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Abstract Progress in the digitization of cultural as-

sets leads to online databases that become too large for

a human to analyze. Moreover, some analyses might

be challenging, even for experts. In this paper, we ex-

plore two applications of computer vision to analyze

historical data: watermark recognition and one-shot re-

peated pattern detection in artwork collections. Both

problems present computer vision challenges which we

believe to be representative of the ones encountered

in cultural heritage applications: limited supervision is

available, the tasks are fine-grained recognition, and

the data comes in several different modalities. Both

applications are also highly practical, as recognizing

watermarks makes it possible to date and locate doc-

uments, while detecting repeated patterns allows ex-

ploring visual links between artworks. We demonstrate

on both tasks the benefits of relying on deep mid-level

features. More precisely, we define an image similarity

score based on geometric verification of mid-level fea-
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Université de Genève, Switzerland
K. Bender
independent researcher, Gent, Belgium
F. Bougard
IRHT, Paris, France
O. Bounou and P.-G. Raverdy
INRIA, Paris, France
S. Gidaris
Valeo AI, Paris, France

tures and show how spatial consistency can be used to

fine-tune out-of-the-box features for the target dataset

with weak or no supervision. This paper relates and

extends our previous works [62,63]. Our code and data

are available at http://imagine.enpc.fr/~shenx/H

isImgAnalysis/.

Keywords Feature learning · Self-supervised learn-

ing · Artwork analysis · Watermark recognition

1 Introduction

Learning global image features has been successful in

many image recognition tasks, such as image classifica-

tion [31], landmark retrieval [29,55], metric learning [40,

20,72] and few-shot classification [74,67]. In this pa-

per, we highlight that matching and learning mid-level

features and taking into account spatial information

is better adapted to two cultural heritage applications

required to recognize exactly repeated patterns across

wide appearance changes, namely, historical watermark

recognition and one-shot repeated pattern detection in

artwork collections.

For watermark recognition (Figure 1(a)), we aim at

retrieving the exact drawing (green) corresponding to

the query photograph (blue) of a watermark from a

very large database, which includes many similar wa-

termarks each corresponding to a different category. In

artwork collections, we tackle one-shot repeated pattern

detection (Figure 1(b)), i.e. given a query detail (blue)

we retrieve it in artworks with various styles (green).

Both applications share similar Computer Vision chal-

lenges: (i) since annotations are very costly and require

expert knowledge, there are only few category-level an-

notations available for training for watermark recog-

http://imagine.enpc.fr/~shenx/HisImgAnalysis/
http://imagine.enpc.fr/~shenx/HisImgAnalysis/
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(a) Historical watermark recognition

(b) One-shot repeated pattern detection

Fig. 1: We present a unified approach to two problems:

(a) historical watermark recognition, and (b) repeated-

pattern detection in artwork collections.

nition and no training annotations for repeated detail

detection in art collections; (ii) the artwork details and

the watermarks are represented in different visual do-

mains; (iii) both tasks require fine-grained separation

between similar but distinct classes. We believe these

challenges are common to many cultural heritage ap-

plications.

The two problems we tackle are also highly practi-

cal for historians and archivists. For watermark recog-

nition, the drawings we recognize come from large cat-

alogs [10,1] where they are associated with information

such as the date and location of the paper fabrication,

which are important clues to analyze historical docu-

ments. Similarly, repeated patterns in art collections are

important to art historians and allow them to analyze

influences, find provenance, and even establish author-

ship [11].

For each application, we introduced datasets for train-

ing and evaluation adapted to modern deep learning ap-

proaches [62,63] and extend them in this paper. For his-

torical watermark recognition, we first collected more

than 6k new photographs for hundreds of classes, then

searched and photographed systematically the exact

original watermarks corresponding to hundreds of line

drawings printed in Briquet’s classic catalog of more

than 16k [10] watermarks. This allows us to tackle at

scale for the first time the scenarios of practical inter-

est for scholars: one-shot instance recognition and cross-

domain one-shot instance recognition among more than

16k fine-grained classes. For one-shot detection of the

artwork’s details, we used a database of 1,587 artworks

from Brueghel’s workshop [2,36], selected 10 of the most

commonly repeated details, and annotated their 273 oc-

currences in the full dataset for evaluation. Note that

these visual patterns are near-duplicated but with var-

ious styles as artworks are in different media (e.g. oil,

ink, chalk, watercolor) and on different materials (e.g.

paper, panel, copper). In this paper, we provide ad-

ditional results on a collection of 25,681 depictions of

Venus [7]. It is more than an order of magnitude larger

and more diverse than the Brueghel dataset, with works

spreading over centuries and continents.

We demonstrate that both problems can be success-

fully addressed by leveraging the geometric consistency

of mid-level feature matches both for training features

and for scoring candidate correspondences. Our idea

can be seen as revisiting the geometric verification of

classical feature matches [66] for mid-level deep fea-

ture training and matching. More precisely, we pro-

pose a local matching score to compare pairs of images,

which combines spatial consistency and local feature

similarity. We also present a feature fine-tuning strat-

egy that can be used without any annotations or with

weak category-level annotations: we mine positive and

negative pairs using geometric verification and use them

to optimize a standard triplet loss.

We demonstrate experimentally that the proposed

local matching score provides important performance

gains for both tasks compared to global features, and

that our feature fine-tuning – without any annotations

on the Brueghel dataset and with weak category-level

supervision on the watermark dataset – further im-

proves the results. For example, on the challenging cross-

domain one-shot recognition over more than 16k fine-

grained watermark categories, for which average pool-

ing fails (0% accuracy), our local matching score us-

ing classification pretrained features achieves 45% ac-

curacy, and our fine-tuning further improves it to 55%.

Our code and data are available at our project page

http://imagine.enpc.fr/~shenx/HisImgAnalysi

s/.

2 Related work

In this section, we first discuss the use of mid-level

features for image recognition, then works related to

our two applications, artwork analysis and watermark

recognition.

http://imagine.enpc.fr/~shenx/HisImgAnalysis/
http://imagine.enpc.fr/~shenx/HisImgAnalysis/
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Mid-level features for image recognition. Recent work

analyzing the performance of CNNs [9,24] suggests that

they might ignore a large part of the spatial information

present in the image, and rather work in a way similar

to classical order-less bags-of-features methods [75,30,

80]. This might not be suitable for recognizing repeated

patterns such as watermarks and near-duplicated de-

tails in artworks, where the actual shape is key. To

build on the local features learned by CNNs but con-

sider spatial information, we follow an approach closely

related to the classic spatial verification step introduced

in Video Google [66] with SIFT features [43]. Rather

than using SIFTs, which we found were not adapted

to non-photographic depictions, we use intermediary

deep features, that can be thought of as mid-level image

features. Mid-level features [65,16,17] have been used

in cross-domain matching [5], video instance segmenta-

tion [76] and coarse parametric transformation estima-

tion [61]. Our feature fine-tuning also leverages the spa-

tial structure of images: thus, it is related both to self-

supervised feature learning methods that use spatial

information to learn deep visual features in images [18,

47] or videos [76,37], and to [58] that uses neighborhood

consensus to learn correspondences from the correlation

map. We adapted [58] to use as baseline.

Computer vision and art. There is a long-standing and

fruitful collaboration between computer vision and art.

On the synthesis side, promising results have been ob-

tained for transferring artistic style to a photograph

[33,23,81], or even trying to create art [21,32]. On the

analysis side, there are several efforts on the collec-

tion and annotation of large-scale art datasets [39,46,

49,78,68,44,48], and using them for genre and author-

ship classification [39,71,68] or fragment alignment [48].

Others focus on applying and generalizing visual corre-

spondence and object detection methods to paintings

using both classical [64,26,13,5,60], as well as deep [12,

14,77,28] approaches. In particular, Yin et al. [79] used

the same Brueghel data [2,36] as us and annotate it to

train detectors for five object categories (carts, cows,

windmills, rowboats, and sailboats). Beyond classifica-

tion, several projects have built search engines for art-

works [3,4]. An original and related approach was also

proposed by [38] to relate artwork by estimating human

poses rather than simply comparing abstract features.

Our work is also related to [73] which performs pattern

spotting in historical documents but for patterns with

little appearance change. To the best of our knowledge,

our work is the first to demonstrate a method capable of

detecting small copied details across different depiction

styles: this fine-grained analysis is the most relevant for

art historians, as it may allow them to discover influ-

ences, find provenance and establish authorship.

Historical watermark imaging and recognition. Manual

tracing and back-lit photography are two standard ways

to reproduce watermarks. Manual tracing [51,10] con-

sists in copying the watermark pattern on tracing pa-

per and was tyically used to create the classical cata-

logs of watermarks, which are nowdays aggregated in

online databases such as Briquet Online [1] which in-

cludes specifically the drawings from [10] we worked

with. Back-lit photography is the most common tech-

nique to acquire an actual photograph of a watermark.

While a watermark is often barely visible, placing it in

front of a light source and looking at the transmitted

light reveals it more or less clearly.

This cross-modality between the drawings and the

photographs one would like to identify, is one of the

main challenges of watermark recognition. Several stud-

ies have focused on localizing and extracting the pattern

of a watermark from a photograph [35,34,59], which

could potentially be helpful to match a photograph to

a database of drawings [56]. However, these approaches

are complex, not end-to-end and have not yet been

demonstrated on a large scale. Some works on water-

mark recognition focuse on drawings. [56] uses histogram-

based descriptors in a spirit similar to shape context [6],

while more recent works use machine learning approaches,

such as dictionary learning [50] or neural networks [52].

The study most similar to us is probably [52], that used

a non-publicly available database [22] to train a convo-

lutional neural network classifying 106,000 watermark

into 12 coarse categories.

3 Method

In this section, we start by introducing our similar-

ity score named “local matching score” which combines

spatial consistency and local feature similarity in Sec-

tion 3.1. Then, in Section 3.2, we detail our feature

learning strategies for both the weakly supervised and

the unsupervised scenario, which correspond to the two

applications focused in this work. Precisely, for water-

mark recognition, a small number of image-level an-

notations are accessible and watermarks are approxi-

mately centered. For artworks, no annotations are avail-

able. The overview of our feature learning strategies is

shown in Figure 2. Finally, we provide some implemen-

tation details in Section 3.3.
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(a) Candidates (b) Verification (c) Positives

Fig. 2: Mid-level feature learning with weak supervisions or without supervisions. (a) Our approach relies on

candidate correspondences obtained by matching the features of a proposal region (in red) to the full database.

(b) In case of category-level supervisions (top), we verify whether matched pairs belong to the same category and

their spatial difference is small. If no supervisions is available (bottom), the candidate correspondences are verified

by matching the features of the verification region (in blue, note that, to make the figure visible, the blue regions

are visualized as 5 × 5 squares while we use 10 × 10 squares in our algorithm.) of the query in the candidate

images and checking for consistency. (c) Finally, we extract features from the positive (in green) and negative (in

yellow) regions and use them to improve the features using a metric learning loss.

3.1 Local matching score

Let us assume we have access to a trained convolutional

neural network that we want to use to compare two im-

ages I1 and I2. The simplest solution is to use the simi-

larity between aggregated features, typically the cosine

similarity between average-pooled features for a ResNet

network. However, such features will completely discard

location information, which is likely not well adapted

for fine-grained differentiation between similar classes.

Another natural solution is then to consider convolu-

tional features and use the similarity between the re-

sulting descriptors. However, this gives the same im-

portance to all local features, while some might be dis-

criminative and others might not be, and this amounts

to comparing only convolutional features at the same

spatial location, i.e., assuming that the images are ex-

actly aligned. This is a strong assumption and is not

realistic in the cases we study: precisely centering and

scaling the watermarks is difficult and the copied de-

tails in artworks might have undergone some amount

of local deformation.

Thus, we propose a similarity metric to compare

a pair of images I1 and I2 which relies on matching

densely mid-level CNN features (e.g., conv4 in ResNet [31])

computed at different scales. To select only discrimina-

tive features, we check that they correspond to recipro-

cal matches and discard them otherwise. More formally,

for every local feature f i1 in I1, we first find its best

match in I2, f i2. We then check that it is a reciprocal

match, i.e. that the best match i.e. the best match in

I1 of f i2 is f i1 and we write M the set of all reciprocal

matches. We also write xi1 the position of f i1 in I1, and

xi2 the position f i2 in I2.

Assuming that the two images are approximately

aligned, which is true for example in the watermark

dataset, we define the local matching score S by com-

bining a Spatial Consistency score (SC) measuring the

similarity between the positions xi1 and xi2, and a Fea-

ture Similarity (FS) measuring the distance between f i1
and f i2:

S(I1, I2) =
∑
i∈M

e
−
‖xi1 − xi2‖2

2σ2︸ ︷︷ ︸
SC

s(f i1, f
i
2)︸ ︷︷ ︸

FS

(1)

where s is a feature level similarity – for which we

use cosine similarity in all of our experiments –, and σ

is a tolerance parameter.

If the images are not coarsely aligned, which is the

case for repeated details detection in artworks, we need

to further model the alignment between the two images.

We do so by estimating a parametric transformation T
between the images, using RANSAC on the set of re-

ciprocal matches M. We then compute the score:

S(I1, I2) =
∑
i∈M

e
−
‖T (xi)1 − xi2‖2

2σ2︸ ︷︷ ︸
SC

s(f i1, f
i
2)︸ ︷︷ ︸

FS

(2)

T is an Affine transformation and therefore has 6 pa-

rameters. Classical RANSAC is employed to estimate T
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: for each iteration, we sample 3 matches to compute a

candidate transformation ; a match is considered as an

inlier if its difference with the candidate transformation

is smaller than 2 in the feature space; the final trans-

formation is the one with maximum number of inliers

after 1k iterations.

3.2 Spatially-consistent feature learning

The overview of our feature learning strategies is shown

in Figure 2, which can be separated into three parts: 1.

searching candidates of training samples (Figure 2(a));

2. verification of candidates with weak category-level

supervision or no supervision (Figure 2(b)); 3. train-

ing on selected samples (Figure 2(c)). We first explain

the objective function we use to improve our features

in Section 3.2.1, then present how we sample candi-

date matches in Section 3.2.2. Finally, we detail how

to filter training samples in the candidate matches in

Section 3.2.3.

3.2.1 Hypothesis and objective function

Our goal is to improve local features for matching. Start-

ing with a standard pretrained deep feature extrac-

tor, we extract matching regions from the dataset that

we can then circle back and use to improve the fea-

tures. Our two key hypotheses are that: (i) our dataset

includes large parts of images that contain repeated

patterns, and (ii) the initial feature descriptor is good

enough to extract some positive matches. We follow a

metric learning approach. Assuming we have a set of

positive pairs P and a set of negative pairs N , we learn

our feature extractor f by minimizing a standard triplet

loss:

L(f) =
∑

(n1,n2)∈N

max(1− λ, s(f(n1), f(n2)))

−
∑

(p1,p2)∈P

min(λ, s(f(p1), f(p2))
(3)

where the similarity measure s is the cosine similarity

and λ is a hyper-parameter.

The main challenge for learning such features is defin-

ing the sets of positive and negative pairs. In the fol-

lowing sections, we show how to find these pairs in both

weakly supervised and unsupervised cases.

3.2.2 Candidates

We randomly sample several query features from each

image in the dataset and match them densely at every

P2 P4 P6 P8 P10 P12 P14

Fig. 3: Different region configurations. red: query re-

gions, blue: verification regions, green: positive regions.

scale to all the images in the dataset using cosine sim-

ilarity. This can be done efficiently and in parallel for

many queries using the normalized query features as

the weights of a convolution applied to the normalized

features. For each query, we select its top K matches in

the entire dataset as candidate correspondences (Fig-

ure 2(a)).

3.2.3 Verification

We now explain how we filter the positive and negative

pairs from these candidate local feature pairs both in

the case with and without image-level supervision.

Image-level supervisions In the case where image level

category labels are available, they can be used as a first

cue to select positive matches: they can only exist be-

tween images belonging to the same category. Further-

more, if we assume that the images are coarsely aligned,

as is the case for our watermark recognition problem,

we can additionally filter only matches that are spa-

tially consistent up to a given spatial threshold τ . This

threshold allows to take into account misalignment be-

tween the source and target images and we study its

influence in our experiments. Once a positive pair has

been identified, we look for hard negatives by matching

one of the positive features with all the photographs of

watermarks from other categories, and select the the

most similar feature as negative (Figure 2(b) top).

Unsupervised setting In the more challenging case where

no image-level label is available and spatial alignment

cannot be assumed, as in the case of repeated details

in art collections, we rely on spatial consistency to ver-

ify the quality of candidates: a match will be consid-

ered valid if its neighbors agree with it. More precisely,

let us assume we have a candidate match between fea-

tures from the proposal region p1 in image I1 and a

corresponding region p2 in image I2, visualized in red

in Figure 2(b) bottom. We define a verification region

around p1, visualized in blue. Every feature in this re-

gion is individually matched to image I2, and votes for

the candidate match if it matched consistently with p2.

Summing the votes of all features in the verification re-

gion allows us to rank the candidate matches. A fixed
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percentage of the candidates are then considered veri-

fied.

The choice of the verification region is important to

the verification step. The key aspect is that the features

in the verification region should be, as much as possible,

independent of the features in the proposal region. On

the other hand, having them too far apart would reduce

the chances of the region being completely matched.

For our experiments, we used the 10x10 feature square

centred around the query region.

Finally, given a set of verified correspondences, we

have to decide which features to use as positive train-

ing pairs (Figure 2(c) bottom). One possibility would

be to directly use features from the proposal region,

since they have been verified. However, since the pro-

posal region has already been “used” once (to verify the

matches), it does not bring enough independent signal

to make quality hard positives. Instead, we propose to

sample positives from a different positive region. We

evaluated different configurations for the positive re-

gion, as visualized in Figure 3 (in green). We choose to

keep only 4 positive pairs per verified proposal, posi-

tioned at the corners of a square and denote the differ-

ent setups as P2 to P14, the number corresponding to

the size of the square. We will show in the experiments

(Section 5.2) that P12 and P14 perform better than

the alternatives. The features from the positive regions

(Figure 2(b) bottom in green) are then used as hard

positives for feature fine-tuning (Figure 2(c) bottom).

For a given positive pair, we extract top-N closest

features from the same image as negatives. This selects

hard negatives and avoids any difference in the distribu-

tion of the depiction styles in our positive and negative

samples. We chose a relatively high number (N = 20)

of negatives to account for the fact that some of them

might actually correspond to matching regions, for ex-

ample, in the case of repeated elements, or to locations

near the optimal match.

3.3 Implementation details

In all of our experiments, we used conv4 features of the

ResNet-18 [31] architecture and train the models with

the Adam [41] optimizer with learning rate 1e-5 and

β = [0.9, 0.99]. For both applications, we use K = 10

candidate matches for each query.

For fine-tuning on watermark datasets, the initial

features are pretrained on our classification dataset (see

Section 4.1). The hyper-parameter λ is set to 1. Since

the watermarks might be flipped and rotated with re-

spect to the references, we consider matches with four

rotated (0◦, 90◦, 180◦, 270◦) reference images and their

flipped versions. Each source image was resized to 352×352

so that it was represented by 22×22 features. To be ro-

bust to scale discrepancies, we matched the source fea-

tures to features extracted from the target image resized

at five scales, corresponding to square features of widths

16, 19, 22, 25 and 28. Using a single Geforce GTX 1080

Ti GPU, training converged in approximately 2 hours

For learning features on art collections, the initial

features are pretrained on ImageNet [15]. The hyper-

parameter λ is set to 0.8. Since repeated patterns might

have large scale differences in different artworks, we

used 7 different scales ranging from 20 to 80 features

in the largest dimension, regularly sampled on two oc-

taves with 3 scales per octave. From these candidates,

the top 10% with the most votes from neighbours were

considered verified. Note that these parameters might

need to be adjusted depending on the diversity and size

of the dataset, but we found that they performed well

for the Brueghel data [2]. Using a single GPU Geforce

GTX 1080 Ti, the training converged in approximately

10 hours.

4 Experiments on watermark recognition

In this section, we provide experimental results on wa-

termarks recognitions. We first introduce the datasets

we used, then present detailed results and analysis of

the proposed local matching score and the proposed

feature learning strategies.

4.1 Datasets

In this section, we explain how we created datasets to

evaluate (A) one-shot and (B) cross-domain water-

mark recognition in the case where the watermarks are

coarsely aligned. In the supplementary material avail-

able on our project page, we explain in detail the def-

inition of classes and preprocessing procedures. More

samples can be found in the project page.

Dataset A The goal of this dataset is to train and evalu-

ate methods for one-shot fine-grained watermark recog-

nition from photographs. It thus only includes pho-

tographs and is split into two parts: a first part that

can be used for feature training or meta-training, with

many examples of each watermark, and a second part,

with few examples, to evaluate one-shot recognition.

We first created dataset A-classification by col-

lecting 50 training and 10 validation images for 100

watermarks, which we found was large enough to per-

form pre-training / meta-training of CNNs. Examples

of images from the same class are given in Figure 4(a).
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(a) Samples from the same class in A-classification

(b) Clean references (top) and associated test sample (bot-
tom) in A-one-shot

(c) Photograph (d) Drawing (e) Synthetic

Fig. 4: Images in watermark datasets: (a) Samples from

the same class in A-classification; (b) three categories

in A-one-shot. (c) - (e): Photograph, Drawing and Syn-

thetic in B-cross-domain.

We then collected dataset A-one-shot with 100 other

test classes, each made of 3 photographs: one ‘clean’ im-

age without any writing and two standard test images.

We used ‘clean’ images as references for fine-grained

one-shot recognition, as they are representative of what

archivists typically collect as reference images and al-

low us to ensure that recognition is not related to the

writing style of the document. We show examples from

three different categories in Figure 4(b) of references

and and associated test images. Note that some chal-

lenges can be directly seen from the examples: (i) many

of the training and testing examples are cluttered and

in poor condition, and (ii) some testing categories are

highly similar.

Dataset B An important challenge is to use the draw-

ings from existing watermark catalogs to perform recog-

nition. Indeed, collecting watermarks and information

for such catalogs is a very tedious and expensive work.

We focused on the Briquet catalog [10,1]. The avail-

able images include additional information, such as IDs

of watermarks, paper line positions, or complementary

marks that can be found at another position on the pa-

per sheet. Such information is valuable to experts, but

cannot easily be used in an automatic recognition sys-

tem based on a single photograph. We thus extracted

the main part of the watermarks whenever it was clear

and ended up with 16,753 drawings that could be used

as references for photograph recognition. Examples of

these drawings can be seen on the project page.

The challenge that we want to evaluate on this dataset

is to recognize photographs in a drawing database. We

thus collected dataset B by searching the original archives

that provided the material for the Briquet catalog [10],

in a specific city (Paris) and collected photographs for

240 classes (see examples in Figure 4(d)). We use 140

classes with a total of 463 photographs as training and

keep the remaining 100 classes with 2 photographs in

each class for testing. Because comparing photographs

(Fig. 4(c)) directly with a line drawing (Fig. 4(d)) as a

reference is very challenging, we also report results us-

ing a synthetic image generated from the drawing sim-

ply by using the average watermark color as background

and making the drawing pattern lighter (Fig. 4(e)). In

our experiments, we first compare the methods for 100-

class one-shot cross-domain classification and then give

the results for the even more challenging 16,753-class

classification. In the following sections, we refer the 100-

class one-shot cross-domain classification as the task on

the dataset B. The 16,753-class classification is the

task on Briquet.

4.2 One-shot cross-domain recognition

In this section, we present results on the one-shot recog-

nition on the dataset A-one-shot and one-shot cross-

domain recognition on the dataset B. In all experi-

ments, we use a network pretrained on A-classification

(100 classes, 50 training and 10 validation images for

each class). The best performances were obtained with

a strong dropout (0.7 ratio), which is not surprising

given the relatively small size of our dataset. The vali-

dation accuracy is 98.8%, the mis-classified images be-

ing only very difficult or ambiguous cases, which shows

that our 6k images dataset was large enough to train a

good network for fine-grained watermark classification.

Comparison to one-shot recognition methods On dataset

A-one-shot, which does not include any domain shift,

we compare our method with some one-shot recognition

methods:



8 Shen et al.

Method \ Features AvgPool Concat Local. Sim.
Resolution 256 352 256 352 256 352
Baseline 69 78 74 86 75 81
Cosine Classifier [53,25] 84 83 82 80 84 82
Matching Networks [74] 74 76 76 78 82 84
Weights Prediction [25] 86 83 84 - 85 -
Ours Resolution 256 85
Ours Resolution 352 90

Table 1: Comparison with one-shot recognition ap-

proaches on dataset A-one-shot (200 images to classify

in 100 categories unseen during training and described

by a single ‘clean’ image). Accuracy in %. Our score

based on local matches clearly outperforms all base-

lines.

– Baseline: directly using the features learned by train-

ing a network on the classification task and comput-

ing the dot-product as the distance between classi-

fication weights and features.

– Cosine Classifier : [25,53] have shown that the per-

formance of the baseline can be improved if the dot-

product operation (between classification weights and

features) in the last linear layer of the network is re-

placed with the cosine similarity operation.

– Matching Networks: we tried the metric-learning ap-

proach of Matching Networks [74], performing meta-

training to solve one-shot recognition tasks using a

differentiable nearest-neighbor-like classifier.

– Weights Prediction: the one-shot recognition approach

of Gidaris and Komodakis [25]. The key insight is

that the novel class weights have two components:

i) average features of annotated samples; ii) lin-

ear combinations of the base class weights, which

are meta-learned during the training. It uses a fea-

ture extractor learned with a cosine-similarity-based

classifier which remains frozen during the meta-training

procedure.

For each feature, we report three different similari-

ties:

– AvgPool: cosine similarity using the average pooled

features.

– Concat: cosine similarity on the descriptor formed

by the concatenation of all the spatial features.

– Local Sim.: computing the cosine similarity over each

local feature individually, then averaging.

For all baselines, we report the best performance

over conv4/conv5 features. The optimal parameters and

training strategy for each baseline and a qualitative

analysis of our results are reported on the project page.

The results are in Table 1, our local matching score

leads to 85% accuracy for 256 × 256 images, which is

close to the best one-shot approach, Weights Predic-

tion [25], but without any specific feature learning. This

demonstrates the interest of our local matching score

Method A B-4(d) B-4(e) Time (s / Query)
Exact features comparison

AvgPool 78 4 12 1
Concat 86 55 61 2
Local Sim. 81 56 65 2

Our local matching score
Ours 90 66 72 15

Table 2: Comparison of our local matching score (eq. 1)

with alternative feature similarities. Accuracy in % for

one-shot recognition on dataset A-one-shot (A column)

and one-shot cross-domain recognition on dataset B us-

ing either the drawing (B-4(d)) or our synthetic image

(B-4(e)).

for one-shot fine-grained watermark recognition. The

performance can further be boosted to 90% by resizing

images to a larger resolution, 352×352 pixels, which was

not possible for Weights Prediction for very large fea-

tures due to computational cost. This is clearly above

the performances of the other methods.

Comparison of feature similarities for one-shot cross-

domain recognition In Table 2, we compare our local

matching score (eq. 1) with alternative feature similar-

ities on our two datasets. On dataset B, we use either

the drawing (B-4(d)) or our synthetic image (B-4(e)) as

reference. We always used the features trained for clas-

sification on dataset A-classification, and compare on

each dataset to the similarities described in the previ-

ous paragraph (AvgPool, Concat, and LocalSim.). Our

local matching score consistently outperforms all these

baseline similarities. In our naive implementation, our

approach is slower than direct feature comparison, but

both can be mixed to obtain fast results on very large

datasets.

4.3 Learning features for cross-domain recognition

We now focus on cross-domain recognition. We first

compare our approach with different feature training

strategies on our dataset B. We scale our watermark

recognition method to the full Briquet catalog, show-

ing we can perform classification with more than 16k

classes.

Feature fine-tuning In Table 3, we compare the results

from our fine-tuning strategy to different baselines:

– Unsupervised (translation): in a spirit similar to [70],

we translated the features in our target domain so

that, on our training set, they have the same mean

as the features from the target domain. We then use

our score to perform nearest-neighbor classification.
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Method B-4(d) B-4(e)
w/o Fine-tuning 66 72
Unsupervised (Translation) [70] 63 70
Supervised (Affine) [45,54] 64 72
Randomization [69,42] 53 75
Triplet-loss 64 65
NC-Net [58] 61 65
Ours (unsupervised) 60 71

Our weakly supervised fine-tuning
τ = 0 65 72
τ = 1/22 75 81
τ = 3/22 75 83
τ = 5/22 73 77
τ = inf 61 74

Table 3: Accuracy (in %) on one-shot cross-domain

recognition with different feature fine-tuning ap-

proaches. τ is the hyper-parameter to constraint the

misalignment of matches (Sec. 3.2.3). τ = 3/22 indi-

cates we tolerates a difference of 3 features while the

entire feature map is 22×22. We experiment with dif-

ferent reference images (“B-4(e)” : synthetic image ;

“B-4(d)” : drawing). Note that all the approaches ex-

cept NC-Net [58] use local matching score

– Supervised (affine): since we have aligned images

from both domains, we can adapt features from the

source and target domains in a supervised way, simi-

larly to [45,54]. We found that a simple affine adap-

tation gave the best results, likely because of the

small size of our dataset.

– Randomization: we also report results using ran-

domized generated synthetic images from the draw-

ings. The randomized synthetic image S are gener-

ated by computing S = B + R × (G ∗ E), where B

is a background sampled from photographs of pa-
per without watermarks, G is a Gaussian filter, R

is a random image and E is the binary watermark

pattern extracted from the drawing. Generated im-

ages can be found in the supplementary material.

We trained a standard classifier on the generated

images. Such an approach has been shown to be

very successful for example for 3D pose estimation

[69,42].

– Triplet-loss: similarly to our method, we tried to

improve the features using a triplet loss on local

features, but using as positive all aligned features in

the images from the same category.

– NC-Net [58]: while it was not initially designed for

domain adaptation, we trained NC-Net on our database

because of the intuition that, similarly to our method,

it is able to learn to leverage spatial information. We

use our pre-trained ResNet for the feature extractor

and freeze it during the training. The other parts are

kept the same as the category level matching model

proposed in [58]. The positive pairs are composed

Method
Briquet-4(e) Briquet-4(e)+Fine-tuning

acc.@1 acc.@1000 acc.@1 acc.@1000
AvgPool 0 16 0 21
Concat 27 77 29 82
Local Sim. 28 80 28 83
Ours N=1000 45 80 54 83
Ours N=inf 44 86 55 91

Table 4: Top-1 and top-1000 accuracy on our Briquet

dataset with different models (“Briquet-4(e)” : model

trained on classification on dataset A-classification ;

“Briquet-4(e)+Fine-tuning” : fine-tuned model). Our

approach first applies Local Similarity to obtain N top

ranked references and then uses our score to re-rank the

N references.

with one image from each domain, which results in

463 pairs in the training set. The training converges

in 20 epochs. We then consider the sum of the scores

over all correspondences as the score between a pair

of images.

We detail these approaches and the training details

in the supplementary material available in our project

website. All results except for NC-Net are reported for

matching done with our local matching score – using

other metrics leads to worse performance. The effective-

ness of this metric might be the reason why standard

domain adaptation approaches only marginally improve

performances over the baseline. Another possible reason

is the small size of our training set (463 photographs,

140 references). On the contrary, our fine-tuning strat-

egy boosts performances by a clear margin.

Large-scale recognition on Briquet We finally evaluate

one-shot cross-domain recognition using the test pho-

tographs of our dataset B and our full curated version

of the Briquet dataset as reference. This comparison

with 16,753 fine-grained classes is very challenging, but

also corresponds to a realistic scenario for watermark

recognition. We use our synthetic images (Figure 4(e))

to represent the drawings. Table 4 shows the top-1 and

top-1000 accuracy using the different baseline similari-

ties described in Section 4.2. Since our local matching

score is computationally more expensive than the base-

lines, we evaluate a two-step procedure for recognition:

for each test photograph, we first select the top-N can-

didate classes using Local Sim., then re-rank them us-

ing our local matching score. Since the local similarity –

i.e. averaging the cosine distance between the local fea-

tures over the images – yields the best results, we use it

to perform the first step of selection. Using N = 1000

leads to performances similar to directly applying our

method to the full 16,753 classes.

Ranking the reference drawings with Local Similar-

ity takes approximately 3s and reranking the top-1000
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(a) Query (b) 1st Match (c) 2nd Match (d) 3rd Match

Fig. 5: Top-3 matches retrieved with our approach with

synthetic reference (Figure 4(e)) on Briquet dataset

(16,753 categories). For all the four queries, our ap-

proach is able to recognize the correct categories.

with our local matching score takes 37s on a single GPU

Geforce GTX 1080 T. This is acceptable for practical

use, and we thus believe the application of our algo-

rithm will be a game-changer and widen considerably

the potential use of watermark analysis, which until

now has been limited to a small number of experts.

Web application The ultimate goal of watermark recog-

nition is to develop an application to simplify the search

of watermarks. We developed a first version of such a

web application [8] which can be accessed at https:

//filigranes.inria.fr/.

Qualitative results Typical examples of top-3 matches

with synthetic references (Figure 4(e)) are shown in Fig-

ure 5. Although the task is challenging, as some queries

are cluttered and some other categories are highly sim-

ilar to the ground-truth, our approach allows to recog-

nize the correct categories. Note that more visual re-

sults can be found in the project page.

5 Experiments on one-shot art pattern

detection

In this section, we present results on one-shot art pat-

tern detection. We first introduce the datasets we used,

then present detailed results on one-shot detection on

Brueghel [2] dataset. We finally show qualitative re-

sults on the Venus dataset.

5.1 Datasets

Brueghel The Brueghel [2] dataset contains 1,587 art-

works done in different media (e.g. oil, ink, chalk, wa-

tercolour) and on different materials (e.g. paper, panel,

copper), describing a wide variety of scenes (e.g. land-

scape, religious, still life). This dataset is especially

adapted for our task since it assembles paintings from

artists related to the same workshop, who thus had

many interactions with each other, and includes many

copies, preparatory drawings, and borrowed details.

With the help of our art history collaborators, we

selected 10 of the most commonly repeated details in

the dataset and annotated the visual patterns in the

full dataset using the VGG Image Annotator tool [19].

The 10 annotated patterns can be seen in Figure 6 as

queries (blue boxes), and our full annotations can be

found in the project page. We were careful to select di-

verse patterns, and for each of them to annotate only

duplicates, and not full object classes. Note for exam-

ple, that for the horses and lion classes, we annotated

separately two variants of the details (front and back

facing lion, front and right facing horse). This resulted

in 273 annotated instances, with a minimum of 11 and

a maximum of 57 annotations per pattern.

These annotations allow us to evaluate one-shot du-

plicate detection results. In our evaluation, we use an

IoU threshold of 0.3 for positives, because precise anno-

tations of the bounding boxes in different environment
is difficult and approximate detection would be suffi-

cient for most applications. In practice, our detected

bounding boxes, visualised in Figure 6 (green boxes)

often appear more consistent than the annotations. We

compute the Average Precision for each query, aver-

age them per class and report class level mean Average

Precision (mAP).

Venus To demonstrate the generality of our approach,

we show results on a very different database, containing

25,681 depictions of Venus [7]. This database is much

larger than the Brueghel database and more diverse

since it includes depictions from many different peri-

ods and very diverse styles. Because it is thematic, it

however includes many cases of revisited artwork and

artistic citations. It is thus much better suited to our

purpose than standard artwork databases. The size and

diversity of the database makes annotation unpracti-

cal, but we report qualitative results which demonstrate

matches of interest beyond the case of copied details.

https://filigranes.inria.fr/
https://filigranes.inria.fr/
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Fig. 6: Detection example with our trained features on the Brueghel dataset. We show the top 5 matches (in

transparency) as well as the annotations (green bounding box) for one example of query from each of our 10

annotated categories. Notice how the style of the matches can be different from the one of the query.

Feature \ Method Cosine similarity Local matching
ImageNet pre-taining 58.0 54.8
Context Prediction [18] 58.8 64.29
Ours fine-tuning 75.3 76.4

Table 5: Experimental results on Brueghel, IoU > 0.3.

5.2 One-shot detection

We evaluated our feature learning strategy using one-

shot detection mainly on the Brueghel dataset which

was small enough to be manually annotated. We per-

formed one-shot detection simply by computing dense

features on the dataset and computing their cosine simi-

larity with the features corresponding to the query. The

query was resized so its largest dimension in the feature

map would be 8. Note that unlike standard deep detec-

tion approaches [27,57], we do not use region proposals

because we want to be able to match regions which do

not correspond to objects.

Comparison and analysis. We compare one-shot detec-

tion performance with different features using both co-

sine similarity and the score described in equation 1.

In Figure 8 we show an example of the top-6 matches

for the same query using different approaches. In the

first line, the matches obtained with the cosine similar-

ity between features trained on ImageNet are all from

styles similar to the style of the query, and while three

of them include horses, they are not in the same pose

as the query. On the contrary, the matches with our

trained features, shown on the second line, mainly as-

sociate horses in the exact same position, including in

depictions with different styles. Finally, the results with

the same trained features but using the local matching

0 30000
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Fig. 7: Evolution of the mean Average Precision for one-

shot matching on the Brueghel dataset during training.

Performance decreases after a few iterations for settings

where we extract positive regions correlated with the

proposal region.

score, shown on the third line, show a slight improve-

ment.

The corresponding quantitative results are presented

in Table 5 and confirm these observations. Indeed, learn-

ing our features improves the score by approximately

30%. The discovery procedure and score provide an ad-

ditional boost.

Positive region configuration. We now focus on evalu-

ating the different positive region settings described in

Section 3.2.3 and Figure 3. For each of them, we analyse

the performance of the features on one-shot learning on

the Brueghel dataset and its evolution during training.

The results can be seen in Figure 7. Interestingly, the

performance always initially improves over ImageNet

features. However, when the positive region is close to

the proposal region, the performance decreases after

some iterations of our training procedure and ends up
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(a)

(b)

(c)

Fig. 8: From a single query, shown on the left, we show

the detection results obtained with cosine similarity

with ImageNet feature (a) and our trained features (b)

as well as the ones (c) obtained with our features and

the local matching score presented in Section 3.1.

Fig. 9: Visualizing matched correspondences between a

pair of images during training.

with worse performance than the initial features. How-

ever, if the positive region is far enough from the query

(P12 and P14), the performance improves much more

and does not subsequently deteriorate. We thus use P12

for all our other experiments.

Training visualization. To visualise the influence of the

feature training for our discovery task, we selected a

pair of matching images from the Brueghel dataset and

visualised the the inlier set I (defined in equation 1) at

different steps of training in Figure 9. During training,

larger and larger parts of the images can be matched in

a consistent way. This shows both the efficiency of our

feature training and its relevance for our task.

Qualitative results. Qualitative results using our ap-

proach for each of the 10 details we annotated on the

Brueghel dataset are shown in Figure 6. It gives a sense

of the difficulty of the task we target and the qual-

ity of the results we obtain. Note for example how the

matches are of different styles, and how the two types

of lions (top row) and the two types of horses (bottom

row) are differentiated. In the following, we compare

these results with baselines and analyze the differences.

In Figure 10, we show qualitative results on the

Venus dataset. In this case, the retrieved images might

not be exact copies but sets of works that revisit at

different periods the same model, sometime borrow-

ing only part of the works and keeping details, such

as Flora from the Primavera from Botticelli in the last

row, sometime focusing on the composition such as for

La Venus del espejo from Velázquez in the 7th row. Note

how our method is able to retrieve relevant results in all

of these cases, despite strong variations. These results

showcase the interest of our method for Art Historians

to explore such collections where one can hardly expect

exhaustive annotations and meta-data.

Limitations Our method has several limitations. First,

the approach need to compare image pairs, which is not

possible for fast retrieval applications. Second, in both

applications, our feature learning strategy requires a

good feature initialization. For watermark recognition,

we start from features learned from A-classification. For

artwork detection, we start from ImageNet [15] pre-

trained features.

6 Conclusion

In this paper, we have introduced two cultural heritage

applications and associated datasets: watermark recog-

nition and one-shot repeated art pattern detection. We

have presented a unified mid-level feature training and

matching method for both applications. We showed that

the proposed local matching score clearly improves over
standard feature similarities and that our mid-level fea-

ture fine-tuning approach can further boost performances

on both tasks.
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