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Abstract. Objective: Early experience of pain and stress in the neonatal intensive
care unit is known to have e�ect on the neurodevelopment of the infant. However, an
automated method to quantify the procedural pain or perinatal stress in premature
patients does not exist. Approach: In the current study, EEG and ECG data were
collected for more than 3 hours from 136 patients in order to quantify stress exposure.
Speci�cally, features extracted from the EEG and heart-rate variability in both quiet
and non-quiet sleep segments were used to develop a subspace linear-discriminant
analysis stress classi�er. Main Results: The main novelty of study lies on the absence
of intrusive methods or pain elicitation protocols to develop the stress classi�er. Three
main �ndings can be reported. First, we developed di�erent stress classi�ers for the
di�erent age groups and stress intensities, obtaining an area under the curve in the
range [0.78-0.93] for non-quiet sleep and [0.77-0.96] for quiet sleep. Second, a dysmature
EEG was found in patients under stress. Third, an enhanced cortical connectivity and
increased brain-heart communication was correlated with a higher stress load, while
the autonomic activity did not seem to be associated to stress exposure. Signi�cance:
Those results shed a light on the pain and stress processing in preterm neonates,
suggesting that software tools to investigate dysmature EEG might be helpful to assess
stress load in premature patients. Those results could be the foundation to assess the
impact of stress on infants' development and tune preventive care.

Submitted to: Physiol. Meas.

1. Introduction

Early experience of pain and stress in premature infants has been under greater scrutiny

by the clinical investigators due to the long-term e�ects on development [1]. Concerns

about the impact of infant pain on neurodevelopment have been raised in the 80s [2].
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A perinatal stress calculator for the neonatal intensive care unit 2

During their stay in the neonatal intensive care unit (NICU), infants undergo di�er-

ent procedures and care which can generate a cascade of behavioral, physiological and

hormonal responses [1]. This accumulation of painful and/or stressful procedures can

lead to higher stress, which is de�ned as perinatal stress. Although procedural pain is

not necessarily associated to background stress, Ranger [3] pointed out that pain and

stress cannot be discriminated in clinical practice and Jones [4] has shown that there

is an increase in pain reactivity in case of high exposure of background stress. Due to

the possible developmental implications and the worse outcomes of premature infants,

clinicians are interested to assess the e�ect of early-life stress during the patient's stay

in the NICU and later on in their life. It is important to remind that stress is a broader

concept than pain only. However, the pain-related stress is normally investigated since

mainly validated pain scales are used as measurement. Therefore, stress or pain expe-

rience will be both used as synonym of perinatal stress.

The growing interest in perinatal stress has been shown in a variety of recent stud-

ies. Brummelte showed that perinatal stress can a�ect the fractal anisotropy of the

subcortical white matter during infant's neurodevelopment [5]. Cong has shown how

kangaroo care (KC) can alleviate the e�ect of post-stimulus experience at the autonomic

level after heel prick procedure [6]. Similarly, studies that investigated EEG recordings

during pain exposure relied on heel lance procedures and inoculation to assess brain

synchronization in nociceptive processing, as reported in [7], [8]. Speci�cally, the au-

thors have investigated di�erences between tactile and noxious stimuli in evoked related

potentials (ERPs) on the one hand and the involvement of autonomic circuitry in pain

processing on the other hand. Furthermore, handling of patients induces also sleep dis-

turbances that can generate long bradycardias and apneas [9].

However, there is no automated method to classify exposure to stress in premature

infants based on physiological signal background. What is more common is pain-patterns

classi�cation based on biopotentials information in the adult population. Misra [10] has

developed a SVM model to classify low-pain and high-pain using EEG recordings in

adults. In their study, they have shown that θ and γ power increase in the prefrontal

region and β power in the sensorimotor region contralateral to the stimulus, which can

predict the pain patterns with an accuracy of 89.58%. Vijayakumar [11] used a wavelet-

transform of EEG to derive power in multiple frequency bands and discriminated mul-

tiple pain stimuli in adults by means of random forest classi�ers. Other modalities have

also been investigated to automatically classify pain patterns in the adult population.

Gruss [12] has investigated patterns in EMG under thermal stimulation. A noteworthy

aspect was not just the automatic approach to discriminate between baseline and pain

patterns, but also the reported accuracy in function of the pain intensity. Another ex-

ample comes from Brown who used fMRI data to develop a SVM model to determine

the absence and presence of pain during heat stimuli [13].
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A perinatal stress calculator for the neonatal intensive care unit 3

Besides machine learning approaches, the physiological reaction to pain has been in-

vestigated by means of the autonomic response or EEG connectivity patterns in adults.

Loggia [14] has shown the magnitude of the heart-rate and skin-conductance (SC) sweeps

increase with increasing thermal pain stimulation. Functional cortical connectivity can

also vary according to stress or pain disorders, as reported by De Tommaso [15] and

Imperatori [16]. Migraine patients tend to have a greater connectivity at resting state

than controls in laser-induced pain experiments [15]. In addition, post-traumatic stress

disorder seems to lead to a higher power in the θ band and higher connectivity in the α

band [16].

The objective of this study is to develop a classi�cation model to detect the presence

of stress exposure in premature infants. A binary model to discriminate between

stress and low-stress patterns was derived by multiple features extracted for background

physiological activity. As mentioned earlier, perinatal stress is here intended as pain-

related stress. Since there is no clear de�nition of stress in the NICU and there is no

consensus on the level under which the e�ect can be considered negligible or low, di�erent

levels of accumulation of procedural pain have been investigated to de�ne stress.

2. Materials and methods

2.1. Patient sample

The current study used data from the Resilience Study, a prospective longitudinal, co-

hort study conducted in the Neonatal Intensive Care Unit (NICU) of the University

Hospitals Leuven, Belgium. Parents of preterm infants born before 34 weeks gestational

age (GA) and/or with a birth weight less than 1500 g were informed within the �rst

three days after birth. Exclusion criteria were parents age < 18 years, absence or limited

knowledge of Dutch or English, medical (somatic or psychiatric) condition in the par-

ent(s) that impeded participation, and the presence of a major congenital malformation

or central nervous system pathology (grade 3 or grade 4 intraventricular hemorrhage

or periventricular leukomalacia) at the time of consent. Preterm infants (n=136) were

included in the study between July 2016 and 2018.

The research protocol was examined and approved by the Ethical Committee of

University Hospitals Leuven, Belgium. The study was performed in accordance with

the Guidelines for Good Clinical Practice (ICH/GCP) and the latest version of the

Declaration of Helsinki. It was registered at Clinical Trials.gov (NCT02623400).

2.2. Data acquisition

Patients' pain levels were daily recorded at the cot-side. Pain scores were assessed using

the Leuven Pain Scale (LPS), a validated multidimensional pain scale for preterm infants

[17], [18]. The LPS assigns scores (0,1 and 2) to seven categories (facial expression, cry-
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A perinatal stress calculator for the neonatal intensive care unit 4

ing, irritability, drowsiness, muscle tension, comfort, and heart rate). Thus, LPS scores

vary between 0 and 14, with higher scores corresponding to higher pain intensity. A

score of 4 is regarded as the critical threshold for distinguishing a comfortable condition

from an uncomfortable one (not pain-free and/or acute pain). The inter-rater reliability

was 0.88 [17],[18]. Pain assessment was done routinely by bed-side nurses that were

familiar with the LPS and noted it in the patient's electronic medical �le. As part of

the clinical routine, LPS was scored hourly in preterm infants receiving intensive care,

and every three hours in infants receiving intermediate care.

Following the de�nition of stress exposure, stress has been regarded as the ex-

perienced pain in the day before the experimental recording, that is the presence of

non-zero LPS in the patient record. As already mentioned, a common threshold for

uncomfortable conditions for LPS is 4. However, in line with [12], multiple thresholds

for experience of pain in the day before the recording were tested: LPS > 0, LPS > 1,

LPS > 4 to de�ne a patient under stress conditions. The main assumption is that a

greater threshold should lead to a better stress classi�cation performance.

EEG and ECG measurements were simultaneously measured at three di�erent time

points for at least 3 hours. Importantly, infants had to be clinically stable at the time of

recording. The �rst recording took place around 5 days after birth (5days). The second

recording was planned around 34 weeks postmenstrual age (PMA) (34w). For infants

born at 33-34 weeks GA, only one of the two recordings from birth was performed. A

last recording consisted of a 24-hour polysomnography (PSG) that was conducted in

the week before discharge home. The parents only consented for the polysomnography

and opted out for additional EEG measurements. In the course of their NICU stay,

some infants were transferred to level II units in hospitals closer to home. Therefore,

not all infants have multiple recordings and some LPS measures are missing. However,

we strived to readmit infants to our hospital for the PSG measurement. A total of 245

recordings had corresponding pain scores available and were analyzed. Table 1 summa-

rizes the clinical characteristics of patients at each measuring point. EEG data were

collected according to the 10-20 system using nine monopolar electrodes (Fp1, Fp2 , C3,

C4 , Cz, T3, T4, O1, O2) and monitored with the OSG system (OSG BVBA, Brussel).

Each EEG signal was referenced to Cz, which was then excluded from further analysis,

leaving a total amount of 8 channels. ECG was then used to derive the tachogram or

HRV signal as subsequent R-peak to R-peak intervals (RRi). The R-DECO toolbox [19]

was used for R-peaks detection.

2.3. Preprocessing and sleep-stage analysis

EEG was band-pass �ltered between 0.5 and 20 Hz and independent component analysis

was used to remove EOG artefacts. To determine whether the channels were contami-
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A perinatal stress calculator for the neonatal intensive care unit 5

Table 1. Summary of patient data set at di�erent time points: GA (gestational age),
birth weight (in g), PMA (postmenstrual age) at EEG and ECG recording. Data are
median [interquartile range].

5days (n=118) 34w (n=67) PSG (n=117)

GA(weeks) 31.14 [28.86-32.43] 28.86 [26.86-30.71] 30.29 [27.29-31.71]
Birth Weight (g) 1475 [1120-1725] 1140 [900-1480] 1225 [950-1540]
PMA(weeks) 32.14 [30-33.43] 34.14 [33.86-34.29] 38.43 [37.29-39.57]
LPS 1 [0-3] 0 [0-2] 0 [0-2]

nated by movement-related or non-cortical artefacts, multiple criteria were applied on a

window-basis in the feature extraction step. Criteria were as follows: standard deviation

below 50 µV , absolute di�erence sample-to-sample below 50 µV and absolute amplitude

below 200 µV [20]. If more than 4 channels had an artifact in a window, that window

was excluded.

In order to compensate the e�ect of premature ventricular contractions, the RR

intervals were corrected as discussed in [19]. In addition, the R-peak locations were also

used to derive the modulation signal m(t) via the integral pulse frequency modulation

(IPFM) model, which also accounts for premature contractions [21].

In order to assess whether sleep-wake ciclicity can in�uence stress classi�cation,

sleep states were automatically derived from the EEG recordings. Sleep is characterized

by the development of behavorial states with the maturation of the infant and can

be divided in quiet-sleep, active sleep and awake [22]. Generally, the EEG signal is

relatively more discontinuous during quiet sleep, while the other two states present a

more continuous tracing as well as a higher variability of the cardiorespiratory pattern

and more body movements [23],[24]. Most of the data-driven algorithms focus on the

detection of QS, while the other two states are normally merged in one single state

de�ned as non-quiet sleep. The probability of Quiet Sleep (QS ) was derived from the

EEG signal with 2 data-driven approaches: a Convolutional Neural Network (CNN)

model by [25] and the CLASS algorithm reported in [26]. These two methodologies

generate a pro�le for QS occurrence from the full-channel EEG activity, which was used

to derive two 20 minutes window, one associated to QS and the other to non-quiet sleep

information (nQS ). Each of the window was respectively located around the maximum

or the minimum of the probability pro�le for QS and nQS, considering epoch 10 minutes

before and after each prominence.

2.4. Univariate features extraction

Multiple features were extracted on a single channel basis. These attributes span from

the classical spectral analysis to more re�ned nonlinear approaches and are meant to

describe the presence of dysmature EEG and HRV. Following the de�nition by Pavlidis
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A perinatal stress calculator for the neonatal intensive care unit 6

[27], a dysmature EEG is generally characterized by discontinuity, persistence of slow-

waves and general lack of smoothness, while a HRV of a dysmature neurovegetative

system is characterized by lower complexity and and a prominent slow-wave baseline.

Di�erent studies have shown that pain elicitation can generate burst-type activity in

premature infants [28] and the patients that stay longer inside the NICU are the

candidates to have a greater negative impact on the neurodevelopment [1]. Therefore,

the relationship among dysmature EEG, dysmature HRV and stress can be investigated.

In the next section, a general overview of the algorithm to derive those features will be

presented.

2.4.1. Power features The power spectral density of the tachogram was computed

with both the Welch-periodogram and the continuous wavelet transform. For the

periodogram, 70% was chosen as overlap between windows, while analytical Morlet was

picked as the mother wavelet for the wavelet transform [29]. In case of EEG, the power

was only computed using the Welch Periodogram for the following frequency bands:

δ1 = (0.5− 2] Hz, δ2 = (2− 4] Hz, θ = (4− 8] Hz, α = (8− 16] Hz and β = (16− 20]

Hz. The power-features were computed in non-overlapping windows of 30 sec and 4 sec

subwindows and it was grand-averaged along QS or nQS channel wise [30], [31]. In case

of HRV, the absolute powers of high-frequency (HF), low-frequency (LF) and very-low

frequency band (VLF) were computed as sum of the PSD bins in the following frequency

bands: HF = (0.2−4] Hz, LF = (0.08−0.2] Hz, V LF = (0.0033−0.08] Hz [32], which

slightly di�ers from the frequency bands de�nition reported in [33]. The relative power

indices were also derived as V LF
LF

, LF
HF

, LF
LF+V LF

, LF
HF+LF

. Both, the modulated signal m(t)

and the resampled HRV, were used for this analysis. The spectral density was computed

in QS and nQS epochs using the entire 20 minutes [34],[35]. The Welch periodogram

subwindow was set to 5 minutes. In case of the wavelet transform, the time-frequency

values were then averaged in both sleep epochs.

2.4.2. Multifractality A more discontinuous signal is normally characterized by a lower

entropy, since its pattern has higher predictability or memory-persistence. This means

that the signal can be easily predicted by its past sample and, therefore, a more discon-

tinuous signal is characterized by higher regularity. Normally, those signals are charac-

terized by a long-range autocorrelation property and a power-law spectrum, whose rate

of decay is controlled by the Hurst exponent. In the speci�c case that a time series is

characterized by one exponent, this signal is also de�ned as self-similar (it repeats itself

over time) or monofractal. However, regular or discontinuous signals might have multi-

ple exponents to control the degree of regularity over time. Those signals are known as

multifractals. In general, signals with a high-degree of regularity are known as fractals

or scale-free signals. An e�cient way to estimate the Hurst exponent H is based on the

wavelet transform [36]. Wendt proposed to estimate the spectrum of singularities via

wavelet leaders, which measures the di�erent Hurst exponents in the signal and their

associated fractal dimension. The c1,c2,c3 parameters respectively represent the location
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A perinatal stress calculator for the neonatal intensive care unit 7

of the maximum, the width and the asymmetry of the singularity spectrum. Therefore,

c1 is usually considered the main Hurst exponent from the multifractal signal, while c2
and the di�erence between the maximal and minimal Hurst exponent are variational

indices to represent the dispersion of fractals inside the signal. Further details of the

methodology are reported in [36], which also describes the WLBFM toolbox to estimate

the fractal parameters in MATLAB.

In case of EEG, the triplet c1,c2,c3 , the maximal and minimal Hurst exponents

and their di�erence ∆H were estimated for each EEG channel in non-overlapping win-

dows of 150 s and the results were averaged along the 20 minutes window channel wise

for both QS and nQS. The window 150 s was picked as epoch to assess the long-term

correlation of EEG, according to the �ndings reported by [37],[38],[39].

In case of HRV, the triplet c1,c2,c3, the maximal and minimal Hurst exponents and

∆H were derived for the entire 20 minutes window for both QS and nQS epochs, in order

to assess the slower oscillations which drives the HRV power-law spectrum [35],[34].

2.4.3. Multiscale Entropy The persistence of slow-waves, the discontinuity and the pre-

dictability of a signal can be measured with sample entropy (SampEn), which counts

m-long templates matching within a certain tolerance r (usually de�ned as 20% the

standard deviation of the signal) to assess the probability of having similar patterns

[40]. However, in order to take into account the irregularities across di�erent scales,

Costa el al. [41] proposed the multiscale sample entropy (MSE), which measures Sam-

pEn at di�erent scales τ using a coarse-grained version of the signal of interest. In

physiological signal processing, SampEn has successfully been used in the prediction

of sepsis and assessment of sleep quality in premature infants [42], [40], [40], while the

multiscale entropy has been used in prediction of congestive heart failure [41] as well as

in sleep-state detection in newborns [37].

In this study, both SampEn and MSE were computed to predict stress levels. In

particular, SampEn(m, r) and its variations quadratic sample entropy and coe�cient of

sample entropy QSE(m) and COSE(m) were computed with m spanning in the range

m = 2, 3, 6, following the �ndings by Lake [40] and Li [43], while the MSE curve is

derived for the scales τ = 1, ..20, as originally discussed by [41]. The complexity index

was then derived via the area under the MSE curve, CI =
∑

τ MSE(τ). In addition,

the MSE at scale 3 and 20 (MSE(τ = 3) and MSE(τ = 20)) were also considered

[44]. It is important to remember that SampEn and the MSE at scale 3 represent the

information at small scales or high frequency, while MSE at scale 20 represents the

information at longer scales or lower frequency. CI is a general measure of irregularity

across scales. In case of EEG, those features were computed in 150 sec non-overlapping

windows and grand-averaged along the time course of each sleep state, while the entire

20 minutes window was used for entropy features of the HRV. As already mentioned,
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A perinatal stress calculator for the neonatal intensive care unit 8

the length of the epoch was derived according to the entropy analysis [37] and the

multifractal analysis by [38],[39].

2.4.4. Neural features The dysmature EEG features can also be quanti�ed by means of

the NEURAL toolbox [45], available on GitHub. The approach proposed by the authors

yields an exhaustive range of features that can be obtained from amplitude, burst and

spectral information, connectivity analysis and the range EEG (rEEG). As mentioned

by O'Toole [45], the range EEG (rEEG) was proposed as an alternative to amplitude-

integrated EEG (aEEG), since a clear de�nition of the amplitude integrated EEG is

missing and di�erent EEG machines implement di�erent algorithms for its estimation.

The range EEG represents a �ltered, compressed and rescaled version of the EEG: it

is normally band-pass �ltered between [2-15] Hz, compressed and recti�ed in the time

domain with a windowing procedure and rescaled in a linear-log amplitude scale. More

details are reported in [45]. Among all the attributes, it is worth to mention that rEEG

was used to quantify the level of dysmaturity by several morphology indices, such as

its lower and upper margin, its standard deviation and the rEEG asymmetry. These

two margins represent respectively the 5th and 95th percentiles of the rEEG, while

the rEEG asymmetry expresses the di�erence in distance from the median to these

2 margins. More details are reported in [45]. These features were derived only for

the EEG and they were obtained using windows of 2 s with 50% overlap for spectral

features and 2 s windows without overlap for amplitude features. All the indices were

then grand-averaged for each sleep state.

2.5. Multivariate features

Features were also extracted in a multivariate fashion to describe how signals interact

in case of stress. Speci�cally, EEG cortical connectivity and brain-heart interaction

were investigated. The former was estimated by means of functional connectivity

methodologies [31], while the latter was derived via the wavelet coherence [46] and

the phase dependent dynamics [47].

2.5.1. EEG connectivity Functional cortical connectivity was analysed by means

of lagged and instantaneous connectivity as well as synchronization of oscillatory

processes from the EEG channels [31], [48], [49]. The greatest advantage of lagged

connectivity is the resistance to volume conduction and low spatial resolution [50].

Therefore, the connectivity among EEG channels was estimated with coherence as

Cxy(f) = Pxy(f)

Pxx(f),Pyy(f)
, where Pxy(f) is the cross-spectrum between two channels x and

y, while the Pxx(f), Pyy(f) are the autospectra of the two signals. The instantaneous

connectivity is derived via magnitude squared coherence, which represents the squared

magnitude of the coherency, i.e. k2xy(f) = |Cxy(f)|2. The lagged connectivity is derived

via imaginary coherence, which represents the imaginary part of the coherence, i.e.

Ixy(f) = I(Cxy(f)). Synchronization was computed with phase-locking approaches,
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A perinatal stress calculator for the neonatal intensive care unit 9

which require to de�ne the phase φ of the main frequency bands. Therefore, each signal

was decomposed via a discrete wavelet transform according to the following dyadic split

δ1, δ2, θ, α and β and the phase of each frequency band was then derived via the

Hilbert-Transform. The synchrony between the phase φx(t) of x and the phase φy(t)

of y was then derived via the phase locking value PLVxy = 1
n

∣∣∣∑ ejφxy(t)
∣∣∣ and phase

lag index PLIxy = 1
n

∣∣∣sgn(φxy(t))
∣∣∣, where φxy(t) represents the phase di�erence between

φx(t) and φy(t) and sgn is the sign function. The statistical validity of each coupling

was then tested with amplitude adjusted Fourier transform surrogates. Speci�cally,

each coupling must be greater in value than the coupling estimated for 19 surrogates,

in order to guarantee a level of statistical signi�cance α = 0.05. In case of coherency,

the surrogates approach generates a threshold T (f) in function of the frequency, which

was used to zeroed the frequency bins in both k2xy(f) and Ixy(f) that didn't pass the

surrogate testing. In case of the magnitude squared coherence, the k2xy(f) was averaged

in the bands δ1, δ2, θ, α and β. In case of the Imaginary Coherence, the maximal

amplitude of I(Cxy(f)) was then considered in the same frequency bands [48]. The

EEG connectivity coherency was estimated using a Welch-periodogram approach for

non-overlapping 30 s window. The subwindow was set to 4 secs and overlap to 70%,

according to the �ndings by [29],[31]. Similarly, The phase locking value and phase lag

index were computed in non-overlapping 30 s window, based on the previous analysis

on premature infants EEG connectivity [31], [49].

2.5.2. Brain-heart interaction: Wavelet Coherence The interaction between brain and

heart can be estimated as the correlation in the frequency domain between the envelope

of δ power and the heart-rate variability. The method by Piper consists of the time-

frequency coherence between the δ oscillations derived with the continuous wavelet

transform and the HRV [46]. In order to match the temporal scale, both signals

were resampled at 8 Hz. The continuous wavelet coherence was then computed as

CBH(t, f) = sBH(t,f)
sB(t,f)sH(t,f)

, where sBH(t, f) is the cross-scalogram between the brain time-

course and heart time-course, sB(t, f) is scalogram of the brain time-course and sH(t, f)

that of the heart time-course. The di�erent scalograms were computed with analytic

Morlet as mother wavelet. In order to assess the discriminatory power of the brain-

heart, the coherence was investigated in the following frequency bands: VLF, LF and

the combined band of VLF and LF band V LFLF = (0.033−0.2] Hz. The main reason is

the frequency shift that HRV undergoes with maturation of the neurovegetative system

from VLF to LF band [44]. In addition, stress information is commonly associated to the

low-frequency band of HRV. Therefore, the brain-heart interaction has been tested with

LF oscillations as heart time-course. Similarly to the scalp connectivity, the coupling

value was derived as mean of the squared time-frequency coherence in the considered

band or the absolute maximum of the imaginary part of the time-frequency coherence.

The continuous wavelet coherence was derived for the entire 20 minutes in both QS and

nQS epochs and the investigation was limited to channels C3 , C4 and HRV, following
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A perinatal stress calculator for the neonatal intensive care unit 10

the studies in adults by Faes et al. [51] and in premature infants by Pfurtscheller [52]. In

order to assess the statistical signi�cance, we used amplitude-adjusted Fourier transform

surrogates similarly to EEG functional connectivity.

2.5.3. Brain-heart interaction: Phase dependent dynamics The dependent dynamics

between two systems can be investigated via phase reconstruction, as shown by

Rosenblum et al. [47]. Their methodology estimates the phase dynamics of interacting

oscillators and provides a directionality index, which describes the direction and the

intensity of the coupling. The directionality index is a value bounded between [-1,1],

which gives an integrated measure of how strongly a system drives (a value close to 1)

or how sensitive it is to be driven (close to -1). The main limit of this methodology

is the estimation of the phases, since di�erent methods exists with di�erent underlying

hypotheses. The phase of a signal can be estimated via the Hilbert Transform in case of

an oscillatory process (e.g. a band-passed EEG signal in the delta band). In case of a

point-process like the HRV, the phase of the signal has to be derived taking into account

this pulse-type of information. Therefore, the modulatory signal m(t) was considered in

the reconstruction of the phase dynamics between brain and heart. In addition, since

both EEG and m(t) are wide frequency band signals, the phases of the signals were

derived as phases of the main carrier frequency from those signals. The main carrier

frequency is de�ned as the frequency with highest power in the signal. In case of the

neonatal EEG, the burst activity around 1 Hz is considered the main carrier frequency of

the cortical activity [53], while the pacemaker of the modulatory activity is centered on

0.1 Hz, which is between VLF and LF bands [52]. A method to derive the phase of the

carrier frequency is the ridge wavelet-transform, which is wavelet transform that �nds

the carrier frequency by looking at the maximum of the spectrum in each time-point [54].

The directionality index was derived only for the channel C3 and m(t) and the entire

20 minutes window was used to derive the phases of the two signals and compute the

interaction. The signi�cance for the directionality index was tested with Cycle-Phase

permutation testing, which randomly permutes cycles of a signal phase to generate

surrogates [55]. 19 surrogates were derived to reach a level of statistical signi�cance

α = 0.05. However, the results of the directionality index strictly depends on the order

of �nite Fourier series to estimate the phase dependencies [47]. Therefore, the order

was tested in the range [1:10]. The ridge-wavelet transform was estimated with MODA

toolbox [56], while the directionality index was derived with the DAMOCO toolbox [57]

(both implemented in MATLAB).

2.5.4. Graph theory A graph is a diagram of points or nodes, whose relations are

de�ned by the connecting lines among them. If each node represents a signal, the

relationship among the time series can be described by a weighted network, where

each link underlines the existence of coupling and the weight represents the intensity of

coupling. Speci�cally, a multivariate methodology generates a coupling matrix M ×M
de�ned as Aij = Cxi↔xj , where Cxi↔xj is the general coupling intensity, M is the

Page 10 of 28AUTHOR SUBMITTED MANUSCRIPT - PMEA-103548.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



A perinatal stress calculator for the neonatal intensive care unit 11

number of processes and i, j = 1, ..,M . The matrix A = Aij can be interpreted as

an adjacency matrix of an undirected graph, with weighted edges [58]. If the direction

of interaction is not speci�ed (as underlined by xi ↔ xj), Aij is symmetric since its

entries represent statistical correlations without any speci�c direction. Those speci�c

entries, Aij, de�ne the �ow of information among nodes in the network and therefore

its topology. Consequently, a list of topological indices have been thoroughly discussed

to describe the architecture of a network [58],[59]. Among the topological measures, the

path length, the clustering coe�cient and the eccentricity are the most common indices

to assess the network's level of integration. Speci�cally, the path length is the average

shortest path between two nodes in the network. The lower the value the higher the

integration in the network. The eccentricity of a node represents the maximum distance

from one node to any other node in the graph, while the clustering coe�cient is de�ned

as the average of all weighted triangles around a node and mirrors the graph coupling

density. A triangle is here intended as the smallest non-trivial motif that a node can

form with two neighboring nodes. Alongside the topological indices, the amount of

super�uous connections of the adjacency matrix is introduced. Any graph can risk to

be overly connected or under-connected. Even after surrogate testing, some connections

can emerge as signi�cant, but they result from physiological redundant connectivity

[61]. Therefore, we can test the resilience, which is the capacity of the network to keep

the global connectivity high even if some connections are removed. Therefore, suppose

we order all the connections in descending order based on the intensity of the coupling.

Suppose also the set of original weights of A is de�ned as w0
ij. The number nsup of

super�uous connections is derived as the number that maximize the following quantity

max
n

H(wij(n)) + E(wij(n)) = −
∑
ij

wij(n) log(wij(n)) +
∑
ij

(wij(n)− w0
ij)

2

where is the entropy of the matrix A where n weights were removed. The values

wij(n) represent the remaining non-zero weights, while E(wij(n)) is the squared error

between the new matrix A and the original matrix. The number nsup represents the

number of removed connections that maintain the global connectivity high without

signi�cant deviation from the original matrix. The optimization is to remove as many

connections as possible, which results in an increasing error and decreasing connectivity

entropy. In an extreme scenario, a redundant network keeps the global entropy high

even if there are few non-zero coupling in the matrix; and, in general, they will have

a higher number nsup of super�uous connections. In this study, graph were applied

in two scenarios. The �rst one was EEG scalp connectivity, where the number M of

processes was set to the number of EEG channels (M = 8). Speci�cally, the adjacency

matrix was derived every 30 s. The topological indices were computed for each window

and averaged along the entire 20 minutes of QS and nQS. The second case relates to

brain-heart connectivity computed with wavelet coherence. In this scenario, M shrunk

to 3 because only two EEG channels (C3 and C4) and HRV were considered. Since
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A perinatal stress calculator for the neonatal intensive care unit 12

the coupling method is based on a time-frequency approach, the adjacency matrix was

computed for each time sample of the 20 minutes window and the derived topological

indices were then grand-averaged for each sleep state.

2.6. Sleep-based Classi�cation

A customized software tool was developed using MATLAB built-in machine learning

libraries to classify patients into stress or absence of stress conditions. To summarize,

the following groups of features were derived for each patient and for both QS and nQS:

• Power features for both HRV and EEG: 7 features for each HRV time-series and 5

features for each EEG channel

• Entropy features: 12 features for each EEG channel and HRV time-series

• Regularity features: 6 features for each EEG channel and HRV time-series

• NEURAL features for EEG: 30 for all EEG channels

• EEG � connectivity topological indices: 76 features for all EEG channels

• Brain-heart connectivity topological indices: 18 features for all EEG channels and

HRV combined and 10 directionality indices.

Considering the number of channels, the di�erent frequency bands and the di�erent

type of methodologies, 800 features in total were extracted.

The study investigated if there was any association between those features and

stress experience in the NICU. As mentioned earlier, the presence of stress was de-

�ned as experience of pain the day before the recording. In order to test the di�erent

level of pain in the stress modeling, the following thresholds were considered LPS > 0,

LPS > 1, LPS > 4 in the de�nition of the presence of stress (similarly to [12]). Mul-

tiple classi�cation methods were tested such as SVMs and linear discriminant analysis

(LDA), but subspace ensemble with LDA has been found superior in separating the two

classes. Therefore, the results reported here are only for subspace-LDA [60]. Subspace

LDA is an ensemble method like random forest, which uses a di�erent learner (LDA,

instead of a decision tree) and makes an inherent feature selection to �nd the best clas-

si�cation subspace or feature subsets to separate the data.

Given that the number of features should be below one tenth of the training dataset

size and the datapoints in the di�erent datasets can go as low as 50, the subspace of fea-

tures has been restricted to 5 [61]. However, before tuning of the model, a basic �ltering

approach was applied. Features were included in the subspace ensemble algorithm if

intra-feature correlation was below 90% and they had the highest ratio between intra

and inter variance ratio [61]. In addition, the subject's PMA is an important feature

covariate given the maturational changes in both EEG and HRV features. Therefore,

if there was a signi�cant Pearson correlation between the selected feature and PMA
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A perinatal stress calculator for the neonatal intensive care unit 13

(p < 0.05), the linear correction on the generic feature F Fcorr = F − b1 ∗ age − b0
was applied, where Fcorr was the baseline value deprived of age e�ects. However, this

correction works at best if and only if there is a linear dependence between age and the

considered feature. The association between the selected features and the stress expe-

rience was also tested via a Kruskal-Wallis test, both for the binary variable LPS > 0

and the three groups LPS = 0, LPS = [1− 4], LPS = 4.

The classi�cation accuracy was estimated with a leave-one-patient-out (LOPO)

scheme and the model was tuned in each training-set with a 10-fold cross-validation.

The �nal accuracy of all test sets was obtained by pooling the class estimates of all

patients together. Therefore, only one set of performance indices was obtained for each

classi�er. Speci�cally, each model was assessed via the misclassi�cation error (E(%)),

the area under the curve (AUC) and the Cohen's kappa between machine learning labels

on the pooled test-set obtained with the LOPO scheme.

The stress classi�cation was tested in the three datasets based on 3 monitoring

groups (5days, 34w, PSG) and both sleep states. The stress classi�cation was also

tested on 4 di�erent regroupings of the recordings based on PMA: ≤ 32 weeks, (32−34]

weeks, (34− 36] weeks, > 36 weeks. The reason to test the classi�cation performance

on those di�erent groups is twofold. On the one hand, this classi�cation might still

be in�uenced by age in the monitoring groups (especially in the �rst group, where

the frequency of hands-on care and the heterogeneity of PMA and gestational age are

the highest). On the other hand, if a classi�er has to be implemented at the cot-

side, clinicians tend to be interested in a classi�er that considers the age of the patient

instead of the monitoring group. This age division follows clinical and physiological

de�nition. The 32 weeks is the threshold to de�ne early prematurity, while 36 weeks is

the end of full gestation. The period that goes from 32 to 34 weeks is characterized by

synaptogenesis from the subcortical areas towards cortical areas, while the phase after

34 weeks experiences the development of the white matter and the reduction in size of

the subcortical plate [62].

3. Results

The results for the stress classi�cation for the monitoring groups are reported in Fig-

ure 1 and 2, respectively for QS and nQS. The left panel of both Figures reports the

AUC, while the right one shows the kappa score. The AUC, intended as measure for

accuracy, is above 0.7 for both QS and nQS. Speci�cally, the AUC of two sleep states

respectively lies in the range [0.73-0.97] and [0.70-0.90]. However, the description of

the classi�er would be incomplete without reporting the agreement between the ground

truth and the predicted labels, expressed by Cohen's kappa. The kappa scores span the

range [0.24-0.68] for QS and [0.18-0.68] for nQS, which suggests a moderate association

between features and the outcome variable, but also an increased AUC due to an unbal-
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A perinatal stress calculator for the neonatal intensive care unit 14

anced design of the dataset. In fact, the most noticeable aspect is that kappa does not

necessarily increase with increasing pain threshold, but it can also decrease (as shown

in the PSG group), which can be due to the presence of an unbalanced dataset.

The results for age groups are reported in Figure 3 and 4. Similarly to the monitor-

ing groups, AUC can respectively span in the range [0.78-0.93] for nQS and [0.77-0.96]

for QS and the kappa score span the range [0.18-0.59] for nQS and [0.20-0.63] for QS.

As mentioned in the monitoring groups, the AUC can increase beyond 0.7, however

Cohen's kappa shows a moderate association between features and outcome variable

or the possibility of an unbalanced dataset. Moreover, kappa score can either increase

or decrease in function of the pain score and it especially decreases in groups above

36 PMA weeks in nQS. No substantial di�erences were noticed between the two sleep

groups.

Figure 5 shows how the di�erent groups of features contribute to the classi�cation

of stress. Results are here only reported for LPS > 0. In both sleep states, two main

aspects emerge. HRV features consistently underperform, especially in nQS, with AUC

never above 0.62. In addition, there is a consistent predominance of EEG and Scalp

connectivity features (CONN) for stress discrimination in the young and old age group

(respectively ≤ 32 weeks and > 36 weeks), while brain-heart interaction features can

outperform the EEG or connectivity features in the period from 32 weeks to 36 weeks.

This is also con�rmed by feature's topoplots and boxplots, displayed in �gures from

6 to 10. Young patients show a marked decrease in complexity and phase-lag-index

eccentricity in θ band in case of stress, as reported in �gure 6 and 7. It is important to

remember that the lower the eccentricity, the higher the integration in the network (and

therefore the connectivity). This persistence of slow-wave activity, higher regularity and

connectivity are also present in term babies: �gures 9 and 11 report a higher power

in δ2 band and connectivity in δ1 band for PMA > 36 weeks. In the period between

32 and 36 weeks, EEG is characterized by a higher rEEG lower margin as well as a

higher rEEG asymmetry, as shown in �gure 8. On top of that, a higher brain-heart

synchrony is present in case of stress, as shown by the lower eccentricity in �gure 10.

Figure 12 speci�cally reports the results related to the selected univariate EEG features

in a three group fashion, i.e. LPS = 0, LPS = [1 − 4], LPS > 4, and for almost the

entire age range investigated in this study. Those boxplots con�rm that the reported

di�erences for LPS > 0 persist even if the trend is investigated in three categories.

In particular, the EEG shows a marked decrease in complexity with increasing level of

stress for PMA ≤ 32 weeks as well as an increased power in δ2 band for PMA > 36

weeks and an increased range EEG asymmetry band for PMA = PMA = (32 − 34]

weeks.
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A perinatal stress calculator for the neonatal intensive care unit 15

Figure 1. Performance for the stress classi�er in function of the Leuven Pain Score
(LPS) collected the day before the recording. The results are reported for the three
monitoring group for the non-quiet sleep epoch: the recordings within 5 days from birth
(5days), the recordings at 34 weeks (34weeks) and the polysomnographies at discharge
(PSG). The left panel displays the area under the curve, while the right one reports
the kappa score. The legend reports the threshold applied on the LPS to de�ne the
stress group (LPS > 0, LPS > 1, LPS > 4).

Figure 2. Performance for the stress classi�er in function of the Leuven Pain Score
(LPS) collected the day before the recording. The results are reported for the three
monitoring group for the quiet sleep epoch: the recordings within 5 days from birth
(5days), the recordings at 34 weeks (34weeks) and the polysomnographies at discharge
(PSG). The left panel displays the area under the curve, while the right one reports
the kappa score. The legend reports the threshold applied on the LPS to de�ne the
stress group (LPS > 0, LPS > 1, LPS > 4).
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A perinatal stress calculator for the neonatal intensive care unit 16

Figure 3. Performance for the stress classi�er in function of the Leuven Pain Score
(LPS) collected the day before the recording. The results are reported for the 4 post-
menstrual age groups for the non-quiet sleep epoch: ≤ 32 weeks, (32 − 34] weeks,
(34− 36] weeks, > 36 weeks. The left panel displays the area under the curve, while
the right one reports the kappa score. The legend reports the threshold applied on the
LPS to de�ne the stress group (LPS > 0, LPS > 1, LPS > 4).

Figure 4. Performance for the stress classi�er in function of the Leuven Pain Score
(LPS) collected the day before the recording. The results are reported for the 4 post-
menstrual age groups for the quiet sleep epoch: ≤ 32 weeks, (32−34] weeks, (34−36]

weeks, > 36 weeks. The left panel displays the area under the curve, while the right
one reports the kappa score. The legend reports the threshold applied on the LPS to
de�ne the stress group (LPS > 0, LPS > 1, LPS > 4).
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A perinatal stress calculator for the neonatal intensive care unit 17

Figure 5. Classi�cation performance for each set of features in discriminating stress
with threshold LPS > 0. The results are reported for the 4 post-menstrual age groups
for the quiet sleep epoch: ≤ 32 weeks, (32− 34] weeks, (34− 36] weeks, > 36 weeks.
The left panel displays the area under the curve in non-quiet sleep, while the right
one reports the AUC for quiet sleep. The legend reports the four sets of attributes :
heart-rate variability features (HRV), EEG features (EEG), EEG connectivity features
(CONN), brain-heart synchrony features (BH).

Figure 6. EEG complexity shows a marked decrease in case of stress during nQS for
patient with post-menstrual age < 32 weeks. The left panel reports the topoplot of the
complexity index on the scalp (area under MSE curve), while the right one reports the
boxplot of the complexity index for each channel (p-value reported with Kruskal-Wallis
test). The reduction of EEG complexity can be explained by the greater discontinuity
in case of stress.

4. Discussion

In the current study, we performed analysis of brain activity and heart-rate in order to

extract features to develop a stress classi�er for premature infants at cot-side. Physio-

logical signals, such as EEG and HRV, were collected together with the pain-scale data.

The main novelty of study lies on the absence of intrusive methods or pain elicitation
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A perinatal stress calculator for the neonatal intensive care unit 18

Figure 7. The synchrony in the θ band shows a marked increase in case of stress
during nQS for patient with post-menstrual age < 32 weeks. The left panel displays
the topoplot for the eccentricity on the scalp (computed with phase lag index in θ

band), while the right one reports the boxplot of eccentricity for each channel (p-value
reported with Kruskal-Wallis test). The eccentricity is a measure of distance, therefore
the lower the eccentricity the higher the connectivity.

Figure 8. The rEEG showed a marked increase in case of stress during nQS for
patients with post-menstrual age (PMA) between 32 and 36 weeks. The left panel
reports the boxplot of rEEG lower margin for the di�erent frequency bands in patients
with PMA between 32 and 34 weeks, while the right one reports the boxplot of rEEG
asymmetry for the di�erent frequency bands with PMA between 34 and 36 weeks
(p-value reported with Kruskal-Wallis test).

protocols to develop the stress classi�er. Three main �ndings can be reported. First,

discontinuous EEG is related with a higher stress load, especially at young age. Second,

a higher scalp and brain-heart connectivity are biomarkers of stress experience. Third,

the stress classi�cation results are comparable to the pain-pattern classi�cation litera-

ture.

The results in �gure 6 and 9 shows a lower complexity of EEG for premature in-

fants (PMA ≤ 32 weeks) and higher δ2 power in age-matched premature patients (PMA

> 36 weeks). In addition, the subjects show a higher rEEG margin and asymmetry in

the period from 32 to 36 weeks, as displayed in �gure 8. These �ndings suggest the

perinatal stress might increase EEG discontinuity or dysmaturity, which refers to a type

of EEG signal characterized by persistence of slow-wave (intended as higher power in

δ band and signal regularity), discontinuity (intended as burst pattern which increases
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Figure 9. The δ2 power showed a marked increase in case of stress (LPS > 0) during
QS for patients with post-menstrual age > 36 weeks. The left panel displays the
topoplot of the δ2 power on the scalp, while the right one reports the boxplot of δ2
power for each channel (p-value reported with Kruskal-Wallis test).

Figure 10. The Brain-heart connectivity measured via wavelet coherence in the LF
band during nQS for patients with a post-menstrual age between 34 and 36 weeks.
Stress exposure increases coupled dynamics between brain and heart. However, most
of the linked dynamics is shared between EEG channels C3 and C4. The left panel
reports the graph of brain-heart network, while the right panel displays a boxplot for
its eccentricity.

regularity) and presence of transient waveforms [27]. The reasons to have a dysmature

EEG might be multiple. Figure 5 shows predominance of connectivity and EEG features

for the younger patients, who have EEG complexity as one of the most discriminative

feature (Figure 6). This might simply be due to the fact that younger patients are the

one to experience higher stress and therefore a discontinuous cortical activity might be

one of the most discriminative features. However, according to Fabrizi [63], the full

development of pain circuitry is completed by 35 weeks PMA, while infants at 28 weeks

tend to have immature evoked potentials following painful stimuli. Under pain elici-

tation, Fabrizi et al. observed delta-brushes and a 10-fold increase in the δ2 band in

premature infants [63], which could explain results in Figures 6, 8, 9. Consequently, the

higher discontinuity might be driven by a higher stress exposure, which is also a hypoth-
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Figure 11. The synchrony in the δ1 band shows a marked increase in case of stress
during nQS for patients with post-menstrual age > 36 weeks. The left panel reports
the topoplot of the eccentricity (computed with phase lag index in δ1 band) on the
scalp, while the right one reports the boxplot of the eccentricity for each channel (p-
value reported with Kruskal-Wallis test). The eccentricity is a measure of distance,
therefore the lower the eccentricity the higher the connectivity.

esis supported by Figure 12. Although all reported features in the paper were tested in

a three-group fashion, this �gure speci�cally reports the results related to the selected

univariate EEG features, which best illustrate the relationship between stress and EEG

dysmaturity. If data are grouped in three stress categories (LPS = 0, LPS = [1 − 4],

LPS > 4), EEG complexity, δ2 power and asymmetry show a trend related with stress

levels, as also shown by the Kruskal-Wallis test and the multicomparison tests with

the sign (∗) for p ≤ 0.05 and the sign (∗∗) for p ≤ 0.01. In other words, those box-

plot trends might further suggest that an "increase of dysmaturity" can also be due

to early-life pain experience. Although conclusions cannot be drawn without a further

study with a multiclass framework, the majority of signi�cant multiple comparison tests

reveal di�erences between LPS = 0 and LPS = [1− 4], which might suggest that signs

of discomfort are enough to detect di�erences in physiological data. This might also be

linked to the asymmetric distribution reported in Table 1 and it suggests that stress

can be discriminated with LPS > 0. However, the lack of signi�cant comparison tests

between LPS = [1 − 4] and LPS > 4 can be simply due to a lower number of intense

pain patients (LPS > 4), which is also highlighted by the asymmetric distribution of

Table 1. In addition, the infants cortical responses are known to be related to pain

intensity and animal models have shown that power in θ band can also increase in case

of noxious stimuli, which is further con�rmed in the lower margin from rEEG in the θ

band (�gure 8) and higher connectivity in θ band (�gure 7).

Concerning the greater cortical and brain-heart synchrony in case of stress load,

the more intense EEG interactions can be the result of a delayed development since the

functional cortical connectivity as measured by EEG decreases with maturation [49],

[64]. After 32 weeks PMA, neural �bers growth is dominated by interhemispheric con-

nections to form the core of the adult white-matter. At the same time, those �bers grow
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a) b)

c)

Figure 12. The �gure shows the EEG complexity in nQS (panel a) for patients
with post-menstrual age ≤ 32 weeks, the range EEG asymmetry in nQS (panel b) for
patients in the range between 34 and 36 weeks and the delta2 power during QS for
patients with post-menstrual age > 36 weeks (panel c). Data are reported in three
groups LPS = 0, LPS = [1− 4], LPS = 4. The p-values are obtained with a Kruskal-
Wallis test and the multicomparison tests signi�cance is expressed by (∗∗) for p ≤ 0.01

and (∗) for p ≤ 0.05. Similarly to the binary comparison, higher stress values are
related to higher delta2 power and asymmetry as well as a lower complexity. These
results show how stress can increase the level of dysmaturity of EEG with a higher
level of cumulated pain.

into the cortical plate together with thalamo-cortical connections, while the subcorti-

cal plate diminishes in size [64]. Those events, together with cortex gyri�cation, lead

to the establishment of cortical specialization and they are accompanied by profound

changes in EEG, which should be less discontinuous [65] and less functionally connected

[64]. The persistent low-frequency rhythms and connectivity can be a sign of delayed

development or emergence of altered cognitive processing [66]. Those �ndings seem to

support the fact that stress does not only increase the power, but also the connectivity,

in the low-frequency bands (as reported by �gures 7, 11, and 10).

Interestingly, the autonomic activity seems less discriminative in detecting stress

exposure, while �gure 5 shows that the brain-heart interaction have better perfor-

mance in stress classi�cation. Stress exposure might increase the synchrony between

the cardiovascular activity and the cortical activity, as reported in �gure 10. In addi-

tion, Pfurtscheller has shown that burst activity might induce an HR response, which is

greater in case of closer burst-activity [67]. One might speculate the stress might modu-
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late cortical activity, which can modulate the cardiovascular system. Similar discussion

were reported for stroke [68] and epilepsy [69], but further testing is required to prove

the presence of a synchronized physiological network in case of stress.

Based on the results provided from �gure 1 to 4, substantial di�erences between

sleep states are not noticed, as also previously reported by Grunau, since EEG responses

to noxious stimuli are not sleep dependent [1]. If these results are compared with the

literature about pain classi�cation [10], [12], the reported stress classi�ers reached sim-

ilar performances in terms of accuracy. However, several aspects should be highlighted.

The pain classi�cation literature usually does not report kappa scores, while this study

suggests a moderate association between the predicted labels and the true labels (the

Cohen's kappa mostly lies in the range [0.4-0.6]). Gruss et al [12] reported Cramers's

V to support the accuracy rates of thermal pain classi�cation. Although their results

suggest a strong association between their features and the level of pain (the variable

V mostly lies in the range [0.6-0.8]), Gruss et al. focused on evoked pain, while this

study focuses on perinatal stress detection based on physiological background activity.

In addition, unlike Gruss [12], an increasing pain threshold does not always lead to

an increase of classi�cation performance. In particular, a decreased Kappa is observed

for a higher pain threshold in old patients (> 36 weeks) and higher kappa for higher

pain threshold in younger patients (≤ 36 weeks), which can indicate either a milder

experience of pain or a more di�cult discrimination of stress at older age. This result

is line with �ndings by [70], which indicates a predominant e�ect of early procedural

pain in brain development. Therefore, PMA becomes an essential factor in stress dis-

crimination. This is not only due to the reduced amount of experienced pain later on

in the NICU stay, but also the interplay between pain and development which can shift

the set of features necessary to discriminate stress. Consequently, age correction is not

only required for clinical purposes, but it is fundamental since the physiological response

to perinatal stress di�ers with patient's development [70]. However, the e�ect of post-

menstrual age and sleep-wake cyclicity were thoroughly minimized. The analysis based

on QS/nQS, the age correction and the division in age groups according to Pavlidis et

al. [65] limited the in�uence of development on the stress classi�er. It should also be

mentioned that the stress de�nition was based on the pain score of the day before and

represents the cumulated e�ect of the previous day. Therefore, the classi�cation can be

barely in�uenced by the sleep staging of the recording under investigation and the e�ect

of cumulative pain or stress is expected to in�uence the physiology of the infant, as also

shown in case of pain stimulation [7].

In a nutshell, the current study suggests that preterm infants that show greater

stress have a more dysmature or discontinuous EEG, as reported by the lower complexity

(Figure 6), the lower rEEG asymmetry (Figure 8) and higher power in δ2 band (Figures 9

and 12). Although the decrease in EEG complexity and the better performance of the

stress classi�er in the youngest patients (Figures 1, 2, 3, 4) might point out that patients
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under stress are most vulnerable at lower gestational age, the stress results seem not only

to depend on the age of the patient, but they can vary based on the threshold used to

de�ne stress. In this perspective, the increase in δ2 power might be related to the increase

of the cortical activity due to accumulation of pain (Figure 9). Furthermore, stress

exposure seems to also induce a further synchronization among the di�erent modalities,

with an increase in EEG connectivity in θ and δ1 band (Figures 7 and 11)) and a

higher brain-heart synchrony (Figure 10). Connectivity seems also to fundamentally

contribute to the stress classi�cation, as highlighted in Figure 5. Up to our knowledge,

this is the �rst study that tries to automatically classify stress in preterm infants in an

unobtrusive way, which can justify the moderate association between features and stress.

Our results show that the relative contribution of the di�erent features and modalities

of the stress classi�cation model change with the infants' age. Therefore, pain scores as

well postmenstrual age are essential factors to take into account for stress discrimination

in the NICU.

5. Conclusion

The current study is the �rst to discriminate background stress in premature infants

based on physiological data. The main novelty of study lies on the absence of

intrusive methods or pain elicitation protocols to investigate physiological data under

stress conditions. This approach could provide insights in the relationship between

neurodevelopment and stress impact in the neonatal intensive care unit. Alongside

a well-established literature about EEG responses to noxious stimuli and procedural

pain, the �ndings in this study show a possible relationship between dysmature EEG

and stress. In addition, a more synchronized cortical activity as well as a tighter

communication between the slow-wave cortical activity and the cardiovascular activity

have been found in case of stress, while the autonomic activity does not show a clear link

with perinatal stress. The current �ndings suggest that an automatic tool to investigate

disorganized EEG can be used not only for brain development, but can also be helpful

to assess the level of stress in infants at the cot-side.
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