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ABSTRACT
Wireless communications play a significant role in facilitating several mobile applications like unmanned
aerial vehicles, high-speed railway, and vehicular communications. Particularly, the concept of connected
vehicles brings a new level of connectivity to vehicles. Along with novel on-board computing and sensing
technologies, vehicular networks serve as a key enabler of intelligent transportation systems and smart cities.
However, in such environments, the propagation medium between the network nodes is highly time-varying
leading to considerable reliability challenges. Ensuring communication reliability by the means of accurate
channel estimation in such environments is very important. Initially, vehicular communications standards
apply the basic least square (LS) estimation that is not enough for the dynamic vehicular environment.
Moreover, the frame structure has low pilot density, making channel tracking a difficult task to achieve,
especially in high mobility scenarios. Conventional estimators either employ data subcarriers besides
pilots in the estimation process, or the estimated channel and noise statistics. Therefore they suffer from
significant performance degradation due to high error probability resulting from hard symbol demapping
and the sensitivity against the change in the employed channel statistics. The motivation behind this
paper is to overcome this challenge by proposing a low complex and robust channel estimation scheme
based on truncated discrete Fourier transform (T-DFT) that updates the channel estimates using DFT
interpolation without the need for data subcarriers decisions and the estimated channel statistics. Moreover,
further performance improvement can be achieved by considering temporal averaging on top of T-DFT
estimation. Analytical and simulation results carried out using different vehicular channel models reveal the
performance superiority of the proposed schemes compared to conventional estimators while recording a
significant decrease in computational complexity and execution time.

INDEX TERMS Channel estimation, vehicular communications, DFT interpolation.

I. INTRODUCTION

VEHICULAR communications [1] have been introduced
to facilitate several future smart city applications such

as safety, infotainment, roadway information dissemination,
and autonomous driving. By staying connected, vehicles can
more efficiently communicate with each other, therefore miti-
gating traffic accidents that are considered one of the leading
causes of death all over the world [2]. Two vehicular com-
munications standards have been proposed: (i) WiFi-based
where IEEE 802.11p initially proposed to manage vehicular
communications [3], [4]. (ii) Cellular-based where LTE and
5G networks are employed in vehicular communications [5].

In this work we focus on the IEEE 802.11p WiFi-based
standard that have been proposed to meet vehicular com-
munications needs, especially communication reliability that
represents the most important feature in managing real-time
applications. However, we note that the proposed work can
be generalized to any other standard that manages wireless
communications in doubly-dispersive channels.

Both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications suffer from a harsh signal propagation
environment mainly due to the following two reasons: (i)
One or both communications nodes i.e. the transmitter and
the receiver are in motion. As a result, the vehicular channel
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variation raises as the vehicle velocity increases, leading
to a short channel coherence time. (ii) There are fixed and
mobile scatterers that introduce significant channel multi-
path components. Therefore, the vehicular channel becomes
doubly selective, i.e. in time and frequency and its estimation
is then challenging.

IEEE 802.11p standard allocates two full preamble sym-
bols at the beginning of each frame that are used for channel
estimation at the receiver using the basic least square (LS)
estimator [6]. Moreover, the channel is estimated once for
each frame, and the estimated channel is used to equalize the
whole frame. Due to the time-varying nature of the vehicular
channel, the basic estimated channel can quickly become out-
dated, resulting in overall poor system performance. There-
fore, to track the channel, four pilots are multiplexed with the
data subcarriers in each transmitted symbol.

Conventional channel estimators that have been proposed
for the IEEE 802.11p standard assume that the allocated
pilot subcarriers are not sufficient for accurately tracking the
vehicular channel, since they are not spaced closely enough
to capture the variation of the channel in the frequency
domain. Therefore, IEEE 802.11p conventional estimators
are mainly based on the demapped data subcarriers, besides
pilot subcarriers to update the channel estimate for each
received symbol. This procedure is referred to as data-pilot
aided (DPA) channel estimation. In order to improve the
basic channel estimation performance, the spectral temporal
averaging (STA) estimator [7] applies averaging in both the
time and the frequency domains as post-processing opera-
tions on top of DPA estimation. STA estimator outperforms
other conventional estimators in low signal-to-noise ratio
(SNR) region, while it suffers from significant performance
degradation in high SNR region especially in high mobility
vehicular scenarios. Constructed data pilots (CDP) estimator
[8] assumes a high correlation between each two successive
received symbols, thus the final estimated channels are up-
dated over the received frame according to this assumption.
CDP estimator outperforms STA estimator especially in high
SNR region but still cannot perform well in high mobility
scenarios when high modulation orders are employed. Im-
proved CDP (iCDP) [9] estimator combines both STA and
CDP estimators, thus the overall performance in the whole
SNR region is improved. In [10], the authors proposed the
time domain reliable test frequency domain interpolation
(TRFI) estimator that utilizes frequency domain interpolation
in order to also improve the CDP estimator. Inspired by the
conventional TRFI estimator, the authors in [11] proposed
an enhanced TRFI E-TRFI estimator, where the employed
interpolation utilizes all the subcarriers within the received
symbol to improve the interpolation accuracy. After that, a
noise attenuation step is employed leading to improved over-
all performance. E-TRFI outperforms STA, CDP, and TRFI
estimators especially in the high SNR region, but similarly
to the other conventional estimators, it suffers from consid-
erable performance degradation in high mobility vehicular
scenarios. Another conventional approach is to employ the

linear minimum mean square error (LMMSE) estimator [12]
where the estimated channel and noise statistics are utilized
in the channel estimation. The LMMSE estimator does not
depend on the DPA estimation, therefore, it outperforms the
conventional DPA-based estimators. However, LMMSE suf-
fers from significant performance degradation when there is
a mismatch between the estimated and real channel and noise
statistics represented by the channel correlation matrices and
the noise power. Therefore, making it impractical in such
scenarios.

The performance degradation of the conventional estima-
tors is mainly related to two reasons: (i) Conventional esti-
mators are based initially on the basic LS channel estimation
applied at the received preamble symbols. This basic esti-
mation utilizes only the predefined preamble sequence in the
frequency domain, without taking into consideration the LS
estimation at the channel delay taps. Thus, it ignores the rela-
tionship between the channel taps, and the presence of noise
in the estimation process. Therefore, basic LS estimation
is noisy and unreliable to be considered as a starting point
of the conventional estimators. (ii) Conventional estimators
employ the DPA estimation, which is based on demapping
the received data subcarriers and using them as pilots. This
mechanism is also unreliable since the demapping error is
enlarged from one symbol to another, hence leading to an
additional error in the estimation process.

Therefore, in order to overcome the drawbacks of the
conventional estimators, in this paper, we propose an estima-
tion method that depends mainly on employing the tracking
pilots without considering the basic LS estimation at the
preamble, the DPA estimation, and the estimated channel and
noise statistics. As a result, the data subcarriers demapping
step is not required and the demapping error is completely
eliminated, resulting in better estimation accuracy.

Based on the above context, in this paper, we propose a
robust, low complex channel estimation scheme for IEEE
802.11p standard that is based on truncated discrete Fourier
transform (T-DFT) interpolation, where the classical DFT in-
terpolation is adapted to the IEEE 802.11p standard structure
by employing the pilot subcarriers within each symbol to
estimate the dominant vehicular channel taps. Moreover, we
show that updating the estimated channels for the received
symbols using time-averaged T-DFT leads to considerable
noise alleviation throughout the frame, resulting in reducing
the bit error rate (BER) and normalized mean-squared error
(NMSE) performance. The contributions in this paper can be
listed as follows

• A low complex T-DFT channel estimation scheme is
proposed. It adapts the DFT-based channel estimation
to the IEEE 802.11p standard by estimating only the
channel impulse response of dominant taps using the
predefined pilots. It is worth mentioning, that the pro-
posed estimator can be easily adapted to other standards
that have different parameters i.e. in terms of number of
subcarriers and number of allocated pilots.
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TABLE 1: IEEE 802.11p modulation orders and data rates.

Modulation orders BPSK QPSK 16QAM 64QAM
Coding rate 1

2
3
4

1
2

3
4

1
2

3
4

2
3

3
4

Data rate (Mbps) 3 4.5 6 9 12 18 24 27
Data bits per

OFDM symbol
24 36 48 72 96 144 192 216

• The temporal averaging T-DFT (TA-TDFT) scheme is
proposed, which applies an appropriate temporal aver-
aging to T-DFT in order to enhance the estimation per-
formance which results in an improved BER and NMSE
performance in different vehicular channels conditions.

• Analytical derivations of the NMSE expressions of
T-DFT and TA-TDFT are developed and demonstrate
how the noise power is degraded throughout the re-
ceived frame.

• The proposed T-DFT and TA-TDFT estimators employ
only the tracking pilots without the DPA estimation
step, thus, the enlarged DPA de-mapping error is totally
eliminated. Moreover, they do not depend on the pre-
estimated channel correlation matrices and SNR estima-
tion. Therefore, achieving a considerable robustness su-
periority compared to conventional LMMSE estimator
in case of mismatch between the pre-estimated and the
real channel correlation matrices and SNR estimation.

• A detailed computational complexity and execution
time analysis is provided for the studied channel esti-
mators, where we show that the proposed T-DFT-based
schemes outperform conventional estimators with less
computational complexity and execution time.

The remainder of this paper is organized as follows: in
Section II, the IEEE 802.11p standard and the system model
are described. Section III provides a detailed description of
the conventional channel estimations schemes. The proposed
T-DFT and TA-TDFT schemes, as well as their analytical
NMSE derivations, are described in Section IV. In Sec-
tion V, simulation results are presented for different vehicular
channel models conditions employing different modulation
orders, where the performance of the proposed schemes is
evaluated in terms of BER and NMSE. Detailed computa-
tional complexity and execution time analysis are provided
in Section VI. Finally, the paper is concluded in Section VII.

Notations: Throughout the paper, vectors are defined with
lowercase bold symbols x whose k-th element is x[k]. Time
and frequency domain vectors are represented by x and x̃
respectively. Matrices are written as uppercase bold symbols
X . E [.] is the expectation operator. The trace of a square
matrix X is trace {X}. The notation ⊙ and ⊘ denote the
element-wise multiplication and division operations, respec-
tively. Finally. the pseudo inverse and conjugate matrices of
X are denoted by X† and XH respectively.

II. IEEE 802.11P SYSTEM MODEL
IEEE 802.11p is an approved upgrade of the IEEE 802.11a
standard that adds wireless access in vehicular environments.

This upgrade includes data exchange between high-speed
vehicles (V2V) and between the vehicles and the roadside
infrastructure (V2I) in the licensed intelligent transportation
systems band [13]. IEEE 802.11p supports sending data at
different data rates employing different modulation orders,
as described in Table 1. Moreover, it employs orthogo-
nal frequency-division multiplexing (OFDM) transmission
scheme with K = 64 total subcarriers. Kon = 52 active
subcarriers are used, and they are divided into Kd = 48
data subcarriers and Kp = 4 pilot subcarriers. The remaining
Kn = 12 subcarriers are used as a guard band. Compared
to the IEEE 802.11a standard, the channel bandwidth is
halved, resulting in a 10 MHz bandwidth instead of 20 MHz
in 802.11a. Also, the carrier spacing is reduced by half.
Moreover, all OFDM timing parameters used in the regular
802.11a are doubled. This enhances the system reliability
required by vehicular communications applications since a
larger guard interval reduces the inter-symbol interference
caused by multi-path propagation. Table 2 shows the IEEE
802.11p physical layer specifications. A detailed discussion
of the IEEE 802.p and its features are presented in [6].

A. IEEE 802.11P FRAME STRUCTURE AND SIGNAL
MODEL

An IEEE 802.11p frame consists mainly of three parts: (i)
preamble, (ii) signal field, and (iii) OFDM data symbols. The
preamble includes ten short training symbols (STS) t1 to t10,
each of duration 1.6 µs. The STS are used at the receiver for
signal detection, diversity selection, coarse frequency offset
estimation, and timing synchronization. The following two
6.4 µs long training symbols (LTS) are prepended with a
cyclic prefix (CP) of duration 3.2 µs and used for channel
estimation at the receiver. After that, the signal field is used
to specify the rate and length information that is required for
decoding the received OFDM data symbols. It consists of one
CP-OFDM symbol that carries 24 bits divided into four fields
as follows

• Rate: the first 4 bits convey information about the
employed modulation and coding rate.

• Length: 12 bits integer (6 to 17) that indicate the num-
ber of data octets requested in the transmission.

• Reserved: bits 5 and 18 that are reserved for future use.
• Tail: the last 6 bits that are set to zeros and used

to synchronize the descrambler at the receiver, and to
return the convolutional encoder to the zero state.

Finally, the OFDM data symbols that carry the actually
transmitted data bits are inserted. Figure 1 illustrates the
IEEE 802.11p frame structure in the time domain. In this
paper, we assume perfect synchronization at the receiver, and
we ignore the signal field for simplicity. Therefore, we focus
on a frame that consists of two LTS at the beginning followed
by I OFDM data symbols. The i-th transmitted frequency-
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FIGURE 1: IEEE 802.11p transmitted frame structure in the time domain.

domain OFDM symbol x̃i[k], is partitioned as

x̃i[k] =

 x̃di [k], k ∈ Kd.
x̃pi [k], k ∈ Kp.
0, k ∈ Kn,

(1)

where 0 ≤ k ≤ K − 1. x̃di [k] and x̃pi [k] denote the
modulated data symbols and the predefined pilot symbols
allocated at a set of subcarriers denoted Kd and Kp, respec-
tively. The other guard band subcarriers are allocated at the
set of subcarriers Kn. xi[k] is converted to the time domain
by applying the inverse discrete Fourier transform, such that

xi[n] =
1√
K

K−1∑
k=0

x̃i[k]e
j2π nk

K . (2)

B. RECEIVED SIGNAL AND CHANNEL MODEL

After passing through the doubly-selective vehicular channel,
the received OFDM symbol yi[n] can be expressed as

yi[n] =

L−1∑
l=0

hi[l, n]xi[n− l] + vi[n]

=
1√
K

K−1∑
k=0

h̃i[k, n]x̃i[k]e
j2π nk

K + vi[n],

(3)

where hi[l, n] denotes the delay-time response of the discrete
linear time-variant (LTV) channel of L taps at the i-th OFDM
symbol, whereas h̃i[k, n] =

∑L−1
l=0 hi[l, n]e

−j2π lk
K is the

frequency-time response. Moreover, vi denotes the additive
white Gaussian noise (AWGN) of variance σ2. The i-th
received frequency-domain OFDM symbol is obtained from
(3) by means of discrete Fourier transform (DFT), and thus

ỹi[k] =
1

K

K−1∑
q=0

x̃i[q]

K−1∑
n=0

h̃i[q, n]e
−j2π

n(k−q)
K + ṽi[k].

(4)

Note that h̃i[q, n] is time-variant at the scale of the OFDM
symbol duration and within the symbol itself. Accordingly

h̃i[q, n] =

L−1∑
l=0

e−j2π lq
K

∫ ν=νd

ν=−νd

h̄(l, ν)ej2πνniej2πνndν,

(5)

where h̄(l, ν) =
∑
n
h[l, n]e−j2πnν is the channel delay-

Doppler response, ν denotes the normalized Doppler fre-
quency, ni = i(K + Kcp) + Kcp. And νd = fd

Fs
is the

maximum Doppler frequency. Let

h̄i[l, v] =
1

K

K−1∑
q=0

K−1∑
n=0

h̃i[q, n]e
−j2π nv

K ej2π
ql
K

=

∫ ν=νd

ν=−νd

h̄(l, ν)ej2πνni

K−1∑
n=0

e−j2π(ν− v
K )ndν,

(6)

be the discrete delay-Doppler response at the i-th OFDM
symbol. For simplicity, we assume h̄(l, ν) to be uncorre-
lated in both domains, such that E

[
h̄(l, ν)h̄∗(l′, ν′)

]
=

Sh(l, ν)δ[l−l′]δ(ν−ν′), where Sh(l, ν) is the delay-Doppler
spectrum [14], then using (6), we have

E
[
h̄i[l, v]h̄

∗
i [l, v

′]
]
=∫ ν=νd

ν=−νd

Sh(l, ν)

K−1∑
n=0

K−1∑
n′=0

e−j2πν(n−n′)e−j2π n′v′−nv
K dν.

(7)

This correlation is independent of the index i, and it can be
approximated as

E
[
h̄i[l, v]h̄

∗
i [l, v

′]
]
≈ K2ρ[l, v]δ[v − v′], ρ[l, v] = Sh(l,

v

N
).

(8)

The time selectivity of the channel depends on mobility. In
very low mobility, where fd ≈ 0, h̃i[q, n] = h̃[q] is constant
during the whole frame. For moderate to high mobility, the
channel variation within the duration of one OFDM symbol
is negligible, and therefore, h̃i[q, n] = h̃i[q]. At very high
mobility, the channel becomes variant within a single OFDM
symbol. In this case, h̃i[q, n] = h̃i[q] + ϵ̃i[q, n], where

h̃i[q] =
1

K

K−1∑
n=0

h̃i[q, n], and ϵ̃i[q, n] = h̃i[q, n]− h̃i[q].

(9)
Replacing this in (4), we get the full equation of the signal
model represented by

ỹi[k] = h̃i[k]x̃i[k] + ẽi,d[k] + ṽi[k], k ∈ Kon. (10)

The term ẽi,d[k] represents the Doppler interference given by

ẽi,d[k] =
1

K

K−1∑
q=0
q ̸=k

K−1∑
n=0

h̃i[q, n]e
−j2π

n(k−q)
K x̃i[q]

=
1

K

∑
q∈Kon
q ̸=k

L−1∑
l=0

h̄i[l, k − q]e−j2π lq
K x̃i[q].

(11)
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TABLE 2: IEEE 802.11p physical layer specifications.

Parameter IEEE 802.11p
Bandwidth 10 MHz

Carrier frequency 5.9 GHz

CP duration 1.6 µs

Symbol duration 8 µs

STS duration 1.6 µs

LTS duration 6.4 µs

Overall STS duration 16 µs

Overall LTS duration 16 µs

Total subcarriers 64

Pilot subcarriers 4

Data subcarriers 48

Null subcarriers 12

Kp {±7,±21}
Kn {0,±27,±28,±29,±30,±31,−32}
Kd Kon \Kp ∪ Kn

Subcarrier spacing 156.25 KHz

The Doppler interference destroys the orthogonality of
the subcarriers within the received OFDM symbol, resulting
in a significant degradation in the overall system perfor-
mance [15]. Assuming the subcarriers are uncorrelated with
power Eq , i.e. E

[
x̃i[q]x̃

∗
i [q

′]
]
= Eqδ[q − q′] and using (8)

then

E
[
ẽi,d[k]ẽ

∗
i,d[k

′]
]
=

L−1∑
l=0

∑
q∈Kon
q ̸=k

Eqρ[l, k − q]δ[k − k′]

= σ2
d[k]δ[k − k′].

(12)

Thus, the Doppler interference is assumed uncorrelated.
However, the variance σ2

d[k] = E
[
|ẽi,d[k]|2

]
depends on the

subcarrier index. Noting that

h̃i[k] =
1

K

L−1∑
l=0

h̄i[l, 0]e
−j2π kl

K , (13)

then, the channel gain and Doppler interference are uncor-
related, i.e. E

[
h̃i[k]ẽ

∗
i,d[k]

]
= 0. Moreover, h̃i[k] can be

estimated from L uncorrelated taps defined by h̄i[l, 0].

C. IEEE 802.11P VEHICULAR CHANNEL MODELS
As we have discussed, the wireless channel in vehicular
environments is considered a time-varying channel including
multi-path propagation and large Doppler shift [16]. Vari-
ous studies that analyze the statistical characteristics of the
wireless channel in vehicular environments are presented
in [17], [18], and [19]. In this paper, we consider the tapped
delay line (TDL) vehicular channel models proposed in [20].

These TDL models include six vehicular channel models
for different vehicular environments. They are obtained by a
measurement campaign that was implemented in metropoli-
tan Atlanta. Table 3 provides the different characteristics of
these vehicular channel models. Moreover, further investiga-
tions and discussion concerning the detailed channel models
measurement setups are shown in [21].

III. CONVENTIONAL CHANNEL ESTIMATION SCHEMES
In this section, conventional channel estimators that adhere
to the IEEE 802.11p standard structure are presented and
discussed. These estimators assume that the allocated four
pilots within each OFDM symbol are insufficient for accu-
rately tracking the time variations of the vehicular channel.
Therefore, they employ the data subcarriers in the channel
estimation. DPA estimation is considered as an initial esti-
mation, where the previously estimated channel is consid-
ered as a preamble to estimate the channel for the current
received symbol. The STA estimation applies frequency and
time averaging to the DPA estimated channel, while the E-
TRFI estimation considers frequency domain interpolation to
improve the DPA estimation.

A. DPA ESTIMATOR
The DPA estimator is based on employing the demapped
data subcarriers of the previously received OFDM symbol to
estimate the channel for the current OFDM symbol according
to the following steps

1) LS estimation: that is implemented using the two LTS
received preambles denoted as ỹ(p)

1 [k], and ỹ
(p)
2 [k], and

the predefined preamble sequence p̃[k] such that

ˆ̃
hLS[k] =

ỹ
(p)
1 [k] + ỹ

(p)
2 [k]

2p̃[k]
. (14)

2) Equalization: the i-th received OFDM symbol is
equalized by the previously DPA estimated channel,
such that

ỹeqi [k] =
ỹi[k]

ˆ̃
hDPAi−1

[k]
,
ˆ̃
hDPA0

[k] =
ˆ̃
hLS[k]. (15)

3) Demapping: ỹeqi [k] is demapped to the nearest con-
stellation point to obtain d̃i[k].

4) Final DPA estimation: DPA updates the final esti-
mated channel for the i-th received OFDM symbol by

ˆ̃
hDPAi

[k] =
ỹi[k]

d̃i[k]
. (16)

DPA scheme is considered as the initial estimation pro-
cess utilized by most IEEE 802.11p conventional estimators.
However, DPA estimation has two main limitations. First, it
is based on the basic ˆ̃

hLS estimation suffering from noise
enhancement. Second, the demapping step in DPA results
in a significant demapping error mainly in low SNR region,
and this error is enlarged in high mobility vehicular scenarios
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TABLE 3: Vehicular channel models characteristics following Jake’s Doppler spectrum.

Channel
model

Channel
taps

Vehicle
velocity
[kmph]

Max Doppler
shift [Hz]

Average path
gains [dB]

Path
delays [ns]

RTV-SS 12 32-48 500
[0, 0, -9.3, -9.3, -14, -14,

-18, -18, -19.4,
-24.9, -27.5, -29.8]

[0, 1, 100, 101, 200, 201,
300,301, 400,
500, 600, 700]

RTV-EX 12 104 700
[0, 0, 0, -9.3, -9.3, -9.3,

-20.3, -20.3, -21.3,
-21.3, -28.8, -28.8]

[0, 1, 2, 100, 101, 102,
200, 201, 300,
301, 400, 401]

RTV-UC 12 32-48 300
[0, 0, 0, -11.5, -11.5, -11.5,

-19, -19, -25.6,
-25.6, -28.1, -28.1]

[0, 1, 2, 100, 101, 102,
200, 201, 300,
301, 500, 501]

VTV-EX 11 104 1200
[0, 0, 0, -6.3, -6.3, -25.1,

-25.1, -25.1, -22.7,
-22.7, -22.7]

[0, 1, 2, 100, 101, 200,
201, 202, 300,

301, 302]

VTV-UC 12 32-48 500
[0, 0, -10, -10, -10, -17.8,

-17.8, -17.8, -21.1,
-21.1, -26.3, -26.3]

[0, 1, 100, 101, 102, 200,
201, 202, 300,
301, 400, 401]

VTV-SDWW 12 104 1150
[0, 0, -11.2, -11.2, -19, -21.9,

-25.3, -25.3, -24.4,
-28, -26.1, -26.1]

[0, 1, 100, 101, 200, 300,
400, 401, 500,
600, 700, 701]

employing high modulation orders. Moreover, since the DPA
estimated channels are updated iteratively over the received
frame, the demapping error propagates through the frame
leading to significant performance degradation.

B. STA ESTIMATOR

The STA estimator [7] has been proposed to further improve
the DPA estimation by applying two additional steps on
top of the DPA estimation. The first step is by performing
frequency domain averaging to the DPA estimated channel
including the current and the neighboring subcarriers as
follows

ˆ̃
hFDi [k] =

λ=β∑
λ=−β

ωλ
ˆ̃
hDPAi [k + λ], ωλ =

1

2β + 1
, (17)

After that, the final STA channel estimate is updated using
time averaging between the previously STA estimated chan-
nel and the frequency averaged channel in (17), such that

ˆ̃
hSTAi

[k] = (1− 1

α
)
ˆ̃
hSTAi−1

[k] +
1

α
ˆ̃
hFDi

[k]. (18)

STA estimator performs well in low SNR region. However, it
suffers from a considerable error floor in high SNR region
because of large DPA demapping error. It is worth men-
tioning that in order to improve the STA performance, the
optimal values of the frequency and time averaging coeffi-
cients denoted by α and β should be estimated according

to channel statistics so that α and β can be adapted to the
channel model. Channel model statistics are hard to obtain
in real case scenarios, therefore, α and β are considered as
fixed values that are chosen experimentally to achieve the
best acceptable performance.

C. E-TRFI ESTIMATOR
Recently, the authors in [11] proposed the E-TRFI estimator
that is considered as an upgraded version of the conventional
TRFI estimator [10]. The main E-TRFI upgrades are in the
reliable and unreliable subcarriers selection algorithm, where
the Euclidean distance between the demapped subcarriers is
used as a reliability condition. Moreover, E-TRFI employs
the estimated channels at the Kn subcarriers in order to im-
prove the cubic interpolation accuracy. The E-TRFI estimator
proceeds as follows:

1) Enhanced LS estimation: The conventional LS es-
timation presented in (14) estimates the channel at
Kon subcarriers. However, the E-TRFI employs the
estimated channel also at the remaining Kn subcarriers
that are interpolated as follows

ˆ̃
hE-LS[k] = F64(F

H
52F52)

−1FH
52
ˆ̃
hLS[k], k ∈ K, (19)

where F64 ∈ CK×L and F52 ∈ CKon×L denote the
truncated DFT matrix obtained by selecting K, Kon
rows, and L columns from the K × K DFT matrix,
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respectively. Here, L represents the number of channel
taps.

2) Equalization: The i-th received OFDM symbol is
equalized by ˆ̃

hE-TRFIi−1
[k], where

ỹ′
eqi [k] =

ỹi[k]
ˆ̃
hE-TRFIi−1

[k]
, k ∈ Kd. (20)

Here, ˆ̃hE-TRFI0 [k] =
ˆ̃
hE-LS[k]. After that, the obtained

ỹ′
eqi

[k] is demapped to the nearest constellation point
denoted as d̃′

i[k].
3) Euclidean distance reliability test: In order to ensure

that d̃′
i[k] is correctly demapped, the E-TRFI estimator

employs a reliability test where the Euclidean distances
between ỹ′

eqi
[k] and the constellation points are calcu-

lated such that

δ
(m)
i [k] = |ỹ′

eqi [k]− c(m)|2, m = 1, 2, . . . . ,M. (21)

c(m) denotes the m-th constellation point with M
standing for the employed modulation order. The ob-
tained δ

(m)
i [k] values are arranged in ascending order

vector denoted as δ̄(m)
i [k], then the reliability ratio for

each subcarrier Ri[k] is calculated employing the first
and second minimum distances as follows

Ri[k] =
δ̄
(1)
i [k]

δ̄
(2)
i [k]

, k ∈ Kd, (22)

where 0 < Ri[k] < 1. Small Ri[k] value indicates
that the demapped subcarrier d̃′

i[k] is close to actual
transmitted modulated symbol. Therefore, the subcar-
rier is classified as a reliable subcarrier and inserted
into the reliable subcarriers set RSi, otherwise, it is
considered unreliable and inserted into the unreliable
subcarriers set URSi. The extensive simulations per-
formed in [11], show that Ri[k] = 0.5 is the best-
predefined threshold for the reliability test.

4) Frequency domain cubic interpolation: After select-
ing the RSi and URSi sets, frequency-domain cubic
interpolation [22] is applied by using the channel es-
timates in RSi to determine the channel estimates for
the URSi, such that

ˆ̃
hInti [k] =


ỹi[k]/d̃′

i[k], k ∈ RSi.
ỹi[k]/x̃pi [k], k ∈ Kp.
ỹi[k]/ˆ̃hE-TRFIi−1

[k], k ∈ Kn.
Cubic Interpolation, k ∈ URSi.

(23)
5) Noise attenuation: The last step in the E-TRFI estima-

tor is applying a noise attenuation as follows

ˆ̃
hE-TRFIi [k] = Q

ˆ̃
hInti [k], k ∈ K, (24)

where Q = F64F
H
64. We note that the computation of Q

depends mainly on the L channel taps and it can be per-
formed offline resulting in reducing the computational
complexity.

The E-TRFI estimator outperforms other conventional es-
timators, however, it still suffers from a considerable perfor-
mance degradation due to the enlarged demapping error in
high mobility scenarios, and high computational complexity
due to the matrix multiplication in (19) and (24). Moreover,
the Euclidean distance reliability test threshold should be
updated in a real-time manner in order to guarantee the best
possible performance.

D. LMMSE ESTIMATOR
The LMMSE estimator [12] aims to linearly minimize the
mean squared error (MSE) error between the LMMSE esti-
mated and real channel, given the LS estimated channel at the
Kp subcarriers defined as

ˆ̃
hpi

[k] =
ỹpi[k]

x̃pi
[k]

, k ∈ Kp. (25)

Accordingly, the key element here is to find WLMMSEi

where ĥLMMSEi = WLMMSEi

ˆ̃
hpi , so that ϵLMMSE is mini-

mized, such that

ϵLMMSE = E
[
(ĥLMMSEi − h̃i)

2
]
= E

[
(WLMMSEi

ˆ̃
hpi − h̃i)

2

]
.

(26)
The minimization of ϵLMMSE results in the following ex-

pression

WLMMSEi
= Rh̃ih̃pi

(
Rh̃pi

h̃pi
+ σ2I ′

)−1

. (27)

Rh̃i,h̃pi
= E

[
h̃ih̃

H
pi

]
∈ CKd×Kp represents the cross

correlation matrix of the real channel and the real channel
vector at the Kp pilot subcarriers within the i-th received
OFDM symbol. Moreover, Rh̃pi

,h̃pi
= E

[
h̃pi

h̃H
pi

]
∈

CKp×Kp denotes the autocorrelation matrix of h̃pi
. I ′Kp

is
the identity matrix, and σ2 is the noise power. Therefore, the
LMMSE estimated channel at the Kd data subcarriers within
the i-th received OFDM symbol can be simply obtained as
follows

ˆ̃
hLMMSEi

= WLMMSEi

ˆ̃
hpi

. (28)

It is worth mentioning that the LMMSE performance
highly depends on the pre-estimated WLMMSE matrix, where
it suffers from considerable performance degradation in case
the channel employed in the WLMMSE estimation changes.
Therefore, it is impractical to be employed in real-time
scenarios.

IV. PROPOSED DFT-BASED CHANNEL ESTIMATION
SCHEMES
In this section, a detailed description of the time-variant chan-
nel estimation problem is first given. After that, the classical
DFT based estimator, the proposed T-DFT, and TA-TDFT
estimators which adhere to the IEEE 802.11p standard are
presented. Moreover, the analytical NMSE expressions of the
proposed estimators are derived and compared.
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As discussed, the wireless channel in vehicular environ-
ment is considered as a doubly selective channel, it is time
selective due to the vehicle’s motion, and frequency selective
due to the multi-path fading impact on the transmitted OFDM
frames. Recall (10)

ỹi[k] = h̃i[k]x̃i[k] + ẽi,d[k] + ṽi[k], k ∈ Kon

where, h̃i[k] =
1
K

∑L−1
l=0 h̄i[l, 0]e

−j2π kl
K . The goal is to es-

timate h̃i[k] at the data subcarriers based on the pilot subcar-
riers. Let hi,L ∈ CL×1, defined by hi,L[l] =

1
K h̄i[l, 0], l =

0 · · ·L − 1. Accordingly, the vector model corresponding to
the Kp, and Kd subcarriers can be expressed as follows{

ỹpi = (Fphi,L)⊙ x̃pi + ẽpi,d + ṽpi , k ∈ Kp.
ỹdi = (Fdhi,L)⊙ x̃di + ẽdi,d + ṽdi , k ∈ Kd.

(29)

where ⊙ denotes the element-wise multiplication. Fd ∈
CKd×L represents the truncated DFT matrix obtained by
selecting Kd rows, and L columns from the K × K DFT
matrix. Fp ∈ CKp×L denotes the truncated DFT matrices at
Kp subcarriers. The pilot signal is used to estimate hi,L. First,
by dividing over the pilots, we get

ˆ̃
hpi = ỹpi ⊘ x̃pi + ẽpi,d ⊘ x̃pi + ṽpi ⊘ x̃pi

= h̃pi + ẽpi,d ⊘ x̃pi + ṽpi ⊘ x̃pi ,
(30)

where ⊘ is the element wise division, and h̃pi = Fphi,L.
In our work, we consider that the transmitted pilots are
equal to one for simplicity. Moreover, after estimating ĥi,L

employing ˆ̃
hpi

, the final channel estimate at Kd subcarriers
of the i-th received OFDM symbol can be obtained according
to the employed estimator as we will discuss in the next
subsections, where h̃di = Fdhi,L.

A. CLASSICAL DFT ESTIMATOR

The classical DFT estimator employs DFT interpolation [23]
in order to obtain the final channel estimates at Kd subcar-
riers assuming that Fp is either tall or square matrix, i.e.
Kp ≥ L. Therefore, ĥi,L can be estimated with the LS as

ĥi,L = F †
p
ˆ̃
hpi = hi,L + F †

p (ẽpi,d + ṽpi). (31)

Here, F †
p = (F H

p Fp)
−1F H

p is the pseudo inverse matrix of
Fp, and (·)H denotes the conjugate transpose. After that, the
estimate at the data subcarrier denoted as ˆ̃

hDFTi
, is computed

as follows

ˆ̃
hDFTi = Fdĥi,L = Fdhi,L +WDFTzDFTi , (32)

where WDFT = FdF
†
p denotes the DFT interpolation matrix

and zDFTi = ẽpi,d + ṽpi . The DFT estimation MSE ϵDFT can
be expressed as

ϵDFTi = E

[∥∥∥∥ ˆ̃hDFTi − h̃i,d

∥∥∥∥2
]

= trace

{
WDFT

(
Λp,d + σ2IKp

)
W H

DFT

}
,

(33)

where σ2 denotes the noise variance, Λp,d = E
[
ẽpi,dẽ

H
pi,d

]
∈

CKp×Kp is the auto-correlation matrix of the Doppler error
at Kp subcarriers, and IKp

∈ CKp×Kp denotes the identity
matrix. Based on (12), Λp,d is diagonal and independent of i.

B. PROPOSED TRUNCATED DFT ESTIMATOR FOR
IEEE 802.11P STANDARD
Vehicular channel models consist of 12 taps, as discussed
in [20], while the IEEE 802.11p standard allocates only
four pilots for each transmitted OFDM symbol. However,
considering the bandwidth of 10 MHz, the number of discrete
significant taps is smaller as shown in Figure 2. Thus, classi-
cal DFT cannot be implemented in IEEE 802.11p standard,
since the condition Kp ≥ L is not satisfied. To overcome
this limitation, we propose a T-DFT estimator that targets the
estimation of only Ld = Kp dominant channel taps out of
L. The indexes of those dominant taps are denoted as Ld,
Ld = |Ld|, and they are selected based on the maximum
values of the channel impulse response amplitude denoted as
ρ[l, 0] according to the measured channel profile as shown in
Figure 2. The remaining minor taps are represented by the
set Le, Le = |Le| and they are considered as noise. Thus,
Ld ∪ Le = {0, · · · , L− 1}. Accordingly, let hi,Ld ∈ CLd×1

and hi,Le ∈ CLe×1 be the vectors corresponding to the
significant and minor channel taps, then the pilot signal (30)
can be rewritten as

ˆ̃
hi,p = Fd,phi,Ld + Fe,phi,Le + ẽpi,d + ṽpi , (34)

where Fd,p ∈ CKp×Ld , Fe,p ∈ CKp×Le denote the
truncated DFT matrices at Kp subcarriers, and Ld, Le channel
taps respectively, as shown in Figure 3. Similarly, the channel
gain at the data subcarriers can be expressed as

h̃i,d = Fdhi,Ld + Fehi,Le . (35)

Here Fd ∈ CKd×Ld , and Fe ∈ CKd×Le denote the truncated
DFT matrices obtained by selecting its Kd rows and Ld, Le
columns respectively.

First, hi,Ld is estimated using LS as

ĥi,Ld = F †
d,p

ˆ̃
hi,p

= hi,Ld + F †
d,pFe,phi,Le + F †

d,p(ẽpi,d + ṽpi),
(36)

where F †
d,p is the pseudo inverse matrix of Fd,p. Therefore,

the T-DFT estimator for IEEE 802.11p standard can be
expressed as follows

ˆ̃
hT-DFTi = Fdĥi,Ld = Fdhi,Ld +WTDFTzTDFTi , (37)

where WTDFTi = FdF
†
d,p denotes the T-DFT interpolation

matrix and zTDFTi
= Fe,phi,Le + ẽpi,d + ṽpi

. The overall
estimation error between h̃i,d and ˆ̃

hT-DFTi
is denoted by

êTDFT and it can be expressed as follows

eTDFT =
ˆ̃
hT-DFTi − h̃i,d

= WLehi,Le +WTDFT(ẽpi,d + ṽpi),
(38)

where WLe = WTDFTFe,p −Fe. Therefore, the T-DFT MSE
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FIGURE 2: Vehicular channel dominant taps selection.

can be expressed as

ϵT-DFT = E
[∥∥eTDFTi

∥∥2
]
= trace

{
WLeΛLeW

H
Le

}
+ trace

{
WTDFT

(
Λp,d + σ2IKp

)
W H

TDFT

}
,

(39)

where ΛLe = E
[
hi,Lehi,Le

H
]

∈ CLe×Le represents the
auto-correlation matrix of the Le neglected channel taps,
which is independent of i. Note that, ΛLe is diagonal and
E
[
ẽpi,dh

H
i,Le

]
= 0 due to the uncorrelated Delay-Doppler

assumption. The classical DFT estimation is a special case
when all the taps are considered. Thus, the error term
trace

{
WLeΛLeW

H
Le

}
is null, and the interpolation matrix

WTDFT becomes WDFT.

C. PROPOSED TEMPORAL AVERAGING T-DFT
ESTIMATOR

Considering the high temporal correlation between the suc-
cessive channels, h̃i,d and h̃i+1,d, averaging has the potential
of improving the estimation gradually. To demonstrate that,
let h̃i,d = h̃d + ϵ̃i, where h̃d is static and ϵ̃i denotes the
variation. Similarly, hi,Le = hLe +∆i,Le . Thus, using (38),
we get

ˆ̃
hT-DFTi = h̃d +WLehLe︸ ︷︷ ︸

c

+ ϵ̃i +WLe∆i,Le︸ ︷︷ ︸
zi

+WTDFT(ẽpi,d + ṽpi)︸ ︷︷ ︸
ηi

Note that ẽpi,dẽ
H
pj ,d

= δ[i − j]Λp,d, due to the assumption

of uncorrelated data, and E
[
ṽpi

ṽH
pj

]
= δ[i − j]σ2IKp

.
Therefore, ηi = WTDFT(ẽpi,d + ṽpi) is the error term
that benefits from averaging. On the other hand, the term
zi = ϵ̃i + WLe∆i,Le is a correlated error term, whereas
c = WLehLe is a static error within the frame. Both terms
do not benefit from the averaging.

The TA-TDFT can be achieved such that

ˆ̃
hTA-TDFTi

=

 ˆ̃
hT-DFTi , i = 1

γ
ˆ̃
hTA-TDFTi−1 + (1− γ)

ˆ̃
hT-DFTi , 2 ⩽ i ⩽ I

(40)

where γ defines the weights given to ˆ̃
hTA-TDFTi−1 and ˆ̃

hT-DFTi .

In our simulations we consider γ = 1
2 , therefore ˆ̃

hTA-TDFTi

can be rewritten in terms of the previous estimated T-DFT

FIGURE 3: Proposed T-DFT truncated DFT matrices.

channels ˆ̃
hT-DFTi as follows

ˆ̃
hTA-TDFTi =

(
1

2

)(i−1)
ˆ̃
hT-DFT1 +

i∑
j=2

(
1

2

)(i−j+1)
ˆ̃
hT-DFTj

=
[
h̃d + ϵ̃i

]
+ c+

[
zTA-TDFTi − ϵ̃i

]
+ ηTA-TDFTi .

(41)

Here, the overall error terms are given by

zTA-TDFTi =

(
1

2

)(i−1)

z1 +

i∑
j=2

(
1

2

)(i−j+1)

zj

ηTA-TDFTi =

(
1

2

)(i−1)

η1 +

i∑
j=2

(
1

2

)(i−j+1)

ηj

(42)

The TA-TDFT overall estimation error depends on the i-th
received OFDM symbol, the SNR, and the Doppler. At low
SNR, the estimation error is highly influenced by the noise,
where ηi ≈ WTDFTṽpi

. In this case, the averaging reduces
the noise power when i increases, such that

ϵ
(1)
TA-TDFTi

≤ NTA-TDFTiσ
2trace

{
WTDFTW

H
TDFT

}
, (43)

where

NTA-TDFTi =

(
1

4

)(i−1)

+
i∑

j=2

(
1

4

)(i−j+1)

=
4i−1 + 2

3× 4i−1
. (44)

At high SNR region and low mobility, the error is influenced
by non-significant channel taps error c, and thus,

ϵ
(2)
TA-TDFTi

≤ trace
{
WTDFTΛLeW

H
TDFT

}
. (45)

At high mobility, the error is influenced by zTA-DFTi
− ϵ̃i,

which leads to an increase of the averaging error because of
the increase in ∥ϵ̃i∥. Accordingly, the gain of averaging is
notable at low SNR, not significant at high SNR with low
mobility, and worse at very high SNR and very high mobility.
We note that ϵ(1)

TA-TDFTi
+ ϵ

(2)
TA-TDFTi

denotes the lower bound
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(a) Low mobility vehicular channel model. (b) High mobility vehicular channel model.

FIGURE 4: NMSE analytical and simulation results for low and high mobility vehicular channel models respectively.

performance of the TA-TDFT estimator.
Figure 4 shows the analytical and simulated NMSE curves

of the proposed estimators in low and high mobility vehic-
ular scenarios. Moreover, the classical DFT and TA-DFT
where the temporal averaging is employed with classical
DFT estimation are also presented for better illustrating the
performance degradation sources.

It can be noticed that the analytical results coincide with
the simulated results, thus validating the derived NMSE
expressions for the proposed estimators. It is clearly shown
that applying temporal averaging on top of the T-DFT esti-
mator improves the NMSE performance, especially in low
SNR region, where the impact of noise is dominant. This
is because adding the temporal averaging step to the T-DFT
estimated channels, reduces the noise power iteratively over
the frame, and thus the SNR increases resulting in improving
the total channel estimation accuracy. On the other hand,
the TA-TDFT estimator suffers from an error floor in high
SNR region, due to the channel model error resulting from
the neglected Le channel taps in low mobility scenario,
Figure 4a, in addition to Doppler interference error in high
mobility scenario, Figure 4b. Moreover, employing TA-DFT
estimator with Kp = L = 12 pilot subcarriers, leads to a
significant NMSE performance improvement over the whole
SNR region, especially in low mobility scenario, since L
channel taps are estimated by the DFT estimator. However,
it can be noticed that in high mobility scenario, the temporal
averaging step is not helpful, especially in high SNR region
even though the impact of noise is very low. But on the other
hand, the dominant impact of Doppler interference error in
high mobility scenarios affects the performance improvement
caused by the temporal averaging step in high SNR region.

Finally, we note that if Kp = 12 is considered, this re-
quires a modification in the IEEE 802.11p standard structure,
where 1Mbps loss in the transmission data rates is recorded,
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FIGURE 5: Doppler spectrum Interference.

since the data subcarriers Kd becomes 40 instead of 48 data
subcarriers per OFDM symbol. However, in this paper, we
focus on the estimators that adhere to the IEEE 802.11p
standard, therefore, only T-DFT and TA-TDFT estimators
will be considered in the simulations.

V. SIMULATION RESULTS
In this section, NMSE and BER simulations are conducted
in order to evaluate the performance of the proposed estima-
tors compared to IEEE 802.11p conventional estimators and
the LMMSE estimator where three simulation scenarios are
considered as follows

• Low mobility vehicular scenario, where the VTV-UC
channel model is employed using V = 45 Kmph which
is equivalent to Fd = 250 Hz as a maximum Doppler

10 VOLUME 4, 2016
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(a) NMSE performance employing QPSK.
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(b) NMSE performance employing 16QAM.

FIGURE 6: NMSE performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second
column - high mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

shift.
• High mobility vehicular scenario, where the VTV-

SDWW channel model with V = 100 Kmph and
Fd = 500 Hz is employed.

• Very high mobility scenario, where the VTV-SDWW
channel model is considered with V = 200 Kmph and
Fd = 1000 Hz. This scenario is employed in order to
further evaluate the robustness of the proposed schemes.

We note that the NMSE is computed using the estimated
channel h̃Ψi

, where Ψ ∈ {STA, CDP, . . . } and the power
of the channel frequency-time response such that

NMSEΨ =

∥∥∥h̃Ψi − h̃i

∥∥∥2∥∥∥h̃i

∥∥∥2 . (46)

Moreover, two modulation orders are employed in the
three simulation scenarios, QPSK and 16QAM. Moreover,

convolutional channel coding with a 1
2 code rate is used. The

frame size is I = 100 OFDM symbols, and the SNR range
∈ [0 dB, 40 dB]. The NMSE and BER performance evalu-
ation of the benchmarked estimators are performed over the
chosen vehicular channel models according to three criteria:
(i) Modulation order, (ii) Mobility, and (iii) frame length.
Moreover, a robustness analysis is presented in order to
evaluate the generalization ability of the proposed estimators
in comparison to the LMMSE.

A. NMSE EVALUATION

As we can notice from Figure 6, the estimation error of
the conventional DPA-based estimators are affected by the
employed modulation order, where the estimation error in-
creases for high modulation order. When short frame size is
employed as shown in Figure 7a, the channel variation is neg-
ligible within the received OFDM frame. Therefore, we can
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(a) NMSE performance with I = 10.
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(b) NMSE performance with I = 100.

FIGURE 7: NMSE performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second
column - high mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

notice that the performance degradation of the conventional
DPA-based estimators is less than that when a longer frame
is employed and the basic LS estimator still performs well,
where it records similar performance as LMMSE especially
in low SNR regions. However, in very high mobility scenar-
ios, the impact of Doppler error is dominant, thus, affecting
the performance of conventional DPA-based estimators. In
contrast, we can notice that employing long frames leads to
considerable performance challenges even in low mobility,
where the basic LS estimator is not useful as shown in
Figure 7b.

On the other hand, since the LMMSE and the proposed
estimators are linear and do not employ demapping, then,
the estimation error is independent of the modulation order.
In addition, as the estimation is performed in symbol-by-
symbol fashion, only TA-TDFT experiences dependency on
the frame length since it employs averaging. This behavior
can be seen in Figure 7. In particular, when the frame length

is I = 100, the estimation error of TA-TDFT is slightly
reduced at low mobility and low SNRs compared with
shorter frames, as expected. In comparison with LMMSE ,
the T-DFT only approaches LMMSE at high SNR, whereas
TA-TDFT outperforms LMMSE when the averaging is suf-
ficient, which is the case of using a long frame (I = 100)
at low SNRs, or in medium SNR region with a short frame
(I = 10). However, at high mobility and high SNRs, the
estimation error is influenced by Doppler interference as well
as the channel model mismatch resulting from neglecting Le
channel taps in the estimation process for all of the presented
estimators. Figure 5 shows the average Doppler interference
as fd increases. For low mobility vehicular scenarios, where
fd < 200 Hz, we can notice that ϵd is almost negligible. How-
ever, for high and very high mobility vehicular scenarios,
where fd > 500 Hz, Doppler interference starts recording
a considerable impact on the overall performance.

We note that the proposed estimators adhere to the IEEE
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

FIGURE 8: BER performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second
column - high mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

802.11p standard structure, and the transmission data rates
in all modulation orders are preserved. Moreover, employing
T-DFT and TA-TDFT estimators outperform conventional
estimators with a considerable performance improvement
and a significant decrease in the overall computational com-
plexity as shown in Section VI.

B. BER EVALUATION
Figure 8 shows the BER performance of the studied esti-
mators employing QPSK and 16QAM modulations in low
mobility, high mobility, and very high mobility scenarios.
For QPSK modulation order, the STA estimator outper-
forms other conventional estimators in low SNR regions
due to the frequency and time averaging operations used in
STA (17), (18). Whereas in high SNR regions, conventional
estimators express a significant improvement over the STA
estimator, where CDP and TRFI record similar performance.
This is due to the fact that when the SNR is low, the impact

of noise and interference is high and powerful enough to
shift the equalized received OFDM symbol yeqi [k] to wrong
regions and as a result, its demapping di[k] is shifted to
incorrect constellation points. The STA estimator averaging
operations are able to alleviate the impact of the noise.
However, as the SNR increases, the aforementioned influence
is reduced, and thus, the superiority of the conventional
estimators emerges over STA. It is worth mentioning that
the STA estimator frequency-domain averaging window β,
and the time-domain averaging coefficient α are fixed to 2
as discussed in [7]. But, fixing these parameters instead of
updating them according to the channel variation makes the
smoothing in the time and frequency domains not effective
under vehicular environment. Thus, the gradually accumu-
lated demapping error of di[k] cannot be well mitigated using
fixed β and α. Hence the emergence of the error floor for STA
in high SNR region. On the other hand, the iCDP estimator
improves the STA estimator performance by considering both
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(a) BER performance with I = 10.
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(b) BER performance with I = 100.

FIGURE 9: BER performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second
column - high mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz).

STA and DPA estimations in updating the final iCDP channel
estimates. We can notice that employing the iCDP estimator
alleviates the STA estimator error floor in high SNR regions
while recording almost similar performance as STA in low
SNR regions.

When 16QAM modulation is employed, STA performance
is severely degraded in the whole SNR region due to the huge
DPA demapping error that increases as the modulation order
increases. Moreover, we can notice the impact of employing
the cubic interpolation in TRFI, where it outperforms CDP
by around 2dB gain. On the other hand, E-TRFI is not able
to improve the TRFI estimator performance due to fixing the
E-TRFI reliability test threshold to 0.5 as provided in [11].

We note that conventional estimators performance is lim-
ited due to their dependency on the DPA estimation and
due to using fixed valued parameters. These two reasons
are mainly responsible for the conventional estimators per-
formance degradation in time-variant channel estimation as

shown in Figure 6a and Figure 6b. In contrast, we can
notice the performance superiority of the LMMSE over the
conventional DPA-based estimators due to employing the
channel and noise statistics in the channel estimation process.
However, the robustness of the LMMSE estimator is limited
in the online evaluation, when there is a significant mismatch
between the estimated and real channel statistics. In contrast,
the proposed T-DFT and TA-TDFT estimators do not depend
on the DPA estimation and estimated channel statistics, thus
the demapping error is totally eliminated, resulting in im-
proving the overall estimation performance. Moreover, they
record a robustness superiority over the LMMSE estimator
as shown in Section V-C.

The impact of employing different frame lengths is illus-
trated in Figure 9. We can notice that the conventional DPA-
based estimators perform better when shorter frame length
is employed since the impact of the enlarged demapping
error and channel variation is negligible compared to the case
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(a) BER performance employing QPSK. (b) NMSE performance employing QPSK.
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(c) BER performance employing 16QAM. (d) NMSE performance employing 16QAM.

FIGURE 10: Robustness analysis of the proposed DFT-based estimators versus the LMMSE estimator in high mobility channel
model (fd = 500 Hz).

where long frames are employed. Moreover, the impact of
employing temporal averaging on top of the T-DFT estimator
to improve the overall performance can be observed, where
the TA-TDFT estimator outperforms the T-DFT estimator by
up to 3 dB gain in terms of SNR for a BER = 10−3 for a
long frame (I = 100), whereas the impact in a short frame
(I = 10) is less significant.

It is worth mentioning that the impact of mobility and
frame length can be observed in the significant decrease
of BER when using long frames. This is due to the use
of a long codeword and the harvested time diversity gain.
The time diversity gain increases with the increase of the
Doppler spread, as can be seen by comparing the case of high
mobility (fd = 500) and very high mobility (fd = 1000).
Nevertheless, as the channel estimation error increases with
the increase of Doppler frequency, the net gain from the time
diversity and channel estimation loss depends also on the

frame length. For instance, assuming a perfect channel, there
is a small net gain with (I = 100), when the Doppler shift
increases from fd = 250 in low mobility to fd = 500 in high
mobility, but it turns to a small loss for short frames (I = 10).
The perfect estimation is only influenced by Doppler interfer-
ence. With the induced estimation error, this impact becomes
remarkable. The performance of the presented estimators is
significantly degraded by the mobility increase, however, it is
improved in high mobility for long frames. This observation
is also valid for high modulation orders such as 16QAM, as
shown in Figure 8.

C. ROBUSTNESS ANALYSIS

This section compares the robustness and generalization abil-
ity of the proposed T-DFT and TA-TDFT estimators with the
LMMSE estimator. As discussed in III-D, the LMMSE esti-
mator depends mainly on the pre-estimated WLMMSE matrix
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that is calculated offline. This offline pre-estimation affects
the robustness and generalization ability of the LMMSE esti-
mator when the channel changes in the online evaluation. To
further illustrate this idea, we simulate the LMMSE estimator
in four different cases, such that:

• Case 1 (Est: 12, Sim: 12): WLMMSE is pre-estimated
using the 12 taps channel model and we consider that
the number of taps is fixed also in the online testing.

• Case 2 (Est: 12, Sim: Random): WLMMSE is pre-
estimated using the 12 taps channel model. However,
the number of channel taps changes randomly in the
online testing. We note that the "Random" term means
that the simulation is carried using a random number
of paths, wherein each iteration, a random number of
paths between 1 and 11 is eliminated from the channel
power delay profile. Therefore, we obtain a generalized
channel model where the number of taps varies.

• Case 3 (Est: Random, Sim: 12): WLMMSE is pre-
estimated where the number of channel taps varies
randomly, while the channel taps are fixed to 12 in the
online testing.

• Case 4 (Est: Random, Sim: Random): Random number
of channel taps are used in both offline estimation of
WLMMSE and in the online testing.

Figure 10 depicts the simulation results of these four
cases in high mobility scenario employing both QPSK and
16QAM modulation orders. We can observe that the LMMSE
performance is severely degraded when the channel changes
in the online evaluation, whereas, the proposed TDFT and
TA-TDFT estimators reveal good robustness since they are
implemented without any dependency on the channel model
statistics. Therefore, the proposed TDFT and TA-TDFT esti-
mators are more robust than the LMMSE estimator.

VI. COMPLEXITY ANALYSIS
In this section, a detailed computational complexity and exe-
cution time analysis of the conventional and the proposed es-
timators are provided. The computational complexity analy-
sis is performed according to the number of real-valued mul-
tiplication/division and summation/subtraction mathemati-
cal operations required to estimate the channel for one re-
ceived OFDM symbol. Since we are working with complex-
valued data, each complex-valued division requires 6 real-
valued multiplications, 2 real-valued divisions, 2 real-valued
summations, and 1 real-valued subtraction. Moreover, each
complex-valued multiplication is equivalent to 4 real-valued
multiplications, and 3 real-valued summations.

The least complex estimator is the basic LS estimator (14)
where the received preamble symbols are added to each
others, resulting in 2Kon summations. After that, the summa-
tion result is divided by the predefined preamble, thus 2Kon
divisions are also required. Therefore, the total number of
divisions and summations needed by the basic LS estimator
is 2Kon and 2Kon respectively.

The DPA estimation requires two equalization steps (15),
and (16). Each equalization step consists of Kon complex-

valued division, therefore the overall computational com-
plexity of DPA is 16Kon multiplications/divisions and 6Kon
summations/subtractions.

The STA estimator applies frequency and time-domain
averaging on top of DPA. The frequency-domain averag-
ing (17) coefficient is fixed (β = 2). Therefore, each
subcarrier requires 5 complex-valued summations multiplied
by a real-valued weight, which are equivalent to 10 real-
valued summations and 2 real-valued multiplications. But the
frequency averaging in the STA estimator is applied on Kd

since the subcarriers in the boundaries are excluded from
the averaging operation. As a result, the STA frequency-
domain averaging step requires 10Kd real-valued summa-
tions and 2Kd real-valued multiplications. Moreover, the
STA time-domain averaging step (18) requires 4Kon real-
valued divisions, and 2Kon real-valued summations. There-
fore, the computational complexity of STA is 4Kon + 2Kd

real-valued multiplications/divisions, and 2Kon +10Kd real-
valued summations/subtractions, and the accumulated overall
computational complexity of STA estimator is 22Kon +
2Kd multiplications/divisions and 10Kon + 10Kd summa-
tions/subtractions.

For the E-TRFI estimator, it starts with the E-LS esti-
mation step (19) that requires 4KonK real-valued multipli-
cations and 5KonK − 2K real-valued summations. Then
equalization is employed only on Kd subcarriers where 8Kd

multiplications/divisions and 3Kd summations/subtractions
are required. The Euclidean distance reliability test employs
Kd + 2MKd real-valued divisions and 4MKd subtrac-
tions. After that, frequency-domain cubic interpolation is
performed. Our simulations show that for each OFDM sym-
bol, KURS = 16 subcarriers needed to be interpolated. The
frequency-domain cubic interpolation requires 26KURS mul-
tiplications/divisions and 30KURS summations/subtractions.
Finally, the E-TRFI employs the noise attenuation step that
requires 4K2 real-valued multiplications and 5K2−2K real-
valued summations. Hence, the E-TRFI estimator’s over-
all computational complexity is 4K2 + 4KKon + 9Kd +
26KURS multiplications/divisions and 5K2+5KKon+3Kd+
2MKd+30KURS−4K real-valued summations/subtractions.

The LMMSE estimator manipulates first the LS estimation
at the pilot subcarriers within the received OFDM symbol
which requires 2Kp real-valued divisions. After that, the
matrix inversion in (27) requires K3

p complex-valued multi-
plication. Accordingly, the overall computational complexity
of the conventional LMMSE estimator is 4K3

p + 4KpKd +
2Kp real-valued multiplications/divisions and 3K3

p +2K2
p +

5KpKd − 2Kd real-valued summations.
Compared to the conventional estimators, the T-DFT es-

timator does not require the DPA as a pre-estimation step.
It only requires the LS estimated channel at pilot subcar-
riers ˆ̃

hi,p that requires 2Kp divisions. It is worth mention-
ing that WMDFT is computed offline, thus the computa-
tional complexity of the T-DFT estimator lies in multiplying
WMDFT with ˆ̃

hi,p which requires KpKd − Kd complex-
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TABLE 4: Computational complexity analysis of the SoA SBS channel estimators.

Est. Pre-Est. Mul. / Div. Sum. / Sub.
LS - 2Kon 2Kon

DPA LS 18Kon 8Kon

STA DPA 22Kon + 2Kd 10Kon + 10Kd

CDP DPA 34Kd 14Kd

TRFI DPA 34Kon + 26KURS 14Kon + 30KURS

iCDP DPA , STA 58Kon + 2Kd 26Kon + 10Kd

E-TRFI DPA 4K2 + 4KonK + 2MKd + 26KURS 5K2 + 5KonK + 3Kd + 4MKd + 30KURS − 4K

LMMSE ˆ̃
hpi , Rh̃i,h̃pi

, Rh̃pi
,h̃pi

4K3
p + 4KpKd + 2Kp 3K3

p + 2K2
p + 5KpKd − 2Kd
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FIGURE 11: Detailed computational complexity of the SoA SBS channel estimators in terms of real-valued operations.

valued summations, and KpKd complex-valued multiplica-
tions, that are equivalent to 5KpKd − 2Kd real-valued sum-
mations, and 4KpKd real-valued multiplications. Therefore
the overall computational complexity of the T-DFT estimator
is 2Kp + 4KpKd real-valued multiplications/divisions, and
5KpKd − 2Kd real-valued summations. On the other hand,
the TA-TDFT estimator applies simple time averaging on top
of the T-DFT estimator that requires additional 4Kd real-
valued multiplications, and 2Kd real-valued summations.
As a result, TA-TDFT estimator requires 2Kp + 4Kd +
4KpKd real-valued multiplications/divisions, and 5KpKd

real-valued summations.
It is worth mentioning that the proposed estimators achieve

better BER and NMSE performance than the studied con-
ventional estimators, while reducing the computational com-
plexity, by which TA-TDFT and T-DFT record 22.64% and
7.35% computational complexity decrease than the con-
ventional LMMSE estimator, respectively. Moreover, the
TA-TDFT estimator has a complexity higher than the T-DFT
estimator by 17.56% as illustrated in 11.

Table 4 shows a detailed summary of the computational
complexities for studied estimators. We note that the detailed
calculation of TRFI, CDP, iCDP estimators is presented
in [9], [24].

Figure 11 show a bar graph for the required multiplica-
tions/divisions, and summations/subtractions by the studied

estimators. It can be noticed that employing both T-DFT
and TA-TDFT instead of the studied conventional estimators
leads to a significant decrease in the overall computational
complexity compared to the conventional DPA-based and
LMMSE estimators, while recording a considerable gain in
BER and NMSE performance.

On the other hand, the proposed estimators record less
execution time than the conventional estimators as can be ob-
served in Table 5. We note that the simulations are performed
using a 64-bit operating system with an Intel Core i7-8850H
CPU processor (clock speed: 2.60 GHz).

VII. CONCLUSIONS AND PERSPECTIVES
In this paper, we have focused on overcoming the limitations
of vehicular SoA conventional estimators represented by
their dependency on the DPA estimation, where the demap-
ping error and the noise are enlarged during the estimation
process. To overcome these limitations, we have proposed
low-complexity and robust channel estimators for vehicular
communications, namely T-DFT and TA-TDFT. Unlike clas-
sical estimators, the proposed estimators are based on the
truncated DFT-based interpolation and do not require the
DPA estimation as an initial estimation step. Therefore, the
enlarged DPA demapping error and the noise enhancement
that results from the basic LS estimator are totally eliminated
in the proposed estimators. In addition to that, the proposed

VOLUME 4, 2016 17



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5: CPU execution time analysis of the studied estimators.

Est. E-TRFI TRFI iCDP CDP STA LMMSE TA-TDFT T-DFT
Execution time 1.23ms 0.93ms 0.76ms 0.68ms 0.24 ms 1.24 µs 0.46 µs 0.38 µs

estimators do not depend on the pre-estimated channel statis-
tics as it is the case for LMMSE estimator, thus, they are
insensitive against channel model changes. Therefore, they
are more suitable to be employed in practical systems. Sim-
ulation and analytical results have shown the performance
superiority of the proposed T-DFT and TA-TDFT estimators
over conventional estimators in low and high mobility vehic-
ular scenarios with a significant computational complexity
and execution time decrease.

As future work, we will extend our analysis to the IEEE
802.11bd standard as well as cellular-based vehicular com-
munications settings. A detailed investigation in terms of
performance, complexity and latency will be conducted.
However, inspired by the work proposed in [25], [26], it
is expected that the new features of the upcoming IEEE
802.11bd standard will significantly improve the channel
estimation accuracy compared to the IEEE 802.11p standard.
Moreover, it is worthwhile to see if the performance gain
of employing the IEEE 802.11bd standard will be able to
alleviate efficiently the DPA demapping error of the SoA
estimators, or it will be the same case as the IEEE 802.11p
standard.
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