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Highlights 

• Handwriting of 1st graders is influenced by both orthographic and motor constraints 

• Motor and spelling processes interact from the beginning of handwriting acquisition 

• This calls into question the relevance of evaluating them separately 

 

 

Abstract 

We investigated the combined effects of orthographic and graphomotor constraints as a 

function of handwriting proficiency in children. Twenty-four first graders, 20 third graders, 

and 21 fifth graders wrote single five-letter words in cursive writing on a sheet of paper 

affixed to a digitizing tablet. The words were chosen according to two orthographic 

constraints, namely their lexical frequency and the graphemic complexity of the last three 

letters, and one graphomotor constraint resulting from the motor difficulty of tracing the first 

letter. In addition to massive improvements of handwriting with grade, the results revealed, 

in the youngest group only, an interaction between first-letter difficulty and lexical frequency. 

This finding suggests that, before handwriting movement becomes automated, the cognitive 

resources needed for retrieving word spelling interferes with motor processing while writing a 

difficult letter. When students start learning to write, they are particularly sensitive to the 

combination of orthographic and graphomotor constraints.   

 

Keywords: handwriting; acquisition; spelling; motor control; delayed copy  
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1. Introduction 

Learning to write words constitutes a double challenge: students have to learn both 

how to spell the words and how to trace the letters. The aim of this study was to find out 

whether the effect of orthographic constraints associated with word spelling is combined 

with the effect of graphomotor constraints associated with letter formation during 

handwriting acquisition, in primary school students. The term “constraints”, which will be 

used throughout this article, is considered from a generic perspective: it refers to factors, or 

situations, which have an adverse effect on performance. Orthographic constraints 

modulate spelling processes, independently of the motor output (e.g., typing, oral spelling, 

or handwriting). Here, two orthographic constraints were investigated: a) lexical frequency, 

and b) letter-sound relationships inside the word, as indexed by the graphemic structure. 

Graphomotor constraints refer to factors that influence the motor processes involved in 

controlling handwriting movements, independently of the linguistic content (e.g., at high 

speed or with eyes closed). Here, we studied the graphomotor constraint arising from motor 

difficulty in letter formation. 

In adults, the relationship between spelling and graphomotor processes has first been 

considered in van Galen’s model (1991), which proposes parallel processing between 

spelling (high-level) and graphomotor (low-level) modules in which “higher modules are 

further ahead to real-time output than lower modules” (p. 182). This vision has been refined 

in the parallel and cascading model of writing (Olive, 2014), where the dynamics of parallel 

processing is flexible according to the cognitive resources that have to be allocated to either 

spelling or graphomotor control. This idea has been tested by Lambert and colleagues 

(2011), who investigated handwriting in adults who were copying series of words that varied 

in lexical frequency and orthographic regularity (e.g.: FEMME (/fam/, woman is irregular in 

French because the spelling does not respect the most frequent phoneme-grapheme 

conversion corresponding to /a/ = A). From the combined analysis of eye and pen 

movements, the authors identified periods during which participants searched for visual 

information about the template (the word to be copied) while writing the previous word 

(meaning that they were processing spelling and graphomotor aspects of the task in a 

parallel and cascaded fashion). They observed that the extent of parallel processing 

depended on the orthographic constraints of the word being written: planning the next 



4 

word ahead while writing was more probable when the current word being written was 

frequent and regular, thus confirming the parallel and cascaded account.  

 

The relationship between spelling and graphomotor processes has also been 

investigated through the study of the effects that orthographic constraints exert on 

handwriting movements (e.g., Delattre, Bonin & Barry, 2006; Kandel, Álvarez & Vallée, 2006; 

Kandel & Perret, 2015; Lambert, Alamargot, Larocque, & Caporossi, 2011; Roux, McKeeff, 

Grosjacques, Afonso, & Kandel, 2013). The basic assumption of these studies is that factors 

that impact the retrieval of the word’s spelling (e.g., lexical frequency or orthographic 

regularity) also impact the motor processes involved in the control of handwriting 

movements.  Several indexes calculated from the time-course of the pen trajectory can be 

used to characterize the efficiency of handwriting behavior (duration, velocity, pauses...). For 

instance, in a single word copy task, Roux and colleagues (2013) found that letter duration 

was longer for irregular than for regular words. This convincingly shows that handwriting 

movement can be impacted by the orthographic constraints imposed by the words being 

written.  

In children, it has been shown that spelling processing changes during the acquisition 

of handwriting. Humblot, Fayol and Lonchamp (1994) evaluated the performance of Grade 1 

and Grade 2 students in a copy task where words varied in frequency and regularity. They 

concluded that the acquisition of handwriting starts with a letter-by-letter planning, then a 

syllable-by-syllable planning, and ends with a whole-word planning when the word is 

frequent. In order to assess whether this evolution affected graphomotor processes, Kandel 

& Perret (2015) investigated the effects of word frequency and orthographic regularity on 

word production in students from Grade 3 to Grade 5. They observed that both variables 

affected handwriting execution in all groups in such a way that the writing of words with 

high orthographic constraints (irregular or infrequent) took longer than that of words with 

low orthographic constraints (frequent or regular). To go a step further, Afonso, Coalla, 

González-Martín and Cuetos (2018) studied the effect of word frequency on handwriting 

duration in both a spelling-to-dictation task and a copy task in Grade 2, 4, and 6 students. 

Interestingly, the authors observed that the effect of frequency decreased with the mastery 

of handwriting: it was significant in grade 2, marginally significant in Grade 4 and 
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disappeared in Grade 6. This suggests that although students’ handwriting is generally 

sensitive to orthographic constraints, improvement of handwriting with development and 

practice allows a more independent management of spelling and motor processes. 

Another important orthographic constraint seems also to draw on information about 

letter-sound relationships as indexed by the graphemic structure (e.g., Kandel & Spinelli, 

2010; Spinelli, Kandel, Gueressimovitch, & Ferrand, 2012). In French, at least 34 complex 

graphemes, composed of more than one letter, have been identified (Catach, 1995). Kandel 

& Spinelli (2010) compared the handwriting of words containing simple graphemes (e.g., E in 

SET) to words containing complex graphemes (e.g., E in SEA for a two-letter grapheme). They 

observed that both the target letter (e.g., E) and the preceding letter (e.g., S) took more time 

to be written in the case of complex graphemes. They concluded that the processing of 

graphemes starts before the actual production of the grapheme and remains activated in 

parallel with motor processes during the execution of handwriting. This finding was 

extended to first graders who had not yet mastered handwriting (Kandel, Soler, Valdois & 

Gros, 2006). 

From a motor point of view, writing by hand requires a sophisticated coordination of 

the muscles and joints recruited in order to form letters consistently as quickly as possible. 

Graphomotor skills are acquired through one of the longest and most tedious motor learning 

processes known to humans. In early stages of learning to write, students program their 

movements stroke-by-stroke until the letters are learned and stored in long-term memory in 

motor programs (Séraphin Thibon, Gerber & Kandel, 2018). This leads to the question of 

what motor constraints are, and how they influence performance during the acquisition of 

handwriting. This question has been explored using tasks in which students had to change 

their handwriting size, velocity, or script. In 2008, Chartrel & Vinter observed that issuing 

instructions to write between horizontal lines and to increase speed facilitated the formation 

of associations between the strokes of a letter and thus benefited students of 5-7 years of 

age learning to write. Between 5 and 12 years, Bo, Barta, Ferencak, Comstock, Riley and 

Krueger (2014) showed that printed letters tended to be written with a higher consistency 

than cursive letters. In both dyslexic and typically developing children, Pagliarini et al. (2015) 

showed that writing a word with cursive letters turned out to be generally more challenging 

than writing it with upper-case letters. The authors suggested that the late introduction of 
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cursive training in the Italian educational system might explain this result. Furthermore, 

typically developing children, when asked to write big letters or to write quickly, modulated 

their handwriting movements to maintain the absolute and relative duration of letters 

(isochrony and homothety principles) whereas children with dyslexia failed to do so 

(Pagliarini et al., 2015).  

Graphomotor constraints also result from the motor difficulty arising from the 

formation of a letter. Jolly, Huron and Gentaz (2014) analyzed the handwriting of the 26 

letters of the Latin alphabet in students followed from preschool, to mid- and end- of the 

first Grade and second Grade. The results showed a wide variability across letters regarding 

the students’ motor performance and progress. This variability may be explained by the 

biomechanical constraints of the effector and coordination dynamics (e.g., Kelso, 1995) that 

determine a preferential direction of rotation (Meulenbroek, Vinter & Mounoud, 1993), 

preferential orientations (Dounskaia, Van Gemmert and Stelmach, 2000), and preferential 

curvatures (Athènes et al. 2004) in the formation of the written trace. Finally, the rotation 

and pointing movements (pen lifts) involved in letter formation are also of interest. Recently, 

Seraphin-Thibon et al. (2019) studied the developmental trajectory of students' 

graphomotor skills as a function of the characteristics of upper-case letters, involving either 

pointing or rotation movements. They observed that letters with rotations were produced 

with more velocity peaks (an index of movement dysfluency) and a longer duration than 

letters with straight strokes and pointing movements.  

To sum up, the reported literature indicates that 1) the processing of the orthographic 

content of words has an impact on the production of writing in adults and children, and 2) 

strong graphomotor constraints related to writing conditions and letter complexity also 

influence handwriting movements in children. But to our knowledge, the combined effect of 

orthographic and graphomotor constraints during handwriting acquisition has not yet been 

investigated. One study explored this question in adults: Sausset, Lambert, Olive and 

Larocque (2012) manipulated graphomotor constraints through letter case (upper- / lower-

case), visual control (with / without), and letter size, and also an orthographic constraint 

through the number of syllables in the words, considered as processing units involved in 

spelling processing (Kandel, Peereman, Grosjacques, & Fayol, 2011). They observed that 

when graphomotor constraints were high, the writers took longer pauses between syllables, 
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indicating that each syllable was processed directly before its actual production. When they 

were low, the syllable processing took place before the onset of writing. This demonstrates 

that the dynamics of spelling and motor processes vary as a function of both orthographic 

and graphomotor constraints in adults.  

 The present study aimed to investigate the combined effect of orthographic and 

graphomotor constraints on handwriting in students who are learning to write. We asked 

students at different levels of handwriting proficiency (in Grades 1, 3, and 5) to write single 

words, without the presence of the template (the word to be copied). We manipulated both 

the graphomotor constraints associated with the difficulty of tracing the first letter, and two 

orthographic constraints: the word’s lexical frequency, and the graphemic complexity 

associated with the last letters. We tested the interaction between these constraints in the 

different level groups. Knowing that both orthographic (Afonso et al., 2018) and 

graphomotor (Séraphin Thibon et al., 2018) constraints are larger in students who do not yet 

master handwriting, we hypothesized that the interaction between the two types of 

constraints would be larger in younger than in older students. We assume that the younger 

students will produce a slower and less fluent movement when tracing a difficult letter in a 

complex or infrequent word than when only one of the two types of constraints is present 

(tracing an easy letter in a complex or infrequent word or tracing a difficult letter in a simple 

or frequent word). In order to quantify and compare the graphomotor constraint, we 

conducted a pre-experiment in which Grade 1 students were asked to copy bigrams in 

cursive. The aim was to select two letters, respectively representative of high and low 

graphomotor constraint for students who are at the beginning of cursive acquisition. 

 

2. Pre-experiment: Characterizing graphomotor constraints 

2.1. Methods 

2.1.1. Participants 

Nineteen students in Grade 1 volunteered for the experiment (6;8 years; 8 girls; 3 left-

handers for handwriting). Students who were receiving intervention for reading and/or 

writing difficulties were not included, neither were students who had resumed or skipped a 

school grade. The students had normal or corrected-to-normal vision. This study was 



8 

conducted between March and April and in accordance with local norms and guidelines for 

the protection of human subjects. This research was approved by the local educational 

authorities, the school directors, and the teachers. Furthermore, parents signed an informed 

consent sheet prior to the experiment. 

 

2.1.2. Task 

The experiment was conducted individually at school, in a quiet classroom. After a 

quick familiarization task consisting of writing their first name, students were asked to write 

isolated bigrams in cursive handwriting on a white sheet of paper affixed to a digitizing 

tablet (Wacom Intuos 4L, sampling frequency 100 Hz), using an inking pen. Each bigram was 

presented on a small white paper (5 x 7 cm label) in lowercase cursive letters (Cursive 

standard font, font-size: 44) and the template remained present until the student had 

finished writing the bigram. Students were asked to write at their usual speed. No time limit 

was applied during the task and the presentation order was randomized between students. 

For data acquisition, we used JAVA software developed in the laboratory. 

 

2.1.3. Stimuli 

Eleven consonant-vowel bigrams were selected for the task. Only the consonant varied 

between the bigrams, the vowel was identical for all conditions (letter ‘i’) to avoid possible 

motor anticipation on the first letter, a known phenomenon in cursive handwriting 

(Orliaguet, Kandel & Boë, 1997). The selected consonants were: ‘b’, ‘c’, ‘f’, ‘g’, ‘l’, ‘m’, ‘p’, ‘r’, 

‘s’, ‘t’, and ‘v’. Less frequent letters as ‘h’, ‘j’, ‘k’, ‘q’, ‘w’, ‘x’, and ‘z’ were not considered 

because some first graders did not know how to trace them. 

 

2.1.4. Data analysis 

The first letter of each bigram was analyzed. In order to identify a common endpoint, 

the ascendant stroke of the second letter ‘i’ was included. From the recorded (x, y) 

coordinates and pen pressure, the first in-air stroke and the strokes produced after the 
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maxima of the letter i were deleted. The segmentation was conducted with Matlab ®. In 

order to reduce the statistical risk of Type I errors, four complementary variables were 

considered: the duration, the mean velocity, the number of stops, and the letter size. These 

variables respectively describe the temporal (duration), kinematic (mean velocity and 

number of stops) and spatial (size) content of handwriting performance (see figure 1): 

 

Figure 1. Schematic illustration of data processing. (A) Example of the bigram “fi” written by 
a child. In grey: the whole word recorded. In red: the in-air movements (pen lifts). In black 
and surrounded: the first letter segmented for further analyses. (B) Absolute velocity profile 
as a function of time (filtered with a cutoff frequency of 10 Hz) for illustrating the temporal 
and kinematic variables. 

 

- The duration corresponds to the time elapsed between the beginning and end of letter 

production, including in-air movement if the writer lifts the pen. 

- The mean velocity is the mean of absolute velocity from the time the pen was first in 

contact with the tablet until the letter was completed. In-air movements were not 

considered for computing mean velocity.  
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- The number of stops corresponds to the total number of periods that the pen was in 

contact with the paper but did not move for at least 35 milliseconds. 

- The letter size corresponds to the distance between the minimal and maximal positions of 

the letter in the y-axis. 

A cluster analysis was applied on the complete data set in order to identify the difficulty level 

of the letters. All variables were converted to z‐scores (i.e. the variables were centered and 

reduced to a range between 0 and 1) then analyzed by interactive partitioning (K-means), 

minimizing the within-cluster variability and maximizing the between-cluster variability. This 

cluster analysis allowed us to separate letters into two categories: easy to write letters 

(cluster 1) from difficult to write letters (cluster 2).  

 

2.2. Results 

The cluster analysis on z-scores confirmed the presence of two clusters with an inter-

cluster Euclidian distance of 0.74. Cluster 1 included seven letters: c, l, m, r, s, t, and v. 

Cluster 2 included four letters: b, f, g, and p. The mean performance for each letter is 

reported in table 1. The Cluster 1 comprised ‘easy’ letters that, on the whole, were small, 

written with short duration, low velocity, and few stops. The Cluster 2 comprised ‘difficult’ 

letters which, on the whole, were bigger, written with a longer duration, a high velocity, and 

more stops.  

 

 c l m r s t v b f g p Mean  

Duration 
1.7 

(<0.1) 
1.9 

(<0.1) 
3.0 

(<0.1) 
2.3 

(<0.1) 
2.3 

(<0.1) 
3.0 

(<0.1) 
2.7 

(0.1) 
3.5 

(0.1) 
3.6 

(0.1) 
3.6 

(0.1) 
3.0 

(0.1) 
2.8 

 

Velocity 
12.8 
(0.3) 

17.0 
(0.4) 

12.1 
(0.3) 

10.4 
(0.2) 

12.5 
(0.3) 

16.5 
(0.5) 

10.1 
(0.2) 

13.2 
(0.3) 

15.7 
(0.4) 

14.4 
(0.3) 

18.1 
(0.5) 

13.9 
 

Stops 
2.0 

(0.1) 
0.9 

(0.1) 
3.8 

(0.1) 
4.2 

(0.1) 
3.4 

(0.1) 
3.4 

(0.1) 
3.1 

(0.1) 
4.5 

(0.1) 
4.3 

(0.2) 
2.7 

(0.1) 
3.9 

(0.2) 
3.3 

Size 
5.7 

(0.1) 
12.1 
(0.3) 

5.0 
(0.1) 

5.4 
(0.1) 

6.0 
(0.1) 

8.5 
(0.2) 

5.3 
(0.1) 

12.7 
(0.3) 

17.6 
(0.5) 

12.95 
(0.3) 

13.6 
(0.4) 

9.5 

 

Table 1: Mean (standard error) performance for each letter. In bold, value above (below for 
the velocity) the mean value (on the right). Cluster 1: Black letters on white background. 
Cluster 2: White letters on black background. 
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2.3. Interim discussion 

This pre-experiment confirmed that b, f, g, and p are more difficult to trace than the 

other tested consonants for 1st grade students. Letters classified as more difficult have the 

common characteristic of being composed of several strokes that can be large and that 

demand significant rotational changes between the strokes. Overall, our results extend this 

finding to lowercase cursive letters and confirms that the graphomotor constraint of a letter 

depends on how many strokes it consists of, the difficulty of tracing each stroke, how easy 

transition between them is (i.e., with turning points – Chang & Yu, 2010). Although some 

letters took longer to be produced, the writing velocity did not appear a relevant index of 

automation. This finding is consistent with previous studies in which the authors reported 

that children with dysgraphia did not write more slowly than proficient children because of 

their tendency to write larger (e.g., Prunty, Barnett, Wilmut, and Plumb, 2013). In the 

present study, the more difficult letters contained larger strokes than the easy letters, 

compensating for any tendency to write them more slowly. 

For the next experiment, we finally selected the letters f and t as representative of 

difficult and simple letter, respectively. This choice was based on the conclusion of a work-

meeting with two French teachers, taking account our need to build a strictly controlled 

material with both high and low motor constraints, comprising 5-letter words with an ‘i’ in 

second position, having a low and high frequency, and a simple vs. complex grapheme in the 

3 last letters. Out of curiosity, we checked the developmental values published by Jolly, 

Huron and Gentaz (2014) in their supplementary content for these two letters. These 

authors measured several temporal, spatial and kinematic variables of letter production in 

children between preschool, mid-year and end-year of 1st and 2nd Grade. The letter t and f 

demonstrated different developmental patterns, especially between 1st grade and 2nd 

Grade mid-year: at 1st grade mid-year, the number of slow movements and static moments 

was higher for the f than for the t, although it was comparable at 2nd grade mid-year. The 

reduction of slow movement and static moment represented respectively 39% and 53% for 

the f and 28% and 34% for the t, confirming more progress (i.e. a higher difficulty) for the 

former than for the later one.   
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3. Main experiment: Interaction between graphomotor and orthographic constraints 

3.1. Methods 

3.1.1. Participants 

Sixty-five French students from two elementary schools volunteered for the 

experiment, including 24 students in Grade 1 (6;7 years; 13 girls; 3 left-handers for 

handwriting), 20 in Grade 3 (8;6 years; 11 girls; 2 left-handers for handwriting), and 21 in 

Grade 5 (10;7 years; 16 girls; 3 left-handers for handwriting). Student who were receiving 

intervention for reading and/or writing difficulties were not included, neither were students 

who have repeated or have skipped a school year. The students had normal or corrected-to-

normal vision. This study was conducted between March and April and in accordance with 

local norms and guidelines for the protection of human subjects. This research was approved 

by the local educational authorities, the school directors, and the teachers. Furthermore, 

parents signed an informed consent sheet prior to the experiment. 

 

3.1.2. Task 

The experiment was individually conducted at school, in a quiet classroom. After a 

quick familiarization task consisting of writing their first name, the child was asked to write 

several single words in cursive on a sheet of paper affixed to a digitizing tablet (Wacom 

Intuos 4L, sampling frequency 100 Hz), using an inking pen. Each word was written twice to 

avoid any incorrect production (with errors or unusual performance). The template (word to 

be copied) was first displayed (in lowercase cursive letters, using the Cursive standard font, 

font-size: 44) on a label (5 x 7 cm) that the experimenter showed and read aloud to the child. 

Then, the template was hidden before the child started to write. No time limit was applied 

during the presentation of the template: the experimenter waited for the child to indicate 

that the template could be removed. Before the second trial, the previous performance was 

masked but the child could ask to see and hear the template again. The presentation order 

was randomized between students. They were asked to write at their usual speed. A black 

line had been traced on each white sheet to help to write horizontally. For data acquisition, 

we used JAVA software developed in the laboratory. 
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3.1.3. Stimuli and procedure 

A total of eight 5-letter words were selected for the task, including four with the first 

bigram ‘fi’ and four with the first bigram ‘ti’. These words were selected on the basis of A) 

the graphomotor constraint arising from the difficulty of tracing the first letter as 

characterized in the pre-experiment (easy vs. difficult), B) their lexical frequency from the 

French database Lexique 3 (high-frequency words, i.e., > 50 occurrences per million words, 

vs. low-frequency words, i.e., < 2 per million; New 2006; New, Pallier, Brysbaert, & Ferrand, 

2004) and from the French children database Manulex (CP-CM2 U > 50 for high-frequency 

words and CP-CM2 U < 1 for low-frequency words; Lété, Sprenger-Charolles & Colé, 2004), 

and C) the graphemic complexity of the last three letters (simple vs. complex grapheme) also 

from the Lexique 3 database.  As in the pre-experiment, the second letter was identical for 

all conditions to avoid possible motor anticipation effect on the first letter. The word length 

was also identical to avoid possible word length effects on working memory (e.g., Baddeley, 

Thomson & Buchanan 1975). Finally, the orthographic regularity was also checked, and only 

regular words were chosen. The stimuli are reported in table 2.  

 

 finir 

(end)  

fille  

(girl) 

firme 

(firm) 

fioul  

(fuel oil) 

titre  

(title) 

tirer  

(pull) 

tibia 

(tibia) 

titan 

(giant) 

First-letter 

graphomotor 

constraint  

Difficult – “ f ” Easy – “ t ” 

Word frequency HF LF HF LF 

Graphemic 

complexity 
simple complex simple complex simple complex simple complex 

Table 2: Stimuli according to the first-letter graphomotor constraint, the word frequency 
(HF: high-frequency or LF: low-frequency), and the graphemic complexity of the three last 
letters. 
 

3.1.4. Data analysis 

The first letter of each bigram was analyzed in the same way as in the pre-experiment. 

In order to identify a common endpoint, the ascendant stroke of the second letter ‘i’ was 

also included. Incorrect words were not analyzed. From the 1040 trials collected (65 

students * 8 items * 2 trials), 13 trials were not considered for analysis. The percentage of 
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trials with errors was about 1.0 % in 1st grade, 2.5% in 3d grade, 0.3 % in 5th grade. The 

same temporal (duration), kinematic (mean velocity and number of stops) and spatial (size) 

variables were considered in this experiment. A table with correlations between the 

variables, within grades, is presented in Appendix. For these variables, both frequentist and 

Bayesian statistics were conducted. For the sake of clarity, we report the results of the 

frequentist statistics (analyses of variance (ANOVAs) complemented with Bonferroni post-

hoc tests when necessary) in the following section. The complete description of the Bayesian 

analyses and their results are reported in supplementary materials. For the frequentist 

analysis, we averaged the performance of the two trials when they were correct. To make 

sure that there was no difference related to the inclusion of one or both trials, we inspected 

the performance of the students who did only one trial with those from the two averaged 

trials and found no outliers from performance based on a single trial.   

 

3.2. Results 

3.2.1. Duration 

The ANOVA revealed a Graphomotor constraint by Grade interaction F(2, 62) = 7.84, p 

<.001. η²p = 0.20, and a Graphomotor constraint by Frequency interaction, F(1, 62) = 5.23, p 

<.05, η²p = 0.08. As can be seen in Figure 2A, the Bonferroni post hoc tests showed that 

students in Grade 1 spent more time writing the difficult letter f when the word was 

infrequent than when it was frequent (p < 0.01). However, this effect of frequency was not 

observed for the easy letter t, nor for the two other groups (p = 1). The ANOVA also revealed 

a main effect of Grade on mean duration, F(2, 62) = 63.20, p <.001. η²p = 0.67. The post-hoc 

analysis revealed that 1st graders spent more time writing the first letter than 3rd and 5th 

graders (p < .001 for both comparisons) whereas 3rd and 5th graders did not significantly 

differ from each other. Finally, the analysis also revealed a main effect of Graphomotor 

constraint, F(1, 62) = 74.24, p <.001. η²p = 0.54, confirming that the letter f required more 

time to be written than the letter t. The analysis evidenced neither main effect nor 

interaction involving graphemic complexity. Interitem correlations between words with 

simple vs. complex grapheme were between 0.8 and 0.9 (R² finir-fille = 0.87; R² firme-fioul = 

0.89; R² titre-tirer = 0.81; R² tibia-titan = 0.80).  
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Figure 2. (A) Mean duration, and (B) number of stops according to the Grade level (Grade 1, 
3, and 5), the word frequency (LF: low-frequency vs. HF: high-frequency), and the first-letter 
graphomotor constraint (f vs. t). Error bars correspond to standard error of the mean. 

 

3.2.2. Mean velocity 

The analysis revealed a Graphomotor constraint by Frequency interaction, F(1, 62) = 

4.98 ; p < .05. η²p = 0.07, and the post-hoc tests showed that the frequency effect was 

present in writing the letter f (p < 0.05) but not in writing the letter t (p = .81, see Figure 3A). 
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In other words, the first letter of low-frequency words was written more slowly when it 

imposed stronger graphomotor constraints. The analysis also revealed a main effect of 

Grade, F(2, 62) = 26.16, p <.001. η²p = 0.46, and post-hoc tests confirmed that 1st graders 

wrote more slowly than 3rd and 5th graders (p < .001 for both comparisons) whereas 3rd and 

5th graders did not significantly differ from each other (see Figure 3B). The ANOVA also 

showed a main effect of Graphomotor constraint, F(1, 62) = 31.21, p <.001. η²p = 0.33: The 

letter f was written faster than the letter t. Finally, the analysis evidenced neither main 

effect of graphemic complexity nor interaction between graphemic complexity and the other 

factors. Interitem correlations between words with simple vs. complex grapheme were 

between 0.7 and 0.9 (R² finir-fille = 0.77; R² firme-fioul = 0.89; R² titre-tirer = 0.81; R² tibia-

titan = 0.90). 

 

Figure 3. Mean velocity, according to (A) the word frequency (LF: low-frequency vs. HF: high-
frequency) and the first-letter graphomotor constraint (f vs. t), and (B) the Grade level 
(Grade 1, 3, and 5). Error bars correspond to standard error of the mean.  
 
 

3.2.3. Number of stops 

The ANOVA revealed a Frequency by Grade interaction, F(2, 62) = 3.25, p <.05. η²p = 

0.09, a Graphomotor constraint by Frequency interaction, F(1, 62) = 4.82, p <.05. η²p = .07, 

and the Graphomotor constraint by Frequency by Grade double interaction, F(2, 62) = 4.09, 
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p <.05. η²p = 0.12. As can be seen in Figure 2B, the Bonferroni’s post-hoc tests showed that 

the Frequency effect was only present in 1st graders writing the letter f (p < .001). The 

analysis also revealed a main effect of Grade, F(2, 62) = 47.70, p <.001. η²p = 0.61: 1st graders 

wrote with more stops than 3rd and 5th graders (p < 0.001 for both comparisons). Here again, 

3rd and 5th graders did not significantly differ from each other and the analysis evidenced 

neither main effect of graphemic complexity nor interaction between graphemic complexity 

and the other factors. Interitem correlations between words with simple vs. complex 

grapheme were between 0.5 and 0.8 (R² finir-fille = 0.52; R² firme-fioul = 0.71; R² titre-tirer = 

0.77; R² tibia-titan = 0.66). 

 

3.2.4. Letter size 

The analysis revealed a Graphomotor constraint by Grade interaction, F(2, 62) = 6.27, p 

<.01. η²p = 0.17. As can be seen in figure 4A, the size of letter f tended to decrease between 

the 1st grade and the 3rd but the post-hoc tests did not confirm these tendencies (p > 0.10). 

As expected, the analysis revealed a main effect of Graphomotor constraint, F(1, 62) = 

313.07, p <.001. η²p = 0.83: the written letter f was larger than the letter t. Finally, the 

analysis revealed a main effect of Graphemic Complexity F(1, 62) = 4.36, p <.05, η²p = 0.06, 

and the Graphomotor constraint by Graphemic Complexity interaction tended to be 

significant, F(1, 62) = 3.88, p = .053. η²p = 0.05. As can be seen in figure 4B, the Bonferroni 

post-hoc analysis revealed that the size of f increased with graphemic complexity (p < .05) 

whereas the size of t did not. Interitem correlations between low-frequency and high-

frequency words were between 0.7 and 0.9 (R² finir-firme = 0.79; R² fille-fioul = 0.90; R² titre-

tibia = 0.81; R² tirer-titan = 0.89). 
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Figure 4. Mean size of letters f and t, according to the grade level (left) and according to 
graphemic complexity (right). 
 

 

4. Discussion 

This study aimed to evaluate the combined effects of orthographic and graphomotor 

constraints on handwriting in beginning, intermediate and advanced writers. From the pre-

experiment, we selected two letters with different graphomotor constraint: an easy letter 't' 

and a difficult letter 'f'. As expected, in the main experiment, the letter ‘f’ was more difficult 

to write than the letter ‘t’ in all groups. The longer duration, as well as the higher mean 

velocity are obviously related to the size of the ‘f’ compared to the ‘t’. At first glance, a 

longer duration seems to be contradictory with a higher velocity. In fact, the principle of 

isochrony states a proportional relationship between movement speed and trajectory 

length, so the total duration of execution remains approximately constant (Viviani & 

Terzuolo 1982). In the present case, because of a greater difficulty of ‘f’ compared to ‘t’, the 

increase in velocity is not proportional to the increase in trajectory length. This explains why 

the students took more time to write the letter ‘f’. 

The results showed an effect of grade on all variables. According to the literature 

(Meulenbroek and Van Galen, 1988; Mojet, 1991; Zesiger, Mounoud & Hauert, 1993), the 

greatest differences were observed between Grade 1 and Grade 3. The letter size evolved 
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differently for each letter: it tended to decrease for the ‘f’ whereas it remained relatively 

stable for the ‘t’. It is well established that the tendency to write larger is one of the criteria 

that characterize non-mastered handwriting (e.g., Hamstra-Bletze & Blöte, 1993). Taken 

together, our analyses confirm that the letter ‘f’ was less automated than the letter ‘t’ for 

Grade 1 students only. Knowing that automation refers to the fact that writing is produced 

with minimal attentional involvement (Tucha et al., 2008), more attentional resources are 

allocated to the motor processes when writing the difficult letter than the easy one. If 

children pay too much attention to handwriting movements, they may have some difficulties 

in the allocation of cognitive resources to other processes (Berninger & Swanson, 1994; 

Jones & Christensen, 1999). 

In this study, the orthographic constraints were generated by the lexical frequency and 

the graphemic complexity of the word. Lexical frequency had no direct main effect on any of 

the variables, but it interacted with letter difficulty and decreased with increasing school 

grade. This interaction occurred on the number of stops (observed in both frequentist and 

Bayesian analyses) and, to a lesser extent, on the duration and velocity (observed in the 

frequentist analysis only). The frequency effect was significant for Grade 1 students but not 

in the other two groups, and it was observed for letter ‘f’ but not for letter ‘t’. In other 

words, the effect of orthographic constraints was only observed for beginners in the 

production of the less automated letter. This finding supports the idea of an interaction 

between motor and spelling processes from the first stage of handwriting acquisition, which 

later disappears or changes through automation. Previous studies have revealed a frequency 

effect on handwriting movements in a word copy task in adults (Delattre et al., 2006; 

Lambert et al., 2011) and in children (Alfonso et al., 2018; Kandel & Perret 2015). Afonso et 

al. (2018) studied words written in Grade 2, 4 and 6, and confirmed that the automation of 

writing skills through learning reduces the effect of word frequency that is significant only in 

Grade 2. We also observed an effect of frequency for the youngest students, in Grade 1 only. 

Furthermore, Kandel & Perret (2015) observed, in all groups of children tested (8-10 years), 

that the effect of frequency was not significant at the beginning but in the middle of the 

words. In the present study, we did observe a frequency effect when producing the difficult 

letter. This difference could result, in our study, from the absence of the template, which 

was removed before the child started to write. We suppose that for frequent words, 
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students in Grade 1 have already memorized the correct spelling in orthographic long-term 

memory. Knowing that the acquisition of handwriting starts with a letter-by-letter planning 

(Humblot et al., 1994), beginners allocate their attention to the motor processes if the letter 

is non-automated. For low-frequency words, removing the template led the students to 

retain in orthographic working memory the entire word they had to write (Kandel & Valdois, 

2005). According to Olive and Kellogg (2002) who proposed that central and peripheral 

processes in written production compete for a common cognitive resource (see also and 

Sausset et al., 2012), our findings suggest that when handwriting movements are not yet 

automated, the significant cognitive resources required for maintaining the spelling of low-

frequency words in working memory, interfere with the motor processing required for 

writing a non-automated difficult letter.  

When focusing on the interaction between graphomotor and orthographic constraints 

in the younger group of children, the Bayesian analyses (supplementary materials) revealed 

that the strongest evidence for this interaction effect was in the number of stops. In other 

words, Grade 1 students discretized their movement. This mode of production was 

previously reported by Van Mier (2006) in a drawing task. She observed that young children 

made continuous movements (zigzag) in a discrete manner, producing short strokes 

separated by stops. She interpreted this finding as a less proficient motor planning in 

younger children whereas older children program and plan the upcoming segment during 

the production of the previous segment (see also Badan, Hauert and Mounoud, 2000). This 

finding is compatible with the results of Sausset et al. (2012) who evidenced similar effects 

of spelling processes on writing execution in adults when the graphomotor constraints 

induced by the task were high. 

Finally, the effects of graphemic complexity were marginal, with an effect on the letter 

size in the frequentist analysis only. It has been shown that in a dictation task, the phoneme-

grapheme conversion underlying complex graphemes impacts the latency, i.e. the time 

before starting to write once the word had been heard (Bonin & Delattre 2010). Those 

authors proposed that the different phoneme-to-grapheme correspondences that are 

available for a given phoneme are simultaneously activated and compete in spelling to 

dictation. In the present study, the visual presentation of the words before starting to write 
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may have limited this competition, and thus the effects of graphemic complexity on writing 

kinematics.  

 

5. Conclusions: Implications for Primary Education, limitations and perspectives 

The combined effects of orthographic and graphomotor constraints in 1st graders indicate 

that graphomotor and spelling processes build up and interact from the beginning of 

learning. This finding supports the idea of a parallel activation of spelling (high-level) and 

graphomotor (low-level) modules that was proposed in the van Galen’s model (1991). It calls 

into question the relevance of evaluating spelling and graphomotor processes separately. 

The present study has practical implications for helping teachers to both teach and evaluate 

handwriting quality and spelling proficiency. In terms of evaluation, if the word to be written 

is not frequent and contains difficult letters, handwriting performance could be impacted, 

and the teacher could wrongly interpret this as a graphomotor difficulty. This might explain 

some of the handwriting difficulties sometimes observed in children with reading disorders 

(Cheng-Lai, Chan, & Lo, 2013; Kandel, Lassus-Sangosse, Grosjacques, & Perret, 2017).  

In terms of instruction, teachers should be careful not to put students who do not yet 

fully master graphomotor skills in a situation where they have to deal both with unusual 

graphomotor demands while writing words that are too complex orthographically. 

Otherwise they risk to slow down one or both learning processes. A very good example is the 

application of instructional methods that involve modifying visual feedback (Bara & 

Bonneton-Botté, 2021), while children are used to control both pen movements and word 

spelling visually. Although this type of method has been tested only with single letters, its 

extension to whole words should take the combination of orthographic and graphomotor 

demands of the task into account.  

A logical continuation of the present study would be to evaluate how this combined 

effect of constraints evolves longitudinally between Grade 1 and Grade 2, and differs 

according to the children's level of handwriting proficiency, especially at the very beginning 

of learning. Specific difficulties could emerge in students whose graphomotor coordination is 

impaired. Indeed, these students would face a double challenge: not only do they have 

trouble tracing letters in a fast, fluid, and legible manner, but this cost associated with 
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moving their pen correctly could disrupt the attention that needs to be given to the spelling 

of words, especially if they are not well known by the child. 

In conclusion, our study reveals that when children start to write a word, 

orthographic constraints underlying the word frequency and, to a much lesser extent, the 

grapheme structure at the end of the word, influence the production of the first letter when 

this letter has not yet been automated. Of course, the present study has from some 

limitations. The main limit is the reduced number of items used, which is due to the very 

controlled material (5-letter words with the same vowel at the second position and with a 

complex and simple grapheme within the 3 last letters). Furthermore, this study has not 

been designed to evaluate the total temporal course of the writing movement, from 

initialization (with latency) to the end of the word. Further studies are necessary to confirm 

this combined effect, and to better understand the emergence of the cascading 

phenomenon between the spelling and motor processes in learning to write (Olive, 2014).  

 

Appendix 

  DURATION MEAN VELOCITY NUMBER OF STOPS LETTER SIZE 

GRADE 
1 

DURATION 1,00 -0,29 0,47 0,44 

MEAN VELOCITY -0,29 1,00 -0,53 0,47 

NUMBER OF STOPS 0,47 -0,53 1,00 -0,17 

LETTER SIZE 0,44 0,47 -0,17 1,00 

GRADE 
3 

DURATION 1,00 -0,52 0,57 0,17 

MEAN VELOCITY -0,52 1,00 -0,61 0,62 

NUMBER OF STOPS 0,57 -0,61 1,00 -0,29 

LETTER SIZE 0,17 0,62 -0,29 1,00 

GRADE 
5 

DURATION 1,00 -0,31 0,47 0,49 

MEAN VELOCITY -0,31 1,00 -0,34 0,51 

NUMBER OF STOPS 0,47 -0,34 1,00 0,06 

LETTER SIZE 0,49 0,51 0,06 1,00 

Table 3: Correlation matrix between the four dependent variables in the main experiment. In 

bold, significant correlation coefficients. 

As can be seen, the dependent variables are partially correlated, which is not 

surprising knowing that when handwriting is not mastered, students take more time to write 

the velocity is lower, they make more stops, and they write larger. These correlations evolve 
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in a non-monotonic way with the school level, and they decrease when the handwriting is 

mastered (in Grade 5). 
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Figure 1. Effect of grade, word frequency, and grapheme complexity on the total duration,
the number of stops, the mean velocity, and the letter size. The error bars represent the
95% confidence intervals of the mean (assuming a Gaussian distribution).
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Figure 1 shows the effect of grade, word frequency, and grapheme complexity on the
letter duration, the number of stops, the mean velocity, and the letter size. This figure
suggests that the average duration (in seconds) seems to decrease monotonically with grade.
The number of stops also seems to decrease with grade, with most trials for children from
grade 2 being associated with no stop.

1.2 Bivariate correlations by grade

Figure 2 shows the overall and by-grade Spearman correlation between each pair of
variables. This figure reveals medium to strong positive and negative correlations between
each pair of variable. These relations are sometimes non-linear (e.g., between duration and
mean velocity), hence the use of Spearman (rather than Pearson) correlation coefficients.
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Figure 2. Overall and by-grade Spearman correlation between each pair of measured vari-
ables.
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2 Bayesian multilevel modelling

2.1 Modelling positive-only values

A dominant feature of durations (or response times) is that their distribution is gen-
erally positively skewed, with the spread and/or the skewness increasing with task difficulty
(for review, see for instance Forstmann, Ratcliff, & Wagenmakers, 2016). Therefore, several
models have been proposed to account for the peculiarities of the data coming from such
tasks as well as to relate it to the underlying cognitive processes. We discuss below why
using Gaussian models for this kind of data is generally not a sensible idea and describe our
approach in more details. We follow a general “Bayesian workflow” by building our model
in an iterative manner and by motivating and validating each modelling choice (for more
details, see for instance Gelman et al., 2020).

We first fitted a Bayesian multilevel (also known as “mixed-effects”) Gaussian multi-
variate (i.e., with multiple outcomes) model. One way of evaluating this model is to evaluate
its predictions. If this model is a good description of the process that generated the observed
data, then it should be able to generate data that looks like the observed data. The process
of generating data from the estimated posterior distribution is called posterior predictive
checking and can be used in many different ways using the pp_check() method (Gabry,
Simpson, Vehtari, Betancourt, & Gelman, 2019). In Figure 3, we depict the distribution of
the raw data along with the distribution of 100 simulated datasets.

This figure reveals that the Gaussian model fails to account for the peculiarities of
the data at hand. For instance, it systematically fails to predict the right-skew of all four
variables, and more dramatically, sometimes predicts negatives values for these variables,
although they are strictly positive. Moreover, using a Gaussian distribution to model the
number of stops also leads to nonsensical predictions as the number of stops is necessarily
a positive integer (whereas the Gaussian distribution can produce any real number), as
illustrated in the upper right panel of Figure 3.

2.2 Shifted-lognormal regression model

A useful description of RTs or durations should be able to account for the effects of
the difficulty of the task, as well as changes in shift and spread of the distribution. The
Log-normal, Ex-Gaussian, or Weibull distributions often provide a good fit to these data,
but their parameters are difficult to interpret in terms of difficulty, shift, or spread (i.e.,
these distributions do not have straightforward interpretable parameters). In contrast, the
shifted log-normal distribution has parameters that can easily be interpreted in terms of
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Posterior predictive checks for the multilevel Gaussian model

Figure 3. Posterior predictive checks for the multilevel Gaussian model. The dark blue
density depicts the raw data whereas light blue densities represent data simulated from the
posterior predictive distribution.

difficulty, shift, and spread.

The log-normal distribution is called “log-normal” because the parameters are the
mean and standard deviation of the log-transformed response, which is assumed to be a
normal (Gaussian) distribution. The shifted log-normal distribution is then described by
three parameters:

• 𝜇 (mu, difficulty): the mean of the log-normal distribution. The median duration is
given by shift + exp(𝜇).

• 𝜎 (sigma, scale): the standard deviation of the log-normal distribution. Increases the
mean but not the median of 𝜇.

• shift (ndt) indicates the time of the earliest possible response. When shift = 0, the
shifted log-normal distribution correspond to the conventional log-normal distribution
with two parameters.

Regression models using this family usually aim to predict 𝜇, the mean of the log-
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normal distribution. We employ this strategy as well, while noticing that both 𝜎 and shift
could be allowed to vary across conditions as well.

2.3 Poisson regression model

Whereas the previous models are able to take into account the right-skew of the
four variables we are interested in, they are still not able to make proper predictions with
regards to the number of stops (because the log-normal distribution is continuous). Yet a
better model could be fitted by picking up a discrete probability distribution defined on the
positive integer real. The Poisson regression model is appropriate for modelling discrete
counts of events (e.g., the number of stops) that happen in a fixed interval of space or time
with no upper bound. The Poisson model is simpler than the Gaussian or the lognormal
one because it has only one parameter 𝜆 that describes its shape. The parameter 𝜆 is the
expected value of the outcome 𝑦 (and also its expected variance). However, we need a
link function to relate the predictors with the parameter 𝜆 and to ensure that 𝜆 is always
positive. We use the conventional logarithmic link function, resulting in the following linear
model:

𝑦𝑖 ∼ Poisson(𝜆𝑖)
log(𝜆𝑖) = 𝛼 + 𝛽𝑔 ⋅ grade𝑖 + 𝛽𝑓 ⋅ frequency𝑖+

𝛽𝑔𝑟𝑎𝑝ℎ𝑒 ⋅ grapheme𝑖 + 𝛽𝑔𝑟𝑎𝑝ℎ𝑜 ⋅ graphomotor𝑖

This kind of model is now able to predict valid number of stops (i.e., positive integers).
Note that for simplicity, we omit the varying effects and the priors from the above model
(for more details on Poisson regression, see Winter & Bürkner, 2021).

2.4 Fitting the final model

To set up the model, we need to invoke the brms::brmsformula() function and
construct one formula for each of the four dependant variables. We fitted all models using
the brms package (Bürkner, 2017). We used sum contrasts (i.e., recoding conditions as
-0.5 vs. 0.5) for binary predictors (i.e., frequency, grapheme complexity, and graphomotor
difficulty) and used the default factor coding scheme (i.e., dummy coding) for grade.

# defining the model formula for the generalised multilevel model
formula_generalised <-

bf(
duration ~ 1 + group * frequency * grapheme_complexity *
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graphomotor_difficulty + (1 | subject),
family = shifted_lognormal()
) +

bf(
mean_velocity ~ 1 + group * frequency * grapheme_complexity *

graphomotor_difficulty + (1 | subject),
family = shifted_lognormal()
) +

bf(
number_of_stops ~ 1 + group * frequency * grapheme_complexity *

graphomotor_difficulty + (1 | subject),
family = poisson()
) +

bf(
letter_size ~ 1 + group * frequency * grapheme_complexity *

graphomotor_difficulty + (1 | subject),
family = shifted_lognormal()
)

# defining the priors for the multilevel generalised model
priors_generalised <- c(

prior(normal(1, 0.5), class = Intercept, resp = "duration"),
prior(normal(0, 0.5), class = b, resp = "duration"),
prior(exponential(0.1), class = sd, resp = "duration"),
prior(exponential(0.1), class = sigma, resp = "duration"),
prior(normal(2, 0.5), class = Intercept, resp = "meanvelocity"),
prior(normal(0, 0.5), class = b, resp = "meanvelocity"),
prior(exponential(0.1), class = sd, resp = "meanvelocity"),
prior(exponential(0.1), class = sigma, resp = "meanvelocity"),
prior(normal(1, 0.5), class = Intercept, resp = "numberofstops"),
prior(normal(0, 0.5), class = b, resp = "numberofstops"),
prior(exponential(0.1), class = sd, resp = "numberofstops"),
prior(normal(2, 0.5), class = Intercept, resp = "lettersize"),
prior(normal(0, 0.5), class = b, resp = "lettersize"),
prior(exponential(0.1), class = sd, resp = "lettersize"),
prior(exponential(0.1), class = sigma, resp = "lettersize")
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)

# centering and reordering predictors
df2 <- df %>%

mutate(
group = factor(

x = group,
levels = c("CP", "CE", "CM"),
labels = c("Grade1", "Grade3", "Grade5")
),

frequency = factor(
x = frequency,
levels = c("LF", "HF"),
labels = c("LF", "HF")
),

grapheme_complexity = factor(
x = grapheme_complexity,
levels = c("Simple", "Complex"),
labels = c("Simple", "Complex")
),

graphomotor_difficulty = factor(
x = graphomotor_difficulty,
levels = c("EL", "HL"),
labels = c("t", "f")
)

) %>%
# removes rows where duration is equal to 0
filter(duration != 0)

# defining contrasts
contrasts(df2$frequency) <- c(-0.5, +0.5)
contrasts(df2$grapheme_complexity) <- c(-0.5, +0.5)
contrasts(df2$graphomotor_difficulty) <- c(-0.5, +0.5)

# fitting the model
mod2 <- brm(

formula = formula_generalised + set_rescor(rescor = FALSE),
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prior = priors_generalised,
chains = 4, cores = 4,
warmup = 2000, iter = 1e4,
control = list(adapt_delta = 0.95),
data = df2,
sample_prior = TRUE,
file = "models/multilevel_generalised_model"
)

We then fit this model below using the brms::brm() function. We run four chains,
each for 10000 iterations and using the first 2000 iterations used as warmup (i.e., the first
2000 samples of each chain are discarded from the final analysis). This results in a total of
4×(10000−2000) = 32000 samples from the (joint) posterior distribution that will be used
for inference.

2.5 Evaluating the model

One way of evaluating the model is to evaluate its predictions. In Figure 4, we depict
the distribution of the raw data along with the distribution of 100 simulated datasets (a
posterior predictive check, as introduced previously).

As can be seen from Figure 4, the model seems pretty good at simulating data that
looks like the observed data. From this predictive/sampling distribution (i.e., the distribu-
tion of simulated data sets), so-called “Bayesian p-values” can be computed to quantify the
compatibility between the observed data and the proposed model.
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Posterior predictive checks for the multilevel generalised model

Figure 4. Posterior predictive checking. The dark blue line represents the distribution of
raw data whereas light blue lines represent data simulated from the posterior distribution.

2.6 Hypothesis testing

We can test any arbitrary hypothesis using the brms::hypothesis() method, which
is computing a Bayes factor via the Savage-Dickey method (Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010). This method consists in comparing the posterior probability
density to the prior probability density for some hypothesised value for the parameter of
interest (e.g., 𝜃 = 0). For instance, we test below the hypothesis according to which the
effect of graphemic complexity in Grade 1 would be null.

# testing whether the effect of grapheme complexity on duration equal to 0
hyp <- hypothesis(x = mod2, hypothesis = "duration_grapheme_complexity1 = 0")

# prints the output
print(hyp)

## Hypothesis Tests for class b:
## Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (duration_graphem... = 0 0 0.05 -0.11 0.1 9.87
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## Post.Prob Star
## 1 0.91
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.

# plotting it
data.frame(posterior = hyp$samples$H1, prior = hyp$prior_samples$H1) %>%

gather(type, value) %>%
ggplot(aes(x = value, fill = type) ) +
geom_vline(xintercept = 0, linetype = 2, alpha = 1) +
geom_area(stat = "density", alpha = 0.8, position = "identity") +
theme_bw(base_size = 12, base_family = "Open Sans") +
labs(x = expression(beta[grapheme_complexity]), y = "Probability density") +
scale_fill_brewer(palette = "Dark2") +
theme(legend.title = element_blank() ) +
coord_cartesian(xlim = c(-2, 2) )
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Figure 5. Hypothesis testing via the Savage-Dickey method. The resulting Bayes factor
(BF) is the ratio of the height (i.e., the density probability) of the posterior versus prior
distribution at some value of interest for the parameter (here it is 0).

The resulting Bayes factor (BF, called “Evid. Ratio” in the output) may be inter-
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preted as follows: the observed data are 9.87 more likely under the hypothesis of null effect
than under the hypothesis of a non-null effect. From the BF in favour of the null hypothesis
(relative to the alternative hypothesis), we can compute the BF in favour of the alternative
hypothesis (relative to the null hypothesis), using BF10 = 1/BF01 (we report the BF10 in
the following). Alternatively, the BF can be interpreted as an updating factor, indicating
by “how much” we should update our prior odds (the ratio of the a priori probability of ℋ0
versus ℋ1) to convert them into posterior odds (the ratio of the a posteriori probability of
ℋ0 versus ℋ1).
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3 Interpretation of the results for each variable

Now that we have fitted the model, we are left with the task of interpreting the
output from the model. The output of the model is a (joint) posterior distribution over all
parameters of the model. We can marginalise this joint distribution to obtain the (marginal)
posterior distribution on each parameter. To summarise this distribution, we can retrieve
samples from the joint posterior distribution.

# retrieves posterior samples (for all parameters)
posterior_samples <- as_draws_df(mod2)

# displays a summary
posterior_summary <- summarise_draws(posterior_samples)

# displays the first six rows
head(posterior_summary)

## # A tibble: 6 x 10
## variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 b_duration_~ 1.08 1.08 0.0310 0.0304 1.03 1.13 1.00 29023. 25012.
## 2 b_meanveloc~ 2.34 2.34 0.0271 0.0263 2.29 2.38 1.00 30342. 20075.
## 3 b_numberofs~ 1.04 1.04 0.0367 0.0354 0.977 1.10 1.00 41575. 26004.
## 4 b_lettersiz~ 2.29 2.29 0.0234 0.0229 2.25 2.33 1.00 32779. 23505.
## 5 b_duration_~ -0.866 -0.865 0.0386 0.0384 -0.931 -0.804 1.00 23574. 24590.
## 6 b_duration_~ -0.967 -0.966 0.0414 0.0418 -1.04 -0.900 1.00 20887. 23486.

The above command outputs a matrix with parameters of the model in columns and
posterior samples in rows. Let’s examine these results for each parameter in more details.
For instance, Figure 6 represents the posterior distribution of the average letter duration in
Grade-1 children.

# retrieves the posterior samples for the average letter duration in Grade 1
average_duration_grade1 <- posterior_samples$b_duration_Intercept +

posterior_samples$ndt_duration

# plotting it
plotPost(

paramSampleVec = exp(average_duration_grade1), showMode = TRUE,
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xlab = expression(paste(alpha[duration][paste("[", Grade1, "]")] ) )
)

αduration[Grade1]

3.0 3.1 3.2 3.3 3.4 3.5 3.6

95% HDI
3.01 3.49

mode = 3.23

Figure 6. Posterior distribution of the intercept (i.e., the average letter duration in Grade
1). The mode (i.e., the most probable value) and the 95% credible (highest density) interval
are also displayed.

Recall that we used a logarithmic link function, therefore the median letter duration
is given by exp(𝛼 + shift).

3.1 Letter duration

Table 1 reports the estimates (median of the posterior distribution) and associated
95% credible intervals and BFs for all parameters regarding the letter duration variable.
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These estimations are better understood visually. Thus, we plot the predictions of
this model against raw data in Figure 7.

# retrieving the model's predictions
duration_predictions <- df2 %>%

data_grid(graphomotor_difficulty, grapheme_complexity, frequency, group) %>%
cbind(., fitted(

object = mod2, newdata = ., resp = "duration",
scale = "response", probs = c(0.025, 0.975),
re_formula = NA, robust = TRUE
) ) %>%

ungroup %>%
dplyr::rename(estimate = Estimate, mad = Est.Error, lower = Q2.5, upper = Q97.5)

t f

LF
Grade1

HF
Grade1

LF
Grade3

HF
Grade3

LF
Grade5

HF
Grade5

LF
Grade1

HF
Grade1

LF
Grade3

HF
Grade3

LF
Grade5

HF
Grade5
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)

Grapheme complexity Simple Complex

Figure 7 . Letter duration by grade and word frequency (x-axis), grapheme complexity (in
colour), and graphomotor difficulty (in panels). Transparent points represent individual
data per participant. The surimposed dots and intervals represent the model’s predictions
(median and 95% credible interval of the posterior distribution).

As can be seen in Figure 7, the model predicts larger letter duration for the difficult
letter f as compared to the easy letter t for each grade. As can be seen from Table 1, the
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only BFs favouring the alternative hypothesis (relative to the null hypothesis) are the BFs
for the difference between Grade 1 and Grade 3 in average letter duration (𝛽 = -0.865, 95%
CrI [-0.943, -0.793], BF10 = 7.281 x 10^17), as well as the difference between Grade 1 and
Grade 5 (𝛽 = -0.966, 95% CrI [-1.05, -0.889], BF10 = 3.586 x 10^15), and the effect of
graphomotor difficulty in Grade 1 (𝛽 = 0.423, 95% CrI [0.32, 0.526], BF10 = 9.762 x 10^15).
Predictions from this model for each condition are also summarised in Table 2.
Table 2
Estimated letter duration in each condition.

Group Frequency Grapheme complexity Graphomotor difficulty Estimate MAD Lower Upper

Grade1 LF Simple t 2.768 0.186 2.416 3.172
Grade1 LF Simple f 4.296 0.287 3.745 4.923
Grade1 LF Complex t 2.680 0.179 2.334 3.077
Grade1 LF Complex f 4.203 0.291 3.651 4.846
Grade1 HF Simple t 2.632 0.176 2.303 3.011
Grade1 HF Simple f 3.883 0.263 3.387 4.458
Grade1 HF Complex t 2.713 0.182 2.367 3.122
Grade1 HF Complex f 3.899 0.261 3.401 4.469
Grade3 LF Simple t 1.196 0.084 1.040 1.381
Grade3 LF Simple f 1.760 0.127 1.522 2.040
Grade3 LF Complex t 1.127 0.080 0.980 1.304
Grade3 LF Complex f 1.797 0.127 1.556 2.074
Grade3 HF Simple t 1.211 0.085 1.053 1.399
Grade3 HF Simple f 1.710 0.121 1.482 1.980
Grade3 HF Complex t 1.226 0.087 1.063 1.418
Grade3 HF Complex f 1.802 0.129 1.561 2.090
Grade5 LF Simple t 1.033 0.070 0.902 1.185
Grade5 LF Simple f 1.693 0.120 1.470 1.953
Grade5 LF Complex t 1.068 0.072 0.931 1.230
Grade5 LF Complex f 1.722 0.121 1.493 1.985
Grade5 HF Simple t 1.057 0.072 0.923 1.213
Grade5 HF Simple f 1.654 0.115 1.435 1.909
Grade5 HF Complex t 0.996 0.066 0.869 1.142
Grade5 HF Complex f 1.667 0.117 1.447 1.924

Note. For each condition, the ’Estimate’ and ’MAD’ columns contain the median and the
median absolute deviation (MAD) of the posterior distribution, respectively. The ’Lower’
and ’Upper’ columns contain the lower and upper bounds of the 95% credible interval.

The output of a Bayesian model is a (joint) posterior distribution over all parameters
of the model. We can marginalise this joint distribution to obtain the (marginal) posterior
distribution on each parameter. To summarise this distribution, we can retrieve samples
from the joint posterior distribution. Interestingly, this means we can look at the poste-
rior distribution of any parameter of interest. For instance, and for exploratory purposes,
we depict below the posterior distribution of the difference between high-frequency and
low-frequency words (i.e., the effect of frequency) separately for each letter (graphomotor
difficulty) and each grade. We averaged the predictions across both conditions of graphemic
complexity, as this effect appeared to be null.

As can be seen in Figure 8, the posterior distribution for the effect of frequency is
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Effect of frequency for letter t in Grade 1

-0.5 0.0 0.5

95% HDI
-0.593 0.495

mean = -0.0507

57.5% < 0 < 42.5%

Effect of frequency for letter t in Grade 3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

95% HDI
-0.194 0.309

mean = 0.0563

32.6% < 0 < 67.4%

Effect of frequency for letter t in Grade 5

-0.3 -0.2 -0.1 0.0 0.1 0.2

95% HDI
-0.246 0.193

mean = -0.0244

58.6% < 0 < 41.4%

Effect of frequency for letter f in Grade 1

-1.5 -1.0 -0.5 0.0 0.5

95% HDI
-1.16 0.428

mean = -0.361

82.5% < 0 < 17.5%

Effect of frequency for letter f in Grade 3

-0.4 -0.2 0.0 0.2 0.4

95% HDI
-0.388 0.347

mean = -0.0214

54.8% < 0 < 45.2%

Effect of frequency for letter f in Grade 5

-0.4 -0.2 0.0 0.2 0.4

95% HDI
-0.39 0.285

mean = -0.047

61% < 0 < 39%

Figure 8. Effect of word frequency on letter duration (in seconds) for each grade (in column)
and letter (in row). The histogram contains posterior samples for each effect, where the
posterior distribution is summarised by its mean and 95% highest density interval (HDI).
The green text indicates the probability that the parameter values is either inferior or
superior to 0.

almost perfectly centred on zero in all conditions, except for letter f in Grade 1. Although
the 95% credible interval largely encompasses 0 in this condition as well, there is still a 0.82
probability that the effect of frequency on letter duration is negative (given the data and
the priors).

3.2 Number of stops

Table 3 reports the estimates (median of the posterior distribution) and associated
95% credible intervals and BFs for all parameters regarding the number of stops.
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These estimations are better understood visually. Thus, we plot the predictions of
this model against raw data in Figure 9.

# retrieving the model's predictions
stops_predictions <- df2 %>%

data_grid(graphomotor_difficulty, grapheme_complexity, frequency, group) %>%
cbind(., fitted(

object = mod2, newdata = ., resp = "numberofstops",
scale = "response", probs = c(0.025, 0.975),
re_formula = NA, robust = TRUE
) ) %>%

ungroup %>%
dplyr::rename(estimate = Estimate, mad = Est.Error, lower = Q2.5, upper = Q97.5)

t f

LF
Grade1

HF
Grade1

LF
Grade3

HF
Grade3

LF
Grade5

HF
Grade5

LF
Grade1

HF
Grade1

LF
Grade3

HF
Grade3
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Grade5

HF
Grade5

0.0

2.5
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N
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of
 s

to
ps

Grapheme complexity Simple Complex

Figure 9. Number of stops by grade and word frequency (x-axis), grapheme complexity
(in colour), and graphomotor difficulty (in panels). Transparent points represent individual
data per participant. The surimposed dots and intervals represent the model’s predictions
(median and 95% credible interval of the posterior distribution).

As can be seen in Figure 9, the model most predicts an interaction between the effect
of the word frequency and the effect of first-letter graphomotor difficulty in Grade 1, with
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infrequent words leading to a greater number of stops than frequent words for f (difficult
letter) more than for t (easy letter) (𝛽 = -0.312, 95% CrI [-0.581, -0.032], BF10 = 3.307).
As can be seen from Table 3, others BFs favouring the alternative hypothesis (relative to
the null hypothesis) are BFs for the difference between Grade 1 and Grade 3 (𝛽 = -1.384,
95% CrI [-1.529, -1.243], BF10 = 4.244 x 10^16), as well as between Grade 1 and Grade 5
(𝛽 = -1.556, 95% CrI [-1.709, -1.409], BF10 = 6.510 x 10^15), the effect of word frequency
in Grade 1 (𝛽 = -0.18, 95% CrI [-0.324, -0.034], BF10 = 2.746), and Grade 3 (𝛽 = 0.292,
95% CrI [0.019, 0.568], BF10 = 2.537). Predictions from this model for each condition are
also summarised in Table 4.
Table 4
Estimated number of stops in each condition.

Group Frequency Grapheme complexity Graphomotor difficulty Estimate MAD Lower Upper

Grade1 LF Simple t 2.964 0.275 2.438 3.585
Grade1 LF Simple f 3.411 0.302 2.820 4.070
Grade1 LF Complex t 2.897 0.272 2.382 3.515
Grade1 LF Complex f 3.110 0.289 2.565 3.753
Grade1 HF Simple t 2.676 0.258 2.187 3.246
Grade1 HF Simple f 2.205 0.227 1.791 2.716
Grade1 HF Complex t 3.055 0.283 2.519 3.689
Grade1 HF Complex f 2.454 0.240 2.004 3.002
Grade3 LF Simple t 0.589 0.114 0.392 0.855
Grade3 LF Simple f 0.684 0.126 0.469 0.967
Grade3 LF Complex t 0.648 0.120 0.440 0.923
Grade3 LF Complex f 0.775 0.135 0.543 1.075
Grade3 HF Simple t 0.748 0.133 0.518 1.053
Grade3 HF Simple f 0.712 0.127 0.491 1.001
Grade3 HF Complex t 0.783 0.138 0.544 1.093
Grade3 HF Complex f 0.756 0.134 0.524 1.059
Grade5 LF Simple t 0.613 0.113 0.419 0.866
Grade5 LF Simple f 0.648 0.116 0.443 0.910
Grade5 LF Complex t 0.611 0.115 0.418 0.872
Grade5 LF Complex f 0.582 0.110 0.394 0.830
Grade5 HF Simple t 0.585 0.112 0.395 0.838
Grade5 HF Simple f 0.590 0.111 0.402 0.844
Grade5 HF Complex t 0.567 0.109 0.380 0.811
Grade5 HF Complex f 0.582 0.112 0.391 0.838

Note. For each condition, the ’Estimate’ and ’MAD’ columns contain the median and the
median absolute deviation (MAD) of the posterior distribution, respectively. The ’Lower’
and ’Upper’ columns contain the lower and upper bounds of the 95% credible interval.

For exploratory purposes, we depict below the posterior distribution of the difference
between high-frequency and low-frequency words (i.e., the effect of frequency) separately
for each letter (graphomotor difficulty) and each grade. We averaged the predictions across
both conditions of graphemic complexity, as this effect appeared to be null.

As can be seen in Figure 10, the posterior distribution for the effect of frequency is
almost perfectly centred on zero in all conditions, except for letter f in Grade 1. In this
condition, the 95% credible interval excludes 0 and there is a 0.98 probability that the effect
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Effect of frequency for letter t in Grade 1

-1.0 -0.5 0.0 0.5 1.0

95% HDI
-0.94 0.809

mean = -0.0668

56% < 0 < 44%

Effect of frequency for letter t in Grade 3

-0.2 0.0 0.2 0.4 0.6

95% HDI
-0.193 0.498

mean = 0.148

19.5% < 0 < 80.5%

Effect of frequency for letter t in Grade 5

-0.4 -0.2 0.0 0.2

95% HDI
-0.332 0.268

mean = -0.0368

59.3% < 0 < 40.7%

Effect of frequency for letter f in Grade 1

-2.0 -1.5 -1.0 -0.5 0.0

95% HDI
-1.83 -0.0136

mean = -0.928

97.8% < 0 < 2.2%

Effect of frequency for letter f in Grade 3

-0.4 -0.2 0.0 0.2 0.4

95% HDI
-0.351 0.361

mean = 0.00501

48.9% < 0 < 51.1%

Effect of frequency for letter f in Grade 5

-0.4 -0.2 0.0 0.2 0.4

95% HDI
-0.331 0.289

mean = -0.0278

57.1% < 0 < 42.9%

Figure 10. Effect of word frequency on the number of stops for each grade (in column) and
letter (in row). The histogram contains posterior samples for each effect, where the posterior
distribution is summarised by its mean and 95% highest density interval (HDI). The green
text indicates the probability that the parameter values is either inferior or superior to 0.

of frequency on the number of stops is negative (given the data and the priors).

3.3 Mean velocity

Table 5 reports the estimates (median of the posterior distribution) and associated
95% credible intervals and BFs for all parameters regarding the mean velocity.
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These estimations are better understood visually. Thus, we plot the predictions of
this model against raw data in Figure 11.

# retrieving the model's predictions
velocity_predictions <- df2 %>%

data_grid(graphomotor_difficulty, grapheme_complexity, frequency, group) %>%
cbind(., fitted(

object = mod2, newdata = ., resp = "meanvelocity",
scale = "response", probs = c(0.025, 0.975),
re_formula = NA, robust = TRUE
) ) %>%

ungroup %>%
dplyr::rename(estimate = Estimate, mad = Est.Error, lower = Q2.5, upper = Q97.5)

t f
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Figure 11. Mean velocity by grade and word frequency (x-axis), grapheme complexity (in
colour), and graphomotor difficulty (in panels). Transparent points represent individual
data per participant. The surimposed dots and intervals represent the model’s predictions
(median and 95% credible interval of the posterior distribution).

As can be seen in Figure 11, the model most notably predicts higher velocity for the
difficult letter f as compared to the easy letter t, excepted for low frequency words in Grade
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1. First graders seem to have lower velocity than third graders, who themselves seem to have
lower velocity than fifth graders on average. As can be seen from Table 5, BFs favouring the
alternative hypothesis (relative to the null hypothesis) are BFs for the difference between
Grade 1 and Grade 3 (𝛽 = 0.562, 95% CrI [0.496, 0.628], BF10 = 1.213 x 10^15), as well as
between Grade 1 and Grade 5 (𝛽 = 0.793, 95% CrI [0.729, 0.859], BF10 = 1.859 x 10^16),
and the effect of graphomotor difficulty in Grade 1 (𝛽 = 0.159, 95% CrI [0.066, 0.252], BF10

= 16.037). Predictions from this model for each condition are also summarised in Table 6.

Table 6
Estimated mean velocity in each condition.

Group Frequency Grapheme complexity Graphomotor difficulty Estimate MAD Lower Upper

Grade1 LF Simple t 10.439 0.649 9.228 11.835
Grade1 LF Simple f 11.350 0.730 9.992 12.881
Grade1 LF Complex t 11.140 0.708 9.836 12.636
Grade1 LF Complex f 12.020 0.793 10.538 13.677
Grade1 HF Simple t 10.576 0.676 9.321 12.025
Grade1 HF Simple f 12.975 0.831 11.427 14.742
Grade1 HF Complex t 10.362 0.661 9.131 11.763
Grade1 HF Complex f 13.521 0.855 11.928 15.358
Grade3 LF Simple t 19.061 1.367 16.534 21.957
Grade3 LF Simple f 21.336 1.525 18.496 24.615
Grade3 LF Complex t 19.793 1.427 17.149 22.855
Grade3 LF Complex f 20.730 1.487 18.022 23.867
Grade3 HF Simple t 18.659 1.332 16.159 21.537
Grade3 HF Simple f 21.965 1.535 19.107 25.269
Grade3 HF Complex t 17.680 1.288 15.295 20.402
Grade3 HF Complex f 21.822 1.544 18.957 25.160
Grade5 LF Simple t 23.643 1.627 20.601 27.133
Grade5 LF Simple f 26.864 1.876 23.411 30.888
Grade5 LF Complex t 23.158 1.610 20.167 26.606
Grade5 LF Complex f 26.743 1.868 23.308 30.681
Grade5 HF Simple t 23.599 1.649 20.547 27.100
Grade5 HF Simple f 26.604 1.844 23.236 30.499
Grade5 HF Complex t 24.416 1.695 21.327 27.982
Grade5 HF Complex f 27.526 1.937 23.944 31.594

Note. For each condition, the ’Estimate’ and ’MAD’ columns contain the median and the
median absolute deviation (MAD) of the posterior distribution, respectively. The ’Lower’
and ’Upper’ columns contain the lower and upper bounds of the 95% credible interval.

For exploratory purposes, we depict below the posterior distribution of the difference
between high-frequency and low-frequency words (i.e., the effect of frequency) separately
for each letter (graphomotor difficulty) and each grade. We averaged the predictions across
both conditions of graphemic complexity, as this effect appeared to be null.

As can be seen in Figure 12, the posterior distribution for the effect of frequency is
almost perfectly centred on zero in all conditions, except for letter f in Grade 1. In this
condition, there is a 0.92 probability that the effect of frequency on the mean velocity (in
mm per second) is positive (given the data and the priors).
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Effect of frequency for letter t in Grade 1

-3 -2 -1 0 1 2

95% HDI
-2.38 1.72

mean = -0.322

61.8% < 0 < 38.2%

Effect of frequency for letter t in Grade 3

-6 -4 -2 0 2 4

95% HDI
-5.5 2.77

mean = -1.27

72.4% < 0 < 27.6%

Effect of frequency for letter t in Grade 5

-6 -4 -2 0 2 4 6

95% HDI
-4.17 5.37

mean = 0.597

40.1% < 0 < 59.9%

Effect of frequency for letter f in Grade 1

-1 0 1 2 3 4

95% HDI
-0.616 3.78

mean = 1.57

7.8% < 0 < 92.2%

Effect of frequency for letter f in Grade 3

-4 -2 0 2 4 6

95% HDI
-3.43 5.11

mean = 0.852

34.6% < 0 < 65.4%

Effect of frequency for letter f in Grade 5

-6 -4 -2 0 2 4 6

95% HDI
-5.26 5.41

mean = 0.263

46.2% < 0 < 53.8%

Figure 12. Effect of word frequency on the mean velocity (in mm per second) for each
grade (in column) and letter (in row). The histogram contains posterior samples for each
effect, where the posterior distribution is summarised by its mean and 95% highest density
interval (HDI). The green text indicates the probability that the parameter values is either
inferior or superior to 0.

3.4 Letter size

Table 7 reports the estimates (median of the posterior distribution) and associated
95% credible intervals and BFs for all parameters regarding the letter size.
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These estimations are better understood visually. Thus, we plot the predictions of
this model against raw data in Figure 13.

# retrieving the model's predictions
size_predictions <- df2 %>%

data_grid(graphomotor_difficulty, grapheme_complexity, frequency, group) %>%
cbind(., fitted(

object = mod2, newdata = ., resp = "lettersize",
scale = "response", probs = c(0.025, 0.975),
re_formula = NA, robust = TRUE
) ) %>%

ungroup %>%
dplyr::rename(estimate = Estimate, mad = Est.Error, lower = Q2.5, upper = Q97.5)

t f
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Figure 13. Letter size by grade and word frequency (x-axis), grapheme complexity (in
colour), and graphomotor difficulty (in panels). Transparent points represent individual
data per participant. The surimposed dots and intervals represent the model’s predictions
(median and 95% credible interval of the posterior distribution).

As can be seen in Figure 13, the production of difficult letters was associated with
greater letter size than the production of easy letters for all grades. As can be seen from
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Table 7, BFs favouring the alternative hypothesis (relative to the null hypothesis) are BFs
for the difference between Grade 1 and Grade 3 (𝛽 = -0.125, 95% CrI [-0.181, -0.07], BF10

= 7.090 x 10^3), the effect of graphomotor difficulty in Grade 1 (𝛽 = 0.703, 95% CrI [0.618,
0.788], BF10 = -9.629 x 10^16), and the effect of graphomotor difficulty in Grade 5 (𝛽
= -0.193, 95% CrI [-0.303, -0.084], BF10 = 42.547). Predictions from this model for each
condition are also summarised in Table 8.

Table 8
Estimated letter size in each condition.

Group Frequency Grapheme complexity Graphomotor difficulty Estimate MAD Lower Upper

Grade1 LF Simple t 7.489 0.427 6.691 8.391
Grade1 LF Simple f 14.538 0.837 12.946 16.292
Grade1 LF Complex t 7.665 0.436 6.838 8.586
Grade1 LF Complex f 14.815 0.872 13.169 16.659
Grade1 HF Simple t 7.405 0.429 6.614 8.310
Grade1 HF Simple f 15.058 0.852 13.431 16.889
Grade1 HF Complex t 7.550 0.430 6.735 8.483
Grade1 HF Complex f 16.120 0.922 14.372 18.056
Grade3 LF Simple t 7.147 0.456 6.305 8.115
Grade3 LF Simple f 12.482 0.793 10.983 14.186
Grade3 LF Complex t 7.022 0.449 6.197 7.969
Grade3 LF Complex f 12.503 0.787 11.021 14.182
Grade3 HF Simple t 6.998 0.434 6.180 7.962
Grade3 HF Simple f 12.454 0.786 11.002 14.111
Grade3 HF Complex t 6.972 0.446 6.139 7.925
Grade3 HF Complex f 13.006 0.832 11.461 14.752
Grade5 LF Simple t 8.081 0.498 7.157 9.157
Grade5 LF Simple f 13.509 0.824 11.949 15.281
Grade5 LF Complex t 8.288 0.506 7.343 9.378
Grade5 LF Complex f 14.054 0.873 12.399 15.896
Grade5 HF Simple t 8.625 0.525 7.638 9.761
Grade5 HF Simple f 13.495 0.827 11.942 15.235
Grade5 HF Complex t 8.310 0.515 7.359 9.412
Grade5 HF Complex f 14.209 0.884 12.551 16.088

Note. For each condition, the ’Estimate’ and ’MAD’ columns contain the median and the
median absolute deviation (MAD) of the posterior distribution, respectively. The ’Lower’
and ’Upper’ columns contain the lower and upper bounds of the 95% credible interval.

For exploratory purposes, we depict below the posterior distribution of the difference
between high-frequency and low-frequency words (i.e., the effect of frequency) separately
for each letter (graphomotor difficulty) and each grade. We averaged the predictions across
both conditions of graphemic complexity, as this effect appeared to be null.

As can be seen in Figure 14, the posterior distribution for the effect of frequency is
almost perfectly centred on zero in all conditions, except for letter f in Grade 1. In this
condition, there is a 0.76 probability that the effect of frequency on the letter size (in mm)
is positive (given the data and the priors).
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Effect of frequency for letter t in Grade 1
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Effect of frequency for letter t in Grade 3
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Effect of frequency for letter t in Grade 5
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Effect of frequency for letter f in Grade 1
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Figure 14. Effect of word frequency on the letter size (in mm) for each grade (in column) and
letter (in row). The histogram contains posterior samples for each effect, where the posterior
distribution is summarised by its mean and 95% highest density interval (HDI). The green
text indicates the probability that the parameter values is either inferior or superior to 0.
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5 Session information

sessionInfo()

## R version 4.1.1 (2021-08-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] brms_2.16.2 Rcpp_1.0.7 BEST_0.5.3 HDInterval_0.2.2
## [5] glue_1.4.2 knitr_1.36 papaja_0.1.0.9997 readxl_1.3.1
## [9] GGally_2.1.2 modelr_0.1.8 tidybayes_3.0.1 posterior_1.1.0
## [13] patchwork_1.1.1 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
## [17] purrr_0.3.4 readr_2.0.2 tidyr_1.1.4 tibble_3.1.5
## [21] tidyverse_1.3.1 ggbeeswarm_0.6.0 ggplot2_3.3.5 extraDistr_1.9.1
##
## loaded via a namespace (and not attached):
## [1] backports_1.3.0 plyr_1.8.6 igraph_1.2.6
## [4] splines_4.1.1 svUnit_1.0.6 crosstalk_1.1.1
## [7] rstantools_2.1.1 inline_0.3.19 digest_0.6.28
## [10] htmltools_0.5.2 rsconnect_0.8.24 fansi_0.5.0
## [13] magrittr_2.0.1 checkmate_2.0.0 tzdb_0.1.2
## [16] RcppParallel_5.1.4 matrixStats_0.61.0 xts_0.12.1
## [19] prettyunits_1.1.1 colorspace_2.0-2 rvest_1.0.1
## [22] ggdist_3.0.0 haven_2.4.3 xfun_0.26
## [25] callr_3.7.0 crayon_1.4.2 jsonlite_1.7.2
## [28] lme4_1.1-27.1 zoo_1.8-9 gtable_0.3.0



SUPPLEMENTARY MATERIALS 32

## [31] emmeans_1.7.0 V8_3.4.2 distributional_0.2.2
## [34] pkgbuild_1.2.0 rstan_2.26.3 abind_1.4-5
## [37] scales_1.1.1 mvtnorm_1.1-3 DBI_1.1.1
## [40] miniUI_0.1.1.1 xtable_1.8-4 stats4_4.1.1
## [43] StanHeaders_2.26.3 DT_0.19 htmlwidgets_1.5.4
## [46] httr_1.4.2 threejs_0.3.3 arrayhelpers_1.1-0
## [49] RColorBrewer_1.1-2 ellipsis_0.3.2 pkgconfig_2.0.3
## [52] reshape_0.8.8 loo_2.4.1 farver_2.1.0
## [55] dbplyr_2.1.1 utf8_1.2.2 tidyselect_1.1.1
## [58] rlang_0.4.12 reshape2_1.4.4 later_1.3.0
## [61] munsell_0.5.0 cellranger_1.1.0 tools_4.1.1
## [64] cli_3.1.0 generics_0.1.0 broom_0.7.9
## [67] ggridges_0.5.3 evaluate_0.14 fastmap_1.1.0
## [70] yaml_2.2.1 processx_3.5.2 fs_1.5.0
## [73] nlme_3.1-152 projpred_2.0.2 mime_0.12
## [76] xml2_1.3.2 compiler_4.1.1 bayesplot_1.8.1
## [79] shinythemes_1.2.0 rstudioapi_0.13 gamm4_0.2-6
## [82] beeswarm_0.4.0 curl_4.3.2 reprex_2.0.1
## [85] stringi_1.7.5 ps_1.6.0 Brobdingnag_1.2-6
## [88] lattice_0.20-44 Matrix_1.3-4 nloptr_1.2.2.2
## [91] markdown_1.1 shinyjs_2.0.0 tensorA_0.36.2
## [94] vctrs_0.3.8 pillar_1.6.4 lifecycle_1.0.1
## [97] bridgesampling_1.1-2 estimability_1.3 httpuv_1.6.3
## [100] R6_2.5.1 bookdown_0.24 promises_1.2.0.1
## [103] gridExtra_2.3 vipor_0.4.5 rjags_4-11
## [106] codetools_0.2-18 boot_1.3-28 MASS_7.3-54
## [109] colourpicker_1.1.1 gtools_3.9.2 assertthat_0.2.1
## [112] withr_2.4.2 shinystan_2.5.0 mgcv_1.8-36
## [115] parallel_4.1.1 hms_1.1.1 grid_4.1.1
## [118] minqa_1.2.4 coda_0.19-4 rmarkdown_2.11
## [121] shiny_1.7.1 lubridate_1.8.0 base64enc_0.1-3
## [124] dygraphs_1.1.1.6
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