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ABSTRACT

Many physical phenomena in science and engineering can be modelled by partial differential equations (PDEs) and
solved using the finite element method (FEM). Such a method uses as computational spatial support a mesh of
the domain where the equations are formulated. The mesh quality is a key-point for the accuracy of the numerical
solution. This paper describes a methodology to construct a quality mesh of the domain from a given discretization of
its boundary. We show that the size map related to such a mesh constitutes a minimal variational surface supported
by a given contour. This surface can be constructed, from its boundary, using the finite element method or by the
resolution of a simple discrete optimization problem. The quality mesh of the domain is then a mesh conforming to
the size map given by this surface. A numerical example is given to demonstrate the method.

Keywords: minimal variational surfaces, quality meshes, equilateral meshes, regular meshes, adapta-
tive meshing, finite elements, convex quadratic optimization

1. INTRODUCTION

The resolution of a physical problem formulated in
terms of PDEs using the finite element method (FEM)
is based on a spatial discretization, or mesh, of the
computational domain. The convergence of such a
method, as well as the quality of the resulting solu-
tion, is strongly related to the element shape quality
(the ideal shape is that of an equilateral or regular
element). Many methods (cf. [2]) can be used to con-
struct a mesh of the domain, in general from the data
of its boundary. Historically, the first methods have
been based on the “local” regularity of the mesh. One
can realize that such methods can fail in the case of
a significant size variation in the boundary discretiza-
tion of the domain. The present methods establish a
continuous size field in the domain from the size given
by the specified boundary discretization, and propose

various algorithms to generate a mesh that conforms
to this size field.

This paper discusses what can be an optimal size field
which is related to a quality mesh of the domain (i.e.
a mesh which is as regular as possible). Such a size
field presents a “minimal size variation” among all the
size fields verifying the specified size on the boundary
of the domain. The size variation can be quantified
in two different ways which characterize the gradation
of the related meshes. Let h be the size function in
the domain, the first approach consists in consider-
ing the “usual” gradient Vh of h. As for the second
approach, the variation is measured by the “logarith-
mic” gradient Vlogh of h. Let us denote by v(h)
the variation of h irrespective of the type of variation.
A surface with minimal variation defined in a domain
Q supported by a given smooth contour X is a sur-
face in which the sum of the square of the modulus of
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Figure 1. FEquilateral mesh.

the variation on 2 is minimal. Mathematically, if A
corresponds to such a surface, it is characterized by:

M) =X and J(h) = uergill(lﬂ) J(u),

with J(u):/ l|v(u)|]? dX

where I is the boundary of {2 and H 5(9) =
{u € L*(Q); Vi vi(u) € L*(Q)}, vi(u) denot-
ing the ¢-th component of U(u) To solve this prob-
lem, we propose a collocation method which allows us
to construct approximatively the minimal variational

surfaces.

In Section 1, the concept of a regular mesh is re-
called. In Section 2, the minimal variational surfaces
are introduced and their relation with regular meshes
is indicated. In Section 3, an algorithm which creates
approximatively minimal variational surfaces is given.
In Section 4, the method is applied to build regular
meshes of a domain whose boundary discretization in
prescribed.

2. REGULAR MESH

Let € be a closed bounded domain in R? defined by its
boundary. A quality triangular mesh, equilateral or
reqular, of 2 is a mesh whose elements are equilateral
or regular. The existence of such a mesh is not guar-
anteed in general. Indeed, it depends, to some degree,
on the domain boundary discretization. Therefore, we
will call a reqular triangular mesh the “best” trian-
gular mesh which can be completed. As the issue of
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Figure 2. Almost equilateral mesh.

constructing a regular mesh for an arbitrary domain
is still an open problem, there are various methods
which allow the construction of “almost”open regular
meshes.

As an illustration, let us consider the domain defined
by a circular ring whose outer boundary is a circle with
radius i = 1 centered at the origin, and the inner

\/g 12
O

also centered at the origin. First, the outer (resp.
inner) boundary is discretized with a constant step

TR 2mr .
(resp. W), so that the dis-

boundary is a circle with radius r = (1 —

which equals

cretization of each boundary has 80 segments. For
this discretization, let us notice that the value r of the
inner radius is calculated in order to identify the equi-
lateral mesh of the domain (in the sense of the best
possible mesh). This mesh, illustrated by Figure 1,
is actually made up of 12 layers of nearly equilateral
triangles. Then, a slightly different discretization of

the inner boundary is considered, taking a step which
21y

equals + 0.007. Figure 2 shows an almost equi-

lateral mesh of the domain corresponding to this new
discretization. As shown in this figure, non regular
triangles appear around the fifth and sixth layers.

In a classical context, two main types of discretization
of the domain boundary can be considered. The first
one involves uniform discretizations with a constant
stepsize. The advantage of this type of discretization
is its possibility, in general, to construct equilateral
meshes. However, it cannot guarantee a good repre-
sentation of the domain boundary for a given step-
size. Figures 3 and 4 show respectively two uniform



Figure 3. Uniform discretization.
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Figure 7. Uniform sizes.

discretizations of the contour of a wheel cross-section
(French railway company), each circle representing the
stepsize along any direction.

Given a uniform discretization of the domain bound-
ary, a regular mesh of the domain can only be a mesh
whose element size equals to the boundary stepsize.
So, the desired size of the elements is a prior: known
at each vertex of the regular mesh of the domain. Fig-
ures 5 and 6 illustrate the two uniform (with constant
stepsize), almost equilateral, meshes of the wheel cor-
responding to the two given discretizations of its con-
tour. The desired size (here constant) along all the
directions at each vertex of these meshes are drawn on
Figures 7 and 8. We can notice that, at each vertex of
these meshes, the circle representing the desired size of
the elements almost passes through the adjacent ver-
tices. This i1s a characteristic, among others, of almost
equilateral meshes. Let us also notice that the domain
geometry is better represented by the second mesh,
conceding that the number of elements is greater.

Let us consider the case where the domain boundary is

Figure 4. Another uniform discretization.

Figure 6. Another uniform mesh.

Figure 8. Other uniform sizes.

made up of several connected components, discretized
with different stepsizes (this is a frequent case for do-
mains involved in fluid dynamics problems). A regular
mesh of such a domain is a mesh whose element size
in the neighborhood of each boundary is close to the
stepsize of the boundary discretization. As for the
element size at other points of the domain, it must re-
main locally almost constant. Figure 9 shows a domain
whose boundary contains five connected components,
one representing the infinite, and the four others dif-
ferent parts of an aircraft wing. The infinite compo-
nent is discretized with a relatively large stepsize, and
the others with much smaller and different stepsizes.
Figures 9 and 11 show almost equilateral mesh of the
domain. Figures 10 and 12 show respective enlarge-
ments of these meshes around the wing body, thus
illustrating the boundary discretizations and the cor-
responding meshes.

The second type of discretization is called “geomet-
ric”, for it is adapted to the geometry of the domain
boundary. In that case, it can be shown that the step-
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size must be proportional to the radius of curvature.
The drawback of this type of discretization is that it
can give rise to large variations of the stepsize. To
reduce this phenomenon, different methods of stepsize
smoothing can be used.

Figures 13 and 14 show, respectively, two geometric
discretizations of the wheel contour. The first one is
defined so that any edge of the discretization is suffi-
ciently close to the contour (the stepsizes are locally
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Figure 10. Partial enlargement around the wing body.
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Figure 12.  Partial enlargement around the wing body.

proportional to the radii of curvature). This condi-
tion guarantees, among others, that the angle between
each edge and the tangents at its extremities remains
smaller than a given threshold value (here 4°). Re-
garding the second discretization, the stepsizes of the
first one are smoothed so that the ratio between the
lengthes of two consecutive edges is bounded. As can
be seen on the figures, the circles representing the de-
sired sizes violate in the first case, and respect (more
or less) in the second case, the discretization obtained.



Figure 13. Geometric discretization.

Figure 15. Geometric mesh.

Figure 17. Geometric sizes.

Figure 14. Controlled geometric discretization.
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Figure 19. Cartesian function of the sizes.

Figures 15 and 16 show two almost equilateral meshes
corresponding to the two previous geometric dis-
cretizations (in the first case, the stepsizes are locally
proportional to the radii of curvature, while in the
second case the stepsizes are locally averaged, starting
from the first discretization). As can be noticed on
these figures, the second mesh is more regular. This

Figure 20. Cartesian function of the controlled sizes.

observation can be confirmed by examining Figures
17 and 18, which show the sizes at the vertices of the
meshes.

As an indication, Figures 19 and 20 show the surfaces
defined by the Cartesian functions of the sizes associ-
ated with these two meshes.



Remark. Apart from the discretization of the do-
main boundary, the geometric characteristics can have
an effect on the generation of the equilateral mesh
of the domain. These may be of different natures,
amongst which are angular corners and very close
boundary segments (or thin domains).

In the case of a geometric discretization (generally non
uniform) of the domain boundary, it is not obvious to
a priori establish the desired size of the elements at
the vertices of the regular mesh of the domain. Let
us recall that a regular mesh is a mesh whose element
size variation is locally almost null. Accordingly, the
idea consists in finding, among all the continuous size
functions which conform to the prescribed sizes on the
boundary, the least varying one. Therefore, this func-
tion represents a kind of “minimal variational surface”.
The size variation can be quantified in two different
ways which characterize the gradation of the related
meshes. Let h be the size function in the domain,
the first approach consists in considering the “usual”
gradient Vh of h. As for the second approach, the
variation i1s measured by the “logarithmic” gradient
Vlogh of h. In the next sections, we define the min-
imal variational surfaces based on these two types of
variations and we give a simple algorithm to construct
these surfaces.

3. MINIMAL VARIATIONAL SURFACES

Let us denote by U(h) the variation of h irrespective
of the type of variation considered. A surface with
minimal usual variation defined in a closed bounded
domain €2 of R?, supported by a given contour ¥ (suf-
ficiently smooth), is a surface in which the sum of the
square of the modulus of the variation on 2 is minimal.
Mathematically, if A corresponds to such a surface, it
is characterized by:

M) =X and J(h) = uergy(lﬂ) J(u),

with J(u):/ l|v(u)|]? dX

where I is the boundary of {2 and H 5(9) =
{u € L*(Q) ; Vi v;i(u) € L*(Q)}, L? denoting the
space of functions having a summable square on §2,
and v; () the i-th component of v(u).

In the case where v(h) = Vh and assuming that T is
regular enough, this surface is nothing other than the
solution of the non homogeneous Dirichlet problem:

M) =X and Ah=0 in$2,

which characterizes harmonic functions. Using a clas-
sical result of numerical analysis, it can be proved that
h is a solution of the problem:

M) =X and Yo e HYHQ),

/<Vh,Vv> dX =0,
193

where H& (Q) is the set of fonctions in the Sobolev
space of order 1, H 1(9), having a null value on the
boundary T of domain . Likewise, if v(h) = V log h,

it can be shown that h is a solution of the problem:

M) =X and Yo e HYHQ),

2 1
/(_ﬁnwn% + 5 < VAV >)dX =0,

Q

These two problems can be solved using the finite ele-
ment method. Considering piecewise P solutions, in
the first case, the problem reduces to solving a linear
system and, in the second case, a non linear system.
Although these solutions give the desired exact sur-
faces, we find it simpler to use a collocation method,
as will be seen in the following, to approximate these
minimal variational surfaces.

4. APPROXIMATE CONSTRUCTION
ALGORITHM

Like in the finite element method, we search for min-
imal variational surfaces by using a given mesh of £2.
Then, the problem consists in determining the eleva-
tions at the vertices of this mesh. Let T be a uniform
mesh of domain €2, including N vertices, the M first
vertices being on the boundary. Knowing the con-
tour X (which represents the sizes associated with the
discretization of the boundary I' of ), we have the
elevations at the M first vertices of 7. We must now
determine the elevations at the other vertices.

Let vp(h,€) be a discrete measure of the variation
of h along the edge e of the mesh, we consider the
following optimization problem:

1
Minimize J(h) with J(h) = 5 > vh(he),
e€T

where e sweeps all the edges of the mesh. This prob-
lem consists in minimizing the size variation along the
directions given by the mesh considered. We find that
this simpler formulation is more efficient in practice to
approximate the minimal variational surfaces.

Let us denote by h; the elevation (or the desired size)
at vertex ¢ of the mesh, and by d;; the (“theoretically”
constant) size of edge 2j of the mesh. Considering the
first type of variation, we have:

hi — h;

and

UD(h, Z_]) =



J(h) :% T (%)2

M+1<i,j<N

and, in this case, we obtain a simple problem of con-
vex quadratic optimization which reduces to solving
a linear system whose matrix is definite positive. It
can be shown that this system of equations represents,
indeed, the discretization at order 2 of a non homoge-
neous and non isotropic transport-diffusion equation,
of the type:

oh oh
O%h O%h O%h
77 "NMgea, ~WNgr, =

a(X)

—a(X)

with A(T') =X (X = («, y) representing the generic
point of the domain).

Similarly, analyzing the second type of variation, we
can consider:

1 h;—h;
h .. :_Q d
vp (h,ij) i i h an
1 1 h; —h;\?2
h) = = —_ 2
M+1<ij<N

which corresponds to a more complex optimization
problem which can be solved by an approach based on
a quasi-Newton method (algorithm “BFGS”, cf. [3]).
Analyzing this new discrete criterion would exhibit
a non linear partial differential equation, having the
same anisotropic feature as the first type of varia-
tion. Considering a uniform mesh of the domain would
partly avoid this shortcoming.

5. EXAMPLES

In this section, we present the academic example of a
circular ring which is centered at the origin and whose
outer boundary has a radius equal to 1. We suppose
that the boundary of this domain is discretized con-
forming to a size function with a sinusoidal variation.
This discretization is illustrated in figure 21. Besides,
we consider a uniform mesh of the domain (Figure 22),
on which we will construct the minimal surfaces sup-
ported by the curve defined by the size function on the
domain boundary. Figures 23 and 24 show, respec-
tively, the two types of minimal variational surfaces,
usual and logarithmic, obtained by solving the opti-
mization problem introduced in the previous section.
These two surfaces can be differentiated by examining
the isovalues corresponding to constant elevations. To
solve both problems, the iterative algorithm BFGS is
used. In the first case, the searched function h is ini-
tialized on the domain boundary by the specified size

function and, for each vertex inside the domain, by
g .
hmin + (Amar — hmm)ﬁ . In the latter expression,

hpmin and A, q. are respectively the smallest and the
largest size prescribed on the boundary, ¢ is the ver-
tex number, and N is the number of vertices of the
uniform mesh considered (this initialization voluntar-
ily brings a perturbation of V.J(h) in the domain).
The initial values obtained are J(h) = 4.43e04 and
[[VJ(Rh)|| = 4.9e04. The convergence of the method
is obtained after 119 iterations in 6 seconds (on a
HP9000-J7000-440Mhz) and corresponds to J(h) =
9.12e02 and |[VJ(h)|| = 1.2e-02. In the second case,
the searched function h is initialized by the size func-
tion obtained in the first case, and the initial values
are J(h) = 1.21e05 and ||V.J(h)|| = 2.9¢05. The con-
vergence of the method is obtained after 129 iterations
in 8 seconds and corresponds to J(h) = 1.07e05 and
IV J(h)|] = 1.7.

The meshes on figures 25 and 26 represent respectively
the meshes conforming to the size fields given by the
minimal variational surfaces obtained, and are made
up of respectively 1638 and 2460 elements. The av-
erage shape quality of these meshes (using a chosen
monotonous measure varying from 0 (flat triangle) to
1 (regular triangle)) is in the order of 0.96 and 0.97.
These meshes are generated by a method based on a
combined frontal-Delaunay approach [1], [4].
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Figure 21. Specified boundary discretization. Figure 22. Uniform mesh.

Figure 23. Minimal usual variational surface.



auvAVA" \ T
B R a8
By R S ER S
SRS
WAV ATS VA Wi NP ST SN/
A AT AR O
K RO ARSI
KIXKROOAI VAV 4%
mmﬂ«nﬁsmﬁwvAum%w%@ﬂmmmwuV

e
RO
RPN

Awﬁi«»ﬂﬁluﬂhv

TRKEIRT,
AR N s SRR
A AR EAISIIKTN
DN SKREERIKIRORIOLIREANT
SRRSO AN
NSRS
S RIS AR
R IR

Sii >§4Aﬁym070>0mmrs§
X0 pAVAY,
RROCCAISIR SRR

Minimal Logarithmic variational surface.

Figure 24.
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Logarithmic quality mesh.

Figure 26.

Usual quality mesh.

Figure 25.



