling anomalies for
such an environment is a time-consuming and error-prone task,
due to the great extent of faults and threats that can affect
NFV environments [39], [40]. Hence data-driven approaches
appear as an alternative approach to legacy, threshold-based
ones attempting to model a network system using few alert-
generating metrics.

Two important requirements shall be met when using au-
toencoders for anomaly detection: efficiency and scalability
of the learning process. Stacking several encoder and decoder
layers is commonly proposed in the literature as a solution
to extract from data more general properties, rather than
using a single layer [41]. Even though deep autoencoders
are employed to compress high dimensional vectors, several
studies showed that the result can struggle to efficiently learn
with high-dimensional input vectors [42]–[44] Accordingly,
SYRROCA is indeed designed to avoid the curse of dimen-
sionality, while taking advantage of deep autoencoders: a set of
parallel deep autoencoders is used to scale with very large and
heterogeneous input vectors, using a dedicated autoencoder per
group of resources. Those we use for the analyzed use-cases
are CPU, memory, file system, and network resource groups.

The integration of autoencoders in a neural network, taking
into consideration the temporal dynamics, is an additional
design step. When analyzing multivariate time series, it is
important that the autoencoder-based NN catches both the
time dynamics of each variable, and the cross-dependencies
among variables, to effectively grasp knowledge from the input
data. In the literature, recurrent neural networks (RNN) are
generally used to analyze time series [45]. Unlike Feed For-
ward (FF) neural networks, where each element is processed
independently from the others, RNNs apply a recurrent relation
at every time step to process a sequence in order to take
into account past inputs, like a sort of memory. Neverthe-
less, many studies as [46] report that RNNs suffer from the
vanish gradient problem, preventing long-term relations to be
learned. To deal with long-term relations as well as shorter-
term ones, authors in [47] propose the use of Long-Short-
Term-Memory (LSTM) RNN that enforces constant error flow
through the internal states of special units called ‘memory
cells’by employing multiplicative gates. Thanks to this com-
plex internal structure, LSTMs can learn long term sequence
correlations and model complex multivariate sequences [48].

In the context of network traffic and load forecasting,
LSTMs demonstrated to outperform non-ML and other deep
neural networks approaches [49]–[52]. In [53], authors pro-
pose a mechanism to scale 5G core resources by anticipating
traffic load changes through LSTM and deep neural networks
forecasting. They show that LSTM-based anomaly detection
can be more accurate, thanks to its ability to store data

4

pattern without degradation over time. LSTM-based neural
networks are used in [23] to adapt network baseline estimation
to changes in cloud environments; the authors propose to
create a network baseline through LSTM autoencoders that
can be adapted when metrics trends change, showing that the
proposed adaptation improves prediction accuracy by 22%.

C. Our contribution

We propose in this article an AI-empowered cross-layer
framework to detect and characterize anomalies in softwarized
networks, named SYRROCA (SYstem Radiography and ROot
Cause Analysis) framework. We extend our previous work [1]
with a refined modeling and anomaly analysis, as follows:

• by covering data collection over both physical layer and
virtual layer metrics to allow spotting how anomalies in
physical layer may propagate to virtual layer, and vice-
versa;

• by proposing a technique to infer system state deviations
through a state machine model, analyzing the detected
anomalies looking at the subset of impacted resource
groups and monitored features;

• by specifying how to leverage on the SYRROCA frame-
work to recommend automated orchestration decisions
based on the impact of the characterized anomalies.

III. SYRROCA (SYSTEM RADIOGRAPHY AND ROOT
CAUSE ANALYSIS) FRAMEWORK

In this section, we detail the SYRROCA framework ar-
chitecture, presenting its core components. Our framework
is designed to be modular, to support root cause analysis, at
different levels of aggregation, so as to make it reusable for
different use-case applications. We justify key design decision,
in this and following section, on the reconstruction error used
to spot anomalies, and on the autoencoder structure.

Fig. 2 shows a simplified diagram of the proposed frame-
work, for an application example. The represented architecture
is split by layer, and features groups are duplicated to analyze
separately both physical and virtual layer metrics, in order to
comprehensively analyze the whole stack.

Fig. 2: Representation of the proposed SYRROCA framework

Table I summarizes the notation used throughout the article.
1

TABLE I: Table of notations

N Number of analyzed metrics
G Set of resources groups
L Set of layers
U Set of considered computa-

tional units
N l,g Number of metrics referring to

resources group g at layer l
τ Dataset time length

Xl,g(t) = [xl,g(1), ..., xl,g(τ)] time-series of the jth metric in
input to the AE operating on
resources group g’s metrics

X̃l,g(t) = [x̃l,g(1), ..., x̃l,g(τ)] time-series of the lth metric
produced by the AE operating
on resources group g’s metrics

D Set of detected deviations
dt deviation at time-step t
T l,g MSE threshold for resources

group g
SEl,g

j (t) = [xl,gj (t)− x̃l,gj (t)]2 Feature-wise reconstruction
squared error

pl,g(t) lth feature MSE contribution
rate

F l,g
t most deviated feature index set

for deviation dt of resources
group g

Θ : F l,g
t 7→ {(g1, u1),, (gk, uk)} Function associating to F l,g

t
the couples (g, u) correspond-
ing to features in F l,g

t

A. Data collection and pre-processing

In order to monitor a softwarized network platform to
infer its state, we can collect heterogeneous data related to
the various subsystems in stake. Metrics include categorical
information in a text shape (alarms, logs) or in a numerical
shape, encompassing metrics and KPIs (Key Performance
Indicators). In this work, we focus our analysis on numerical
metrics, leaving out other textual data that requires other types
of pre-processing such as semantic text processing capabilities
like in log analysis [54], [55].

The continuous collection of metrics results in a set of
time-series, univariate or multivariate time-series, at different
time intervals given by a scraping frequency. Depending on
the metric source, time series may inherently encompass a
trend; e.g., the number of sent/received packets is a cumu-
lative counter with a monotonically increasing trend. On the
contrary, other time series may arbitrarily describe increas-
ing/decreasing metrics without an inherent trend; e.g., the
frequency values taken by a computing processing unit or
its temperature. On one hand, counters-based time series, if
not properly pre-processed, are non-stationary, which tends to
produce unreliable and spurious results leading to poor under-
standing and forecasting capabilities [56]; furthermore, counter

1Note that the terms feature and metric are used interchangeably throughout
the article.

5

metrics evolution is rather characterized by its increments than
the absolute cumulative value. On the other hand, gauges-like
metrics do not exhibit an a-priori trend and are characterized
by each instantaneous value. Thereby, to analyze a generic
dataset containing both gauges and counters, we pre-process
data as follows:

• we de-trend counters maintaining their increments, while
keeping the raw values for gauges-like metrics.

• we re-sample metrics to a common fixed frequency taking
into consideration how fast anomalies should be detected,
and the training dataset length. Indeed, depending on the
monitoring scraping frequency, the temporal resolution
of each metric may be different, and in some cases so
fine-grained that spurious outliers spikes could worsen
data quality. Furthermore, high time-series resolution
would make the training set huge, which proportionally
increases training duration.

• we re-scale the input data into a uniform range, since met-
rics values may have widely different magnitudes. This
is especially important for LSTMs, which are sensitive to
the scale of the input data when the (default) sigmoid or
tanh activation functions are used; it is in general true for
whatever neural network trained with a gradient descend
algorithm [57].

It is worth noting that two techniques are conventionally used
to re-scale data: standardization and normalization. The former
assumes that observations fit a Gaussian distribution (with a
well behaved mean and standard deviation) and consists of
shifting the distribution of each metric to have a mean of zero
and a standard deviation of one (unit variance), while the latter
consists of transforming the original metrics range so that all
values fall within the [0, 1] range. We detail next a way to
choose a re-scaling technique for the generated dataset.

B. Training
During the training phase, SYRROCA learns the nominal

conditions from the metrics characterizing a given layer and
a resources group involved in a virtualized network service.
Autoencoders are trained with a dataset composed of metrics
collected during the normal working conditions, so that they
can learn a compact representation of the nominal state. It is
worth noting that both the quality and the extent of the data
used for the training phase greatly affect the representation.
Indeed, during the training phase, autoencoders are fed with
anomaly-free samples during a sufficient period of time to
learn the dynamics for each metrics group and layer to be
characterized. SYRROCA uses dedicated deep autoencoders
for each group of resources (CPU-related, memory-related,
network-related, and file-disk-related) and layer (physical and
virtual) in order to characterize anomalies occurring in a
softwarized service in a fine-grained manner.

Consequently, for the addressed IMS use-case, we used a
total of 8 deep autoencoders: 4 to analyze virtual layer metrics
and 4 ones to handle physical layer metrics (e.g. a single
autoencoder per resource group). It is worth noting that, for
future possible applications of SYRROCA to other applica-
tions, additional and different metric sources and groups can
be added with no restriction, for the sake of reusability.

As mentioned in the previous section, neural networks strug-
gle to learn with high-dimensional inputs. Hence splitting the
dataset per resource group streamlines learning. Additionally,
it reduces training time. In fact, as described in [47] the LSTM
cell epoch update complexity is O(Wi), where Wi is the
number of cell’s weights. For a standard implementation of an
LSTM cell, Wi = 4hi × (hi + hi−1) where hi is the number
of hidden units and hi−1 is the dimension of the layer input,
which is the previous layer’s output. When using LSTMs in
deep autoencoders, the number of hidden units depends on
compression level ci ∈ R. Thus Wi = 4Nci× (Nci+Nci−1)
where N is the number of considered metrics. Subsequently,
each cell update complexity is O(N2). Assuming a deep
autoencoder composed of M encoding and M decoding levels,
the training complexity of the entire deep autoencoder is
O(M ·N2) for each training epoch. In contrast, if input metrics
are split into ng different groups (also referred to as resources
groups in the remainder of the article), the deep autoencoder
training complexity is reduced to O(M · N2/ng) for each
epoch.

C. Anomaly detection and characterization

In SYRROCA, an anomaly is characterized as a meaningful
deviation from nominal conditions on a set of metrics. The
framework is based on LSTM AEs wich allow to detecting
anomalies when their reconstruction error exceeds a given
fixed threshold. Indeed, when nominal conditions significantly
deviate, the autoencoder fails in reconstructing those condi-
tions and the reconstruction error increases.

Reconstruction error design: In general, depending on the
problem, it is possible to choose among several types of
reconstruction error. Let us discuss the most used ones at the
state of the art of anomaly detection:

• Mean Absolute Error (MAE). It is defined as the mean of
the absolute error 1

n

∑
||xt− x̂t||, where xt is the actual

value and x̂t is the forecasted one at time t. MAE is often
used when outliers are not expected to be frequent and
it is therefore not suitable for anomaly detection [58].
However, in our case, as we do not have negative values,
the MAE is equal to the Mean Bias Error (MBE).

• Mean Absolute Percentage Error (MAPE). It is defined
as MAPE = 1

n

∑
||xt−x̂t

xt
||, and it is in general used

to compare different models. However, when the data
contains zeros MAPE gives indeterminate values [59],
which is the case for our dataset.

• Mean Squared Error (MSE), defined as 1
n

∑
(xt − x̂t)2,

and the Root MSE (RMSE), defined as
√
MSE. Since the

RMSE gives a relatively higher weight to large errors, it
is generally preferred when larger errors are considered
much worse than smaller. ones [60].

In SYRROCA, AE inputs are re-scaled to the [0, 1] range,
thus the training reconstruction error is always lower than
1. Thereby, as

√
x > x ∀x ∈ [0, 1), the RMSE always

produces greater error values than MSE. As the threshold
is computed to be the 99.9% quantile of the reconstruction
error distribution, the threshold also is always greater in the
RMSE case. Accordingly, using the RMSE only produces a

6

re-scaled version of the same information we can compute
with the MSE. Experimental tests we run to compare them in
SYRROCA confirmed that we obtain with MSE or RMSE the
identical anomaly detection outcome, with the same accuracy,
recall, precision and F1 score for two sets of RMSE-based and
MSE-based AEs.

Our choice for the reconstruction error is to use the MSE,
mainly because (i) it is computationally less heavy than the
RMSE, given that the former requires in addition to the MSE
computation, also the computation of the squared root, while
(ii) it produces identical results to the MSE. Moreover, as
already mentioned, (iii) MAPE is not appropriate when data
can have zero values, and (iv) MAE is not robust against
outliers.

Anomaly characterization: An autoencoder is trained to
reconstruct the nominal conditions with low error. However,
when actual conditions significantly deviate, the autoencoder
fails in reconstructing those conditions and the error increases.

For an AE trained with N l,g inputs and outputs the MSE
is defined as:

MSEi,g(t) =
1

N l,g

N l,g∑
j=1

[X̃ l,g
j (t)−X l,g

j (t)]2 (2)

where X̃ l,g
j (t) = [x̃l,gj (1), ..., x̃l,gj (T)] ∈ IRT and X l,g

j (t) =

[xl,gj (1), ..., xl,gj (T)] ∈ IRτ are respectively the output and the
input vectors of the autoencoder working on group g, where
τ is the size of the considered time-window.

Even though the MSE provides an efficient way to detect
anomalies on a big set of metrics, because of the errors
averaging it is not rich enough to characterize each anomaly.
To compensate, we therefore design an approach to leverage
the feature-wise reconstruction errors to determine the set of
most deviated features, which in turn identifies the anomaly
most severe symptoms. As described in the following, we can
so use this information as an indication of the most impacted
resources that can help in the system state assessment.

Let D and dt ∈ D be the set of ‘deviations’ and a given
deviation at time t, such that the MSE of a resources group
exceeds a threshold value T l,g. We use the 99.9% quantile as
the threshold for each metrics group, i.e., 0.1% of the training
samples are marked as raw anomalies by each autoencoder;
note that, depending on the scales involved, this statistical
threshold may be increased or decreased at the designer will.

To characterize anomalies using autoencoders we propose
to compute the contribution of each feature to the MSE,
computed as the feature-wise reconstruction squared error
SEl,gj (t) = [xl,gj (t) − x̃l,gj (t)]2 over the sum of the squared
errors across all the features in a given resources group:

pl,g(t) =
SEl,gj (t)∑N l,g

j=1 SE
l,g
j (t)

(3)

The closer pl,gj (t) gets to 1, the stronger is the contribution of
feature j in group g to the MSE of that group (MSEl,g), i.e.
the feature j characterizes one of the most relevant symptoms
of the detected anomaly.

Let us define Bl,g(t) = {bl,g1 (t), bl,g2 (t), ..., bl,gn (t)} as the
set of decreasingly ordered pl,g(t). Thus, we propose to take
the first k values of pl,g(t) ∈ B that are reconstructed with
the highest error and jointly contribute to at least the 90% of
the MSE. This can expressed in mathematical terms as the set
bl,g1 (t), ..., bl,gk (t) ∈ B with k ≤ N l,g so that

∑k
j=1 b

l,g
j ≥ 0.9

the features corresponding to these k values.
Consequently the set:

F l,gt = {j : bl,gj (t) ∈ Bl,g(t), 1 ≤ j ≤ k} (4)

contains the indices of the features that deviated the most
from their nominal dynamics on layer l, group g. Therefore,
the set F l,gt pinpoints the most evident symptoms of the
anomaly on the collected metrics. We only consider the feature
that describes up to 90% of the MSE as our experiments
demonstrated that this values brings a sufficient enough char-
acterization of the anomalies while avoiding a too fine grained
one2.

D. Radiography characterization

Depending on the type of anomaly impacting the system,
it may be contained in a single layer, or it may propagate
to other layers. For instance, a process inside a container
intensively using assigned CPU may be seen as an anomaly
at the virtual/container level, while not affecting the quality of
the delivered service. To account for this aspect, we adopt
the radiography visualization proposed in [1], extended to
handle both the physical and virtual layers, as a compact
representation that shows anomalies impact across layers and
on the delivered service.

Thanks to the usage of LSTM autoencoders, sudden yet
recurrent variations of the state of a given resource, as the
CPU for instance, will not be spotted as actual anomalies.
Instead, non recurrent behaviors, such as uncommon spikes in
CPU usages due to different events than those recurrent ones
taken into account in the training period, will be appearing in
the radiographies, and spotted by the anomaly detection logic.

We can have two types of radiographies:
• Service cross-layer view: going beyond virtual-layer

specific approach, this view correlates the MSE of
a given layer (virtual or physical) with a metrics
characterizing the delivered service. Let f(MSEl,g, <
service metric >) be the bi-variate function joining
the MSEl,g of a given group (virtual or physical layer
specific) to values of the selected service metric (e.g.,
number of failed calls in the vIMS use-case).

• Infrastructure cross-layer view: this view correlates the
MSE of the physical and virtual layers, for a given
features group. Let g(MSEl,phy,MSEvirt,g) be a bi-
variate function describing how the MSE from the two
layers of a given group are related to each other.

In practice, a radiography is a 2D density plot, computed
through the Kernel Density Estimation (KDE), which is used
to estimate the density of the f and g bi-variate functions.

2Note that k does not affect the anomaly detection, as a threshold set to
the 99% quantile of the reconstruction error probability distribution is used
to detect anomalies.

7

In particular, the density estimator is defined as f̂(x,H) =
1
n

∑n
i=1KH(x−Xi), where (X1, ..., Xn) are the bi-variate

function samples, K is the used Gaussian kernel and H is
a bandwidth parameter, chosen with a well known rule of
thumb [61].

A color/grey scale mapping density from high to low with
colors from black to white, is used to visualize the computed
KDE, obtaining the so-called radiography. Accordingly, the
KDE-based radiography represents the density for each func-
tion for a chosen time window: the higher the density of a
given point area is, the darker the color; darker regions repre-
sent most observed conditions. Density zones along the space
bisector denote a direct propagation across variables/layers,
while density zones near any of the two axes denote an impact
affecting only one variable/layer hence with no propagation
among the two. We later showcase radiographies for the vIMS
use-case showing how to spot and characterize anomalies.

E. System State Inference

In cognitive network approaches [62]–[64] the sensing of
the environment and learning the state is the preliminary step
to inference. Optimal decision-making processes in orchestra-
tion concerns the capability to identify with low uncertainty
the state of network resources to know where to apply those
orchestration actions, so that they are effective enough to revert
the deviated conditions towards normalcy.

The notion of system ‘state’ can be declined in different
ways according to the addressed problem. In SYRROCA, we
distinguish among three types of states:

• Nominal State: the system is in normal working condition
when the MSE does not deviate for each group of
resource metrics.

• Training Degraded State: the system is in an anomalous
but known-in-advance working condition. In these cases,
the MSE falls above the threshold for at least one metrics
group in a given layer.

• Test Degraded State: the system is in an anomalous and
unknown working condition during run-time test when
the MSE falls above the threshold for at least one group
of resource metrics in a given layer.

While the anomalous unknown states are meant to be detected
in the testing phase, the nominal state and the known degraded
states can be ex-ante characterized for a given use-case. Let
a layer, whether physical or virtual, be fully characterized by
two element sets:

• the set of resources groups, denoted as G = {g1, ..., gs},
where gk denotes CPU, memory, network and file-system
related metrics

• the set of computing units, denoted as U = {u1, ..., uv},
where each unit may represent a virtual machine, a
container, or a server in the case of a physical layer.

Accordingly, we propose to characterize anomalous states
in a given layer deriving the resource groups and the computa-
tional units that are the most impacted by the anomaly. Indeed,
orchestration actions may not have a sufficient granularity
to act on a single metric; rather, they can act on a specific

Fig. 3: Testbed settings

resource and computational unit. Thus, the proposed character-
ization narrows down the choice of possible mitigation actions
to those that act on the identified resources and computational
units.

As defined before, the sets G and U are respec-
tively the sets of resources groups and computational
units impacted by a deviation. We propose then a func-
tion Θ : F l,gt 7→ {(g1, u1),, (gk, uk)} to map the
features indexes F l,gt characterizing the deviation to the
corresponding network resources and computation units.
For example, the deviation characterized by the features
F l,gt = {21 : container cpu load average 10s{dns}, 33 :
node memory MemFree bytes{server1}} is mapped through
Θ to the impacted resource groups and computational units
{(CPU,DNS), (memory, server1)}.

State deviations characterized by different features may be
mapped onto the same couples (g,u).

Therefore, we define the system states as:

St =


Nominal if MSEl,g(t) < T l,g ∀g ∈ G
{(g1, u1), ..., (gk, uk)} if ∃ g ∈ G ∧ ∃ l ∈ L |

MSEl,g(t) ≥ T l,g
(5)

Non-nominal or degraded states are characterized through
the most impacted computational unit(s) and the related re-
source(s) groups in physical and virtual layers. As SYRROCA
can perform an analysis on a per resource group and per com-
puting unit basis, state graphs can account for a comprehensive
view of the entire softwarized platform.

IV. EXPERIMENTAL RESULTS

We test the SYRROCA framework on a virtualized core
IMS (IP Multimedia Subsystem) case study.

An IMS platform (IP multimedia subsystem) is composed
of four main network functions: (i) the HSS (Home Subscriber
Server), a database containing subscriber’s profiles performing
authentication and authorization; (ii) the P-CSCF (Proxy Call
Session Control Function), the SIP proxy server, the first
point of contact for the users; (iii) the S-CSCF (Serving-
CSCF), it is the central node of the signaling plane for the
SIP server and session controller functions; (iv) the I-CSCF
(Interrogating-CSCF), the SIP function located at the edge of
an administrative domain which assigns an S-CSCF to a user
performing SIP registration.

We used the open source OpenIMSCore IMS [65] and
modified its functions to be deployed as distinct containers. We
exploited Kubernetes - an open-source container-orchestration

8

TABLE II: Number of features per layer and resource type

CPU Network Memory Disk Total
Physical 370 290 40 260 960
Virtual 60 80 160 230 530

system that aims to provide a platform for automating deploy-
ment, scaling, and operations of application containers across
clusters of hosts - to manage containers.

Fig. 3 depicts an example of our containerized vIMS com-
posed of two physical servers, deployed at Cnam facilities.

Each physical server is equipped with an Intel(R) Xeon(R)
CPU E5-2620 v4 @2.10GHz with 384 GB of RAM, connected
to the same network through a 1-Gbps port physical switch.
All the vIMS functions are deployed in dedicated Pods located
in the server 1 (srv1), while Kubernetes core components are
deployed in the server 2(srv2). Server 2 hosts the SIPP [66],
a traffic simulator used to inject SIP and RTP traffic into the
platform as two pods representing the caller and the callee.
The whole platform is monitored through Prometheus node-
exporters [67] for the physical level, while Pods and containers
are monitored through a Kubernetes embedded CAdvisor [68]
agent. Both exporters are compliant with Prometheus data
model and architecture so that feature metrics can be exported
through GET requests at a specific polling frequency.

A. Dataset

Metrics derived from server and container logs and traffic
are directly collected every 5 s, forming time-series of 17280
values per feature and per day during 21 days. We downsam-
pled the series to a 30 s frequency (2880 samples/day) to keep
a good trade-off between time complexity and training error.
Collected features are explicitly typed as counters or gauges,
to ease their pre-processing.

Table II details the number of features per layer and resource
group, showing the important magnitude in the number of
features (hence our choice of using deep autoencoders to
effectively compress high dimensional inputs vectors).

To simulate realistic traffic, we used real call traffic profiles
extracted from a given LAC (Location Area Code) from the 3G
Orange network. We injected 21 days (March 16 to April 05,
2020) of this traffic distribution onto the vIMS containerized
platform. We set the average call duration to 3 min according
to [69]. Moreover, the vIMS containerized platform is tailored
to correctly process this traffic load. Fig. 4 reports mean call
distribution for the three nominal simulated weeks as well
as a LAC distribution used for testing purposes. The traffic
profile was injected towards the vIMS through the SIPP tool
by emulating continuous calls between the simulated users.
Both RTP data traffic and SIP signaling traffic are transported
over UDP. The employed data time-series and call distribution
datasets are available at [9], and the algorithms and data
extraction scripts are made available at [70].

It is worth highlighting that virtualized network services,
differently than legacy transport network services, are tailored
to a particular traffic, which can be isolated first, and then
chained through dedicated functions thanks to the possibility
to program virtual switches along the network path. This is
the reason why we focus on a particular traffic and related

virtualized network service architecture, as we believe this is
a more realistic application than an application applied to an
aggregate with undifferentiated traffic. In particular, we focus
on VoIP traffic because it still today represents an important
portion of ISPs revenues and as it requires QoS guarantees
also in terms of availability.

Fig. 4: VoIP call distributions emulated in the experiments

B. Features re-scaling

As discussed in Section III-A, it is of paramount importance
for a neural network to evenly learn on all inputs. To decide
which feature re-scaling approach to use we need a prior
metrics distribution analysis. We use the chi-squared Pearson’s
cumulative test [71], [72] to characterize goodness of fit of
different statistical distributions 3.

TABLE III: Best-fit distributions per resource group

CPU Network Memory Disk
Levy (15%) PowerLaw (25%) Alpha (14 %) Betaprime (34 %)
Net (15 %) Alpha (20 %) Net (12 %) Jhonsonsu (26 %)

Table III represents the distributions obtained for the four
resource groups after the application of the χ2 test. We can
observe that none of the analyzed metrics fit a Gaussian
distribution; according to what explained in Sect. III-A, we
used therefore normalization.

C. LSTM-based deep autoeconder implementation

Autoencoder setting and hyper-parameter tuning are key
steps needed to run an effective AI model. It is important
that the chosen architecture is carefully adapted to the dataset
characteristics. In this section we report how we calibrated
the autoencoders architecture and hyper-parameters through
several experiments performed on different combinations. We
used the Keras python library with TensorFlow backend to
easily compose deep autoencoders through pre-built layers.

3The chi-squared statistic, χ2, is a normalized sum of squared deviations
between observed and theoretical frequencies. The χ2 bins data into n bins
based on percentiles so that each bin contains approximately an equal number
of values; for each fitted distribution the expected count of values in each bin
is predicted from the distribution. The chi-squared value is the sum of the
relative squared error for each bin.

9

Fig. 5: SYRROCA deep autoencoder architecture

Fig. 6: State graph obtained during the training phase

Fig. 5 depicts the architecture used for each of the eight
deep autoencoders; encoder and decoder are composed of two
LSTM layers, and one dropout regularization layer to prevent
over-fitting, which particularly affects DNNs [73]. According
to the state of the art, over-fitting can be reduced by fitting
all possible different neural networks architectures on the
same dataset and then averaging the predictions from each
model [74]. However, this is not feasible in practice. With
dropout, during training, some layer outputs are randomly
“dropped out”; therefore some layers look like one with
a different number of nodes and links to the prior layer,
mimicking different architectures.

It is worth noting that in the Keras implementation of LSTM
neural networks the batch size hyper-parameter directly influ-
ences the amount of samples the internal state is built from.
Indeed, by default Keras’ LSTMs are stateless, which means
that the internal state is reset after each training batch [75].
Consequently, as it was intended that the autoencoders to
extract a compact representation of the nominal state across
a whole day, the batch size was set equal to the size of a
daily dataset. Furthermore, the training dataset represents three
weeks of simulated calls, thus it is inherently characterized by
a one-day period, therefore is out of scope to extend batch
size to more than one day.

D. Training - known states characterization

The aim of the learning phase is to acquire a characterization
of the nominal states as well as known degraded states with
respect to the nominal conditions, so as to be able to detect
future deviations from both nominal and known degraded
states during the run-time usage for testing.

The nominal scenario is simulated through several SIP
clients that first register to the vIMS core and then start a
call. The vIMS containerized platform is tailored to correctly
process the previously mentioned emulated VoIP traffic load.

Fig. 6 represents the states learned during the training
phase; they are obtained as explained in Section III-E. States
are connected within a directed graph 4, where an edge
indicates any state transition occurred during the learning
phase. The nominal state (or reference) is tagged as S0, while
the degraded states are tagged as SX , where X is a unique
identifier to unequivocally characterize each degraded state.
Table IV summarizes the taxonomy of all degraded states
detected across our tests. The thickness of the edge transition
between states is proportional to the number of times it occurs.
Under each state label it is quoted the percentage of time-
steps the infrastructure sojourned in the given state during
the simulation. In particular, given a time window T and the
number tSk

of time-steps the system state is Sk, the sojourn
time is computed as 100·tSk

T .

In order to report only on relevant transitions, we omit the
states in which the system stays less than three time-steps
(1 minute and 30 seconds). Some state transitions may not
appear, such as outgoing edges from the state S7 to S0 in
Fig. 6. Full states graphs are available at [9]. As each AE
threshold is set to the 99.9 quantile of the training MSE
distribution, each AE inherently detects 0.1% of the training
samples as anomalies. Consequently, when each of the eighth
AEs detects anomalies at different time-steps the maximum
amount of detected anomalies is 8% over the training dataset.

As shown in Fig. 6, the most frequent transitions in the
virtual layer are from/to the nominal state S0 to/from S8,
that is a degraded file-system state related to anomalous DNS,
HSS, ISCSCF and SCSCF features behavior. Similarly, the
most frequent transitions in the physical layer are from/to the
nominal state towards/from S9, S10, S14 and S15 which
respectively represent CPU, network, memory and disk de-
viated feature states. Additionally, it is worth mentioning
that in the physical layer states describing more than one
type of degraded resource at the same time, i.e. S3, S4 and
S5, only occur few times, while in the virtual layer none
of the degraded states describe a simultaneous degradation
for more than one resource type. This means that degraded
states perceived in the training phase only represent occasional
events that temporarily affect only one type of resource and
that do not simultaneously impact the entire infrastructure
(probably outliers). Nonetheless, a considerable amount of
degraded states concern DNS and HSS features, meaning that
AEs struggle in modeling associated metrics likely due to
a barely predictable behavior. Finally, note that some states
appear to describe an amplified deviation of other states, as it
happens for S13 which adds a further deviation on (net,srv1)
with respect to S12.

4the proposed state graph is only intended to be the foundation for a
cognitive recovery control loop and it thus only serves as an indication on the
type of remediation action the loop should perform.

10

(a) autoencoder MSE for the CPU metrics groups in physical and
virtual layers

(b) PCSCF memory stress radiography

(c) PCSCF CPU stress radiography
(d) State graph obtained during the CPU stress test case

Fig. 7: SYRROCA output visualizations for the CPU stress test case

E. Test on degraded conditions
We evaluate the SYRROCA ability to detect and charac-

terize anomalies under three different anomaly scenarios. For
each test case, SYRROCA provides a state graph and a set of
different radiographies giving a per-layer, a per-resource group
and an all-in one characterization of the anomaly impact.
The obtained comprehensive view of the system compactly
snapshots the system resiliency state, highlighting anomaly
propagation across layers. Moreover, it allows spotting the
computing units and resources on which remediation actions
should act to bring the system back to the nominal state. Due
to space constraints, for each test case we only show the most
relevant representations (additional ones can be found in [9]).

1) CPU stress test: In the first scenario we tested how
stressing the physical CPU in the PCSCF container is per-
ceived by the autoencoders and how this stress propagates
from the physical to the container layer. We injected a persis-
tent physical CPU stress, which increases over time in evenly
time distributed increments of 10% during one hour across 32
CPUs, starting from 10% up to 80% of single CPU capacity.
Each stress cycle is repeated ten times.

As expected, the most frequently visited state is S26 char-
acterized by a deviation on the PCSCF and physical CPU, as
seen in Fig. 7d. Interestingly, SYRROCA detects other less
frequent deviations on the CPU group of other containers as

a consequence of that deviation, such as the states S27, S28
and S29. Indeed, those deviated states were not observed in
the training phase, thus they do not refer to known occasional
deviations. We can suppose then a non-perfect isolation of
containers CPU lets the stress inside PCSCF occasionally get
through other containers.

The third most frequent state is S32, which is the result
of a stronger deviation from the state S26. This state is
characterized by a deviation on the physical memory in
addition to that of those deviated resources of state S26. This
state is likely due to the high amount of memory used by
the stressing test. Fig. 7b depicts the radiography showing
how the deviations evolve through time across the 10 stress
episodes. Red dotted horizontal and vertical lines represent
the autoencoders thresholds for the memory group of virtual
and physical layers, respectively. Accordingly, the bottom left
rectangle represents the nominal region, where a dark high-
density region. For instance, 7b shows that most of the time
the system is in nominal conditions for both physical and
virtual layers metrics. It can be observed that the memory
deviation remains contained in the physical layer. This can be
evidenced by the horizontal medium density region exceeding
only the physical layer threshold but not exceeding the vertical
threshold.

Fig. 7c instead depicts how the injected anomaly behaves for

11

Fig. 8: State graph obtained during the packet loss test case

the CPU metrics group. While the region A represents a devi-
ation affecting only the virtual layer (vertical axis threshold is
not exceeded), regions B and C represent deviations perceived
at both layers. Those deviations can be observed in Fig. 7a
also, which depicts the stress pattern perceived through the
MSE for the physical layer (in blue) and the virtual layer (in
orange). At the beginning of each stress episode, the anomaly
is first perceived only at the virtual layer (A). Then, as the
stress increases, the deviation increases for both physical and
virtual layer (B). Finally, when the stress episode terminates,
the virtual layer deviation immediately decreases, while at the
physical layer a residual deviation is still perceived (C). Note
that across the 10 stress episodes time window, region C is
the most frequent one: this is probably due to the effect of
cumulative metrics which represent the physical CPU load
across the last 5 and 10 minutes. Indeed, metrics representing
the CPU load for the virtual layer are only instantaneous.

2) Packet-loss injection test: The second scenario consists
in injecting packet loss to generate calls failures.SIPP allows
simulating packet loss by simply blocking outgoing messages
or discarding received messages. We alter the call distribution
of March 16, 2020, blocking 50% of INVITE (SIP message)
acknowledgments, causing at least 50% of calls to fail.

Looking at Fig. 8 system state graph, it is interesting to point
out that almost all the degraded states only refer to network-
related metrics, except S16 and S14, rarely visited. This means
that the injected anomaly does not propagate across different
resource types. In particular, the most recurrent deviated state
is S17 which represents a degradation on the network metrics
of the ICSCF and PCSCF containers, thus a virtual-layer
only anomaly. Similarly, state S10 is only characterized by a
deviation on the physical network metrics. As collected virtual
layer metrics only belong from vIMS containers, a deviation
like the one of state S10, which is only detected at physical
layer, describes something related to Kubernetes pods or to any
underlying Linux system-level process. Consequently, we can
infer that deviated state S10 does not depend on the packet loss
we imposed. Similarly, as no degraded state is characterized
by metrics from both the physical and virtual layer, we can
conclude that the detected anomalies never propagate through
physical and virtual layers for any kind of resource.

TABLE IV: Couples (g,u) of resource group (g) and computing
units (u) impacted in each degraded state

S1 {(cpu,dns),(cpu,icscf)}
S2 {(cpu,hss)}
S3 {(net,dns),(net,hss),(net,icscf)}
S4 {(net,dns),(net,hss),(net,icscf),(net,scscf)}
S5 {(net,pcscf),(net,scscf)}
S6 {(mem,dns),(mem,hss)}
S7 {(mem,hss),(mem,pcscf),(mem,pcscf),(mem,scscf)}
S8 {(disk,dns),(disk,hss),(disk,pcscf),(disk,scscf)}
S9 {(cpu,srv1)}
S10 {(net,srv1)}
S11 {(cpu,srv1),(net,srv1),(mem,srv1),(disk,srv1)}
S12 {(cpu,srv1),(disk,srv1)}
S13 {(cpu,srv1),(net,srv1),(disk,srv1)}
S14 {(mem,srv1)}
S15 {(disk,srv1)}
S16 {(cpu,scscf),(cpu,pcscf),(cpu,pcscf)}
S17 {(net,pcscf),(net)}
S18 {(net,pcscf),(net,pcscf),(net,scscf)}
S19 {(net,srv1),(net,pcscf),(net,pcscf)}
S20 {(net,pcscf)}
S21 {(cpu,scscf),(net,pcscf),(net,scscf)}
S22 {(net,scscf)}
S23 {(cpu,pcscf),(cpu,scscf),(net,pcscf),(net,scscf)}
S24 {(cpu,dns),(cpu,scscf),(net,pcscf),(net,pcscf)}
S25 {(cpu,pcscf)}
S26 {(cpu,pcscf),(cpu,srv1)}
S27 {(cpu,srv1),(cpu,dns),(cpu,hss),(cpu,icscf), (cpu,pcscf),(cpu,pcscf)}
S28 {(cpu,srv1),(cpu,hss),(cpu,pcscf)}
S29 {(cpu,srv1),(cpu,dns),(cpu,pcscf)}
S30 {(cpu,srv1),(cpu,pcscf),(net,srv1)}
S31 {(cpu,srv1),(net,srv1)}
S32 {(cpu,srv1),(cpu,pcscf),(mem,srv1)}
S33 {(cpu,srv1),(net,srv1)}
S34 {(cpu,srv1),(net,srv1),(mem,srv1)}
S35 {(cpu,pcscf),(mem,srv1)}

3) Call overload test: The third scenario consists in stress-
ing the vIMS core with a call profile exceeding the resources
available to the vIMS network functions. To do that, we
chose to inject the call distribution of March 22, 2020 from
a different LAC than the one used for training, serving more
users (Fig. 4). Actually, even though in our deployment each
pod can theoretically use as much memory as the physical
server has (best-effort mode), the scripts used to launch IMS
services impose a hard-coded memory limit. Nevertheless, we
observed that although this script-level limit is not reached, it
is possible to overload the vIMS core with a higher amount
of traffic as in the selected test LAC. Unfortunately, the
SIPP traffic simulation tool showed a limitation on the total
number of the simultaneous emulated calls, therefore we could

12

Fig. 9: State graph obtained during the overload test case

simulate only the first peak of the LAC depicted in Fig. 4, but
in any case not invalidating the correctness of the test.

The state graph in Fig. 9 shows that the most frequent
degraded state, S21, is characterized by deviations on SCSCF
network and CPU-related metrics, and only network metrics
of the PCSCF IMS virtual function. Similarly, the state S5,
which is the second most frequent state, points out a deviation
on the same resource/container, but on the SCSCF CPU.
Furthermore, all the other most frequent states only point out
deviations on CPU and/or networks metrics of different vIMS
containers. Consequently, we can conclude that the simulated
call overload generally produces a deviation on network-
related metrics, and occasionally generates an additional load
on the SCSCF CPU. Contrarily, no deviation is detected in
any physical level resource, meaning that the anomaly does
not propagate from the virtual to the physical layer.

Recurrent system states: Degraded states from the training
phase, marked with labels from S1 to S15, refer to anomalous
yet known-in-advance working conditions that can be found
at the test phase as well. In our tests we observed that training
degraded state S5 occurred also during call overload injection,
state S14 during packet loss injection and state S9 in the
CPU stress test case. As S14 and S9 are characterized by a
deviation on server-wide metrics that are influenced by all the
running processes, those states are quite likely to occur in a
generic test case as autoencoders are not completely robust to
outliers or state fluctuations. Furthermore, there could be sev-
eral reasons for the CPU to deviate from the nominal learned
state, which can make a degraded state characterized by only
one deviated physical resource quite likely to appear. On the
other hand, the state S5 characterizes a fine-grain deviation
on PCSCF and SCSCF IMS components. The intuition could
suggest that this state may be due to a sort of background
noise, but this is not actually the case as S5 covers 16.25%
of the total call overload test case time-stamps.

F. Detection performance assessment
As seen in section II-B, autoencoders proved to be ef-

fective in detecting and characterizing anomalies thanks to
the inherent capability to encode and compress inputs. Like-
wise, our LSTM NN design demonstrated to be effective
in learning long-term sequence correlations and to model

TABLE V: Comparison between RNN and LSTM autoen-
coders training epochs

CPU Network Memory Disk
Model Virt Phys Virt Phys Virt Phys Virt Phys
RNN 140 249 160 233 492 359 103 359

LSTM 379 191 269 184 382 275 166 270

complex multivariate sequences. In the following, we compare
our SYRROCA LSTM-based autoencoder with both Isolation
Forest (ISF) - a well-known unsupervised anomaly detection
baseline - and RNN-based autoencoders - RNNs are also a
good baseline, not storing long-term dependencies.

First, we compared a set of eight LSTM-based autoencoders
with its equivalent RNN-based version: both autoencoder
neuron architectures are identical, and the difference remains
at unit-level (RNN unit and LSTM-unit). We trained both sets
of autoencoders with the same dataset setting the maximum
number of training epochs at 2000. Looking to use the
framework in real environments, we stop the learning process
if the MSE remains steady at least 10 epochs.

We can observe that LSTM autoencoders need fewer epochs
than an RNN to reach the early stopping condition when
analyzing physical layer metrics, as showed in Table V. On
the contrary, results show that when working with less metrics
such as in the virtual layer, RNNs reach the early stopping
condition faster.

We compare the performance of LSTM-based autoencoders
(AE) with RNN-based autoencoders and the ISF to detect
deviations on the CPU group at the physical layer when
analyzing the CPU stress test dataset. We used the baseline
SKLEARN implementation of the ISF with all the parameters
left to default values [76]. We labeled as 1 (positive samples)
the anomalous samples while nominal ones are labeled with
0 (negative samples). The obtained results are summarized
in Table VI. As we found the ISF not stable in SKLEARN,
we repeated 500 times the classification, computing the mean
for each performance metric. On the one hand, ISF improves
the performance comparing to the RNN-based autoencoders,
but it is less performing comparing to the LSTM-based
autoencoders. In fact, a well-performing anomaly detection
algorithm should be able to catch all the anomalies; in our
experiments we labeled anomalies with 1, thus a properly
working anomaly detection algorithm should have a Recall
value close to 1. In our experiments, we found out that
the LSTM-based autoencoders improve the recall by 30%
comparing to ISF.

To account for each approach ability to not label as an
anomaly (positive) a sample which is nominal (negative), we
computed the F-2 score [77]. Based on the F-beta score that
is the weighted harmonic average of precision and recall, the
F-2 score lowers the importance of precision and doubles the
importance of recall. As depicted in Table VI, RNN-based
autoencoders give a low F2-score, while the LSTM-based
autoencoders confirm an improvement of 30% over the ISF.

To understand why the RNN-based solution provides very
poor performance, we analyze the RNN and LSTM autoen-
coders output reconstruction errors for the first four cycles of
the CPU stress test case, depicted in Fig. 10. While the LSTM-

13

TABLE VI: Anomaly detection evaluation metrics

Accuracy Recall Precision F1-Score F2-Score
ISF 0.472 0.515 0.802 0.626 0.554

RNN AE 0.166 0.053 0.714 0.098 0.065

LSTM AE 0.826 0.866 0.927 0.895 0.877

Fig. 10: RNN and LSTM based autoencoders reconstruction
error compared to mean physical CPU frequency

based autoencoders produce an MSE that closely mimics
the average CPU frequency, the RNN-based autoencoders
can only detect the deviation at the very first start, but it
fails in tracking the CPU stress during the rest of the cycle
as its reconstruction error systematically tends to plummet
below the threshold in contrast to LSTM-based approach.
We advocate this behavior to the internal limited memory
of standard RNN which limits the learning capabilities of
the cells. In conclusion, even though the ISF provides good
performance, the SYRROCA LSTM-based solution provides
an improvement of at least 30% on the evaluation metrics.
Therefore, the proposed LSTM-based solution is substantially
more appropriate as it provides high performance for a large
set of features, while it can tracks the anomaly evolution over
time.

G. Leveraging SYRROCA for closed-loop automation

A cognitive loop allows to cover from the sensing of the
network state to the act phase, that is the application of a
set of actions (policies) to recover from a malfunctioning.
Those policies are dynamically learned, with the aim to
achieve an abstract goal dictated by the business or user
technical requirements such as maintaining a certain Quality
of Service (QoS) to fulfill a Service Level Agreement (SLA).
The framework presented in this article covers the sense phase,
by detecting and characterizing anomalies across physical and
virtual layers. Nevertheless, this phase involves learning the
nominal state conditions to later identify and characterize
which network resources (resource group, computing unit) and
to what extent are deviated. Thanks to this, further work is
to build a cognitive loop to be able to compensate for the
deviation by targeting those resources through the appropriate
orchestration actions to bring the system back to the nominal
state. For instance the degraded state S26 for the CPU stress
test case, SYRROCA could recommend two orchestration

actions related to scaling-out the PCSCF container or deploy
that container on another server with more CPU instead of
server srv1.

As per cognitive loop seminal ideas, the cognition should be
implemented through an algorithm that ‘improves its perfor-
mance through experience gained over a period of time’ [62].
Regardless of the implementation, not only the process needs
to observe the result of the chosen action leading as a transition
towards a new network state, but also to learn from that result.
In the event of any degradation due to an incorrectly chosen
orchestration action, the process should receive a negative
feedback discouraging it to take the same action given the
same conditions that led to that new state. Conversely, if the
orchestration action correctly mitigates the detected anomaly,
a positive feedback should reward the process. However,
sometimes nominal system state must evolve to overcome an
anomaly; e.g., when a physical server motherboard breaks
down, the server will be replaced by a new one. To take
into account the change, nominal system state representation
should be periodically re-learned.

V. CONCLUSIONS

We presented an AI-empowered framework, named
SYRROCA, to assess the running state of a softwarized
network infrastructure. We proposed and experimentally evalu-
ated a methodology to assess the running system state through
the detection of deviations from a nominal state, learned
from known history, for each type of resource and layer. We
leveraged the MSE of a set of deep LSTM autoencoders to
profile metrics on nominal working conditions and character-
ize anomalies with most deviated metrics. We described a state
characterization methodology based on directed state graphs
to visualize the evolution of the system across the nominal
and the degraded states. The state assessment pinpoints the
most deviated resource group(s) and computing unit(s) for
a given anomaly. We also characterized the anomaly prop-
agation across layers through the radiography visualizations.
The obtained description of the system state and the detected
anomalies allows a comprehensive assessment the resiliency
state of the virtualized platform.

The state graph analysis methodology we proposed is meant
to fuel a decision engine within a closed-loop automation
system: as each degraded state is characterized by the set of
most deviated metrics, remediation policies can be tailored to
these deviations. Furthermore, we proposed a radiography vi-
sualization that, along with the state graph, allows SYRROCA
to give a complete view of the impact of anomalies between
each layer composing a virtualized network stack.

We tested SYRROCA for a vIMS use-case, with the goal
to detect and characterize deviations and degradations on
compute units and network resources in order to suggest
the appropriate orchestration actions. Experimental results
show that, as compared to alternative ML approaches, LSTM
autoencoders are better able to model the nominal state of a
virtualized platform by analyzing a multivariate time series
composed of metrics collected by a monitoring system. We
showed how to exploit the MSE of AEs to characterize system
states that deviate from the nominal working conditions. In

14

comparison with a baseline RNN and an isolation forest (ISF)
approaches, we found that RNN autoencoders improve both
the recall and the F2-scores compared to the ISFs, which fail
to extract any information on unlabeled data; moreover, LSTM
further increases the autoencoder performance compared to
RNN thanks to their ability to store long-term dependencies.

As future work, we aim at completing the closed-loop
automation system working on a learning engine able to
select connect-compute stack reconfiguration to recover from
anomalies. We are also working to the distribution of the
SYRROCA framework using federated learning for its online
integration at edge network devices. An on-going work is the
application of a recustomized SYRROCA framework to other
use-cases, and in particular those of the H2020 AI@EDGE
5G-MEC connect-compute platform making use of OpenRAN
technologies for the radio access components.

ACKNOWLEDGEMENT

This work was partially supported by the ANR CANCAN
project (ANR-18-CE25-0011) and the H2020 AI@EDGE
project (grant nb. 101015922).

REFERENCES

[1] A. Diamanti, J. M. S. Vilchez, and S. Secci, “Lstm-based radiography
for anomaly detection in softwarized infrastructures,” in Proc. of the
32nd International Teletraffic Congress, 2020, pp. 28–36.

[2] J. Rubio-Loyola et al., “Scalable service deployment on software-defined
networks,” IEEE Communications Magazine, vol. 49, no. 12, pp. 84–93,
2011.

[3] M. Behringer et al., “A reference model for autonomic networking,”
IETF Internet Draft, May 2018.

[4] A. a. Boubendir, “Network slice life-cycle management towards automa-
tion,” in Proc. of the IFIP/IEEE Symposium on Integrated Network and
Service Management, 2019, pp. 709–711.

[5] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, “5g e2e network
slicing management with onap,” in Proc. of the 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops, 2020, pp.
87–94.

[6] D. D. Clark et al., “A knowledge plane for the internet,” in Proc. of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, 2003, pp. 3–10.

[7] Q. Mahmoud, Cognitive networks: towards self-aware networks. John
Wiley & Sons, 2007.

[8] C. Fortuna and M. Mohorcic, “Trends in the development of commu-
nication networks: Cognitive networks,” Computer networks, vol. 53,
no. 9, pp. 1354–1376, 2009.

[9] A. Diamanti, J. M. Sanchez Vilchez, and S. Secci, “Syrroca github
metrics repository,” https://github.com/SYRROCA, 2021.

[10] P. C. et al., “A survey of resilience differentiation frameworks in
communication networks,” IEEE Communications Surveys Tutorials,
vol. 9, no. 4, pp. 32–55, 2007.

[11] H. et al., “Software-defined networking (sdn): Layers and architecture
terminology,” in RFC 7426, 2015.

[12] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[13] T. Madi, H. A. Alameddine, M. Pourzandi, and A. Boukhtouta, “Nfv
security survey in 5g networks: a three-dimensional threat taxonomy,”
Computer Networks, vol. 197, p. 108288, 2021.

[14] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi, “Nfv
security survey: From use case driven threat analysis to state-of-the-art
countermeasures,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 3330–3368, 2018.

[15] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, A. Blenk, W. Kellerer,
and C. M. Machuca, “Assessing the maturity of sdn controllers with
software reliability growth models,” IEEE Transactions on Network and
Service Management, vol. 15, no. 3, pp. 1090–1104, 2018.

[16] S. Secci, A. Diamanti, J. Sanchez Vilchez, and et al., “Security and
performance comparison of onos and odl controllers,” Open Networking
Foundation, Informational Report, pp. 4–7, September 2019.

[17] F. et al., “Resilience-based component importance measures for criti-
cal infrastructure network systems,” IEEE Transactions on Reliability,
vol. 65, no. 2, pp. 502–512, 2016.

[18] J. P. Sterbenz et al., “Resilience and survivability in communication
networks: Strategies, principles, and survey of disciplines,” Computer
networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[19] A. Jabbar, “A framework to quantify network resilience and survivabil-
ity,” Ph.D. dissertation, University of Kansas, 2010.

[20] D. Zhang and J. P. Sterbenz, “Measuring the resilience of mobile ad
hoc networks with human walk patterns,” in 2015 7th International
Workshop on Reliable Networks Design and Modeling. IEEE, 2015,
pp. 161–168.

[21] W. Najjar and J.-L. Gaudiot, “Network resilience: a measure of network
fault tolerance,” IEEE Transactions on Computers, vol. 39, no. 2, pp.
174–181, 1990.

[22] M. Shaw, “Self-healing: softening precision to avoid brittleness: position
paper for woss’02: workshop on self-healing systems,” in Proc. of the
first workshop on Self-healing systems, 2002, pp. 111–114.

[23] R. Mijumbi et al., “Darn: Dynamic baselines for real-time network
monitoring,” in Proc. of the 4th Conference on Network Softwarization
and Workshops, 2018, pp. 37–45.

[24] I. C. Paschalidis and Y. Chen, “Statistical anomaly detection with sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 7, no. 2,
pp. 1–23, 2010.

[25] N. Ye and Q. Chen, “An anomaly detection technique based on a
chi-square statistic for detecting intrusions into information systems,”
Quality and reliability engineering international, vol. 17, no. 2, pp. 105–
112, 2001.

[26] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1-2, pp. 105–136, 2002.

[27] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. of the
eighth IEEE international conference on data mining, 2008, pp. 413–
422.

[28] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection
methods in networks,” in Proc. of the International Symposium on
Computer Network and Multimedia Technology, 2009, pp. 1–3.

[29] H. Ringberg et al., “Sensitivity of pca for traffic anomaly detection,” in
Proc. of the ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, 2007, pp. 109–120.

[30] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N. Singh, “Anomaly
detection in network traffic using k-mean clustering,” in Proc. of
the 3rd International Conference on Recent Advances in Information
Technology, 2016, pp. 387–393.

[31] A. George and A. Vidyapeetham, “Anomaly detection based on machine
learning: dimensionality reduction using pca and classification using
svm,” International Journal of Computer Applications, vol. 47, no. 21,
pp. 5–8, 2012.

[32] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering
approach for network anomaly detection,” in Proc. of the International
conference on networked digital technologies, 2012, pp. 135–145.

[33] D. Brauckhoff, K. Salamatian, and M. May, “Applying pca for traffic
anomaly detection: Problems and solutions,” in Proc. of the International
Conference on Computer Communications, 2009, pp. 2866–2870.

[34] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[35] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[36] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction,” in Proc. of the MLSDA 2nd
workshop on machine learning for sensory data analysis, 2014, pp. 4–
11.

[37] D. Gong et al., “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” in
Proc. of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 1705–1714.

[38] M. A. Salahuddin, V. Pourahmadi, H. A. Alameddine, M. F. Bari,
and R. Boutaba, “Chronos: Ddos attack detection using time-based
autoencoder,” IEEE Transactions on Network and Service Management,
2021.

15

[39] A. Gulenko et al., “A system architecture for real-time anomaly detection
in large-scale nfv systems,” Procedia Computer Science, vol. 94, pp.
491–496, 2016.

[40] M. Kourtis et al., “Statistical-based anomaly detection for nfv services,”
in Proc. of the IEEE Conference on Network Function Virtualization
and Software Defined Networks, 2016, pp. 161–166.

[41] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proc. of the 23rd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, 2017, pp. 665–674.

[42] M. Verleysen and D. Francois, “The curse of dimensionality in data
mining and time series prediction,” in Proc. of the International work-
conference on artificial neural networks. Springer, 2005, pp. 758–770.

[43] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor:
Towards removing the curse of dimensionality,” Theory of computing,
vol. 8, no. 1, pp. 321–350, 2012.

[44] G. Hughes, “On the mean accuracy of statistical pattern recognizers,”
IEEE Trans. Inf. Theory, vol. 14, pp. 55–63, 1968.

[45] R. J. Williams, “Learning representations by back-propagating errors,”
Nature, p. 533536, October 1986.

[46] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, pp. 1735–80, December 1997.

[48] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proc.
o gf the 23rd European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2015, pp. 89–94.

[49] Z. Cui et al., “Deep bidirectional and unidirectional lstm recurrent
neural network for network-wide traffic speed prediction,” arXiv preprint
arXiv:1801.02143, 2018.

[50] Z. Zhao et al., “Lstm network: a deep learning approach for short-term
traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp.
68–75, 2017.

[51] X. Ma et al., “Long short-term memory neural network for traffic
speed prediction using remote microwave sensor data,” Transportation
Research Part C: Emerging Technologies, vol. 54, pp. 187–197, 2015.

[52] A. Dalgkitsis, M. Louta, and G. T. Karetsos, “Traffic forecasting in
cellular networks using the lstm rnn,” in Proc. of PCI 2018, 2018, pp.
28–33.

[53] I. Alawe et al., “Improving traffic forecasting for 5g core network
scalability: A machine learning approach,” IEEE Network, vol. 32, no. 6,
pp. 42–49, 2018.

[54] K. Fokianos and B. Kedem, “Regression theory for categorical time
series,” Statistical science, vol. 18, no. 3, pp. 357–376, 2003.

[55] G. M. Davis and K. B. Ensor, “Multivariate time-series analysis with
categorical and continuous variables in an lstr model,” Journal of Time
Series Analysis, vol. 28, no. 6, pp. 867–885, 2007.

[56] W. W. Wei, Time series analysis. Pearson College Div, 2006.
[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.
[58] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error

(mae) over the root mean square error (rmse) in assessing average model
performance,” Climate research, vol. 30, no. 1, pp. 79–82.

[59] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[60] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean
absolute error (mae)?–arguments against avoiding rmse in the literature,”
Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[61] N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection
for kernel density estimation: a review of fully automatic selectors,” AStA
Advances in Statistical Analysis, vol. 97, no. 4, pp. 403–433, 2013.

[62] R. W. Thomas et al., “Cognitive networks,” pp. 17–41, 2007.
[63] C. Fortuna and M. Mohorcic, “Trends in the development of commu-

nication networks: Cognitive networks,” Computer Networks, vol. 53,
no. 9, pp. 1354–1376, 2009.

[64] L. Song, “Cognitive networks: standardizing the large scale wireless
systems,” in Proc. of the 5th IEEE Consumer Communications and
Networking Conference, 2008, pp. 988–992.

[65] “Openimscore,” http://openimscore.sourceforge.net/, accessed on
15/10/2021.

[66] “Sipp,” http://sipp.sourceforge.net/, accessed on 15/10/2021.
[67] “Nodeexporter,” https://github.com/prometheus/node\ exporter,

accessed on 15/10/2021.
[68] “Cadvisor,” https://github.com/google/cadvisor, accessed on 15/10/2021.

[69] P. O. V. De Melo et al., “Surprising patterns for the call duration
distribution of mobile phone users,” in Proc. of the Machine Learning
and Knowledge Discovery in Databases, European Conference, 2010,
pp. 20–24.

[70] “Syrroca github algorithms repository,” https://github.com/
Orange-OpenSource/Autoencoder-Based-Anomaly-Detection.

[71] K. Pearson, “X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 50, no. 302, pp. 157–175, 1900.

[72] R. L. Plackett, “Karl pearson and the chi-squared test,” International
Statistical Review, no. 1, pp. 59–72, 1983.

[73] G. E. Hinton et al., “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[74] N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[75] J. Brownlee, Deep learning for time series forecasting: predict the future
with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery,
2018.

[76] “Sklearn isolation forest,” https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.IsolationForest.html, accessed on
15/10/2021.

[77] H. a. Alaiz-Moreton, “Multiclass classification procedure for detecting
attacks on mqtt-iot protocol,” Complexity, vol. 1, 2019.

Alessio Diamanti is a PhD student since October 2018, working on vir-
tualized network automation algorithms and platforms in collaboration with
Orange Labs and Conservatoire National des Arts et Métiers (Cnam), Paris,
France. After a master internship at LIP6 in 2017, he graduated in computer
engineering from University of Bologna, Italy, and then worked as research
engineer at LIP6 in 2018 before joining Orange and Cnam.

José Manuel Sánchez Vı́lchez (jose2.sanchez@orange.com) is a research
engineer in Orange Labs. His main research interests are fault management
and network resilience of programmable networks (SDN and NFV) trough
novel machine learning approaches. He received the M.Sc. Degree in telecom-
munications engineering from Universidad Politécnica de Valencia in 2009
and the Ph.D Degree in Computer networks from UPMC and TélécomSud
Paris in 2016.

Stefano Secci (stefano.secci@cnam.fr) is professor at Cnam, France, head
of the Networks and IoT Systems team (https://roc.cnam.fr). He received
a telecommunications engineering and a Ph.D. degree from Politecnico di
Milano, and a dual Ph.D. degree from Telecom ParisTech. He was an associate
professor at UPMC from 2010 to 2018, and previously worked for CNIT,
Fastweb and Polytechnique Montral. His current interests cover network
automation and cybersecurity.

