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ABSTRACT

Many physical phenomena in science and engineering can be modelled by partial di�erential equations �PDEs� and
solved using the �nite element method �FEM�� Such a method uses as computational spatial support a mesh of
the domain where the equations are formulated� The mesh quality is a key�point for the accuracy of the numerical
solution� This paper describes a methodology to construct a quality mesh of the domain from a given discretization of
its boundary� We show that the size map related to such a mesh constitutes a minimal variational surface supported
by a given contour� This surface can be constructed� from its boundary� using the �nite element method or by the
resolution of a simple discrete optimization problem� The quality mesh of the domain is then a mesh conforming to
the size map given by this surface� A numerical example is given to demonstrate the method�

Keywords� minimal variational surfaces� quality meshes� equilateral meshes� regular meshes� adapta�

tive meshing� �nite elements� convex quadratic optimization

�� INTRODUCTION

The resolution of a physical problem formulated in
terms of PDEs using the �nite element method �FEM�
is based on a spatial discretization� or mesh� of the
computational domain� The convergence of such a
method� as well as the quality of the resulting solu�
tion� is strongly related to the element shape quality
�the ideal shape is that of an equilateral or regular
element�� Many methods �cf� 	
�� can be used to con�
struct a mesh of the domain� in general from the data
of its boundary� Historically� the �rst methods have
been based on the �local
 regularity of the mesh� One
can realize that such methods can fail in the case of
a signi�cant size variation in the boundary discretiza�
tion of the domain� The present methods establish a
continuous size �eld in the domain from the size given
by the speci�ed boundary discretization� and propose

various algorithms to generate a mesh that conforms
to this size �eld�

This paper discusses what can be an optimal size �eld
which is related to a quality mesh of the domain �i�e�
a mesh which is as regular as possible�� Such a size
�eld presents a �minimal size variation
 among all the
size �elds verifying the speci�ed size on the boundary
of the domain� The size variation can be quanti�ed
in two di�erent ways which characterize the gradation
of the related meshes� Let h be the size function in
the domain� the �rst approach consists in consider�
ing the �usual
 gradient rh of h� As for the second
approach� the variation is measured by the �logarith�
mic
 gradient r logh of h� Let us denote by ��h�
the variation of h irrespective of the type of variation�
A surface with minimal variation de�ned in a domain
� supported by a given smooth contour � is a sur�
face in which the sum of the square of the modulus of



Figure �� Equilateral mesh� Figure �� Almost equilateral mesh�

the variation on � is minimal� Mathematically� if h
corresponds to such a surface� it is characterized by�

h��� � � and J�h� � min
u�H�

�
���

J�u� �

with J�u� �

Z

�

jj��u�jj� dX �

where � is the boundary of � and H�
���� �fu � L���� 	 �i �i�u� � L����g � �i�u� denot�

ing the i�th component of ��u�� To solve this prob�
lem� we propose a collocation method which allows us
to construct approximatively the minimal variational
surfaces�

In Section �� the concept of a regular mesh is re�
called� In Section 
� the minimal variational surfaces
are introduced and their relation with regular meshes
is indicated� In Section �� an algorithm which creates
approximatively minimal variational surfaces is given�
In Section �� the method is applied to build regular
meshes of a domain whose boundary discretization in
prescribed�

�� REGULAR MESH

Let � be a closed bounded domain in R� de�ned by its
boundary� A quality triangular mesh� equilateral or
regular� of � is a mesh whose elements are equilateral
or regular� The existence of such a mesh is not guar�
anteed in general� Indeed� it depends� to some degree�
on the domain boundary discretization� Therefore� we
will call a regular triangular mesh the �best
 trian�
gular mesh which can be completed� As the issue of

constructing a regular mesh for an arbitrary domain
is still an open problem� there are various methods
which allow the construction of �almost
open regular
meshes�

As an illustration� let us consider the domain de�ned
by a circular ring whose outer boundary is a circle with
radius R � � centered at the origin� and the inner

boundary is a circle with radius r � �� �
p



��
����

also centered at the origin� First� the outer �resp�
inner� boundary is discretized with a constant step

which equals
��R

��
�resp�

�� r

��
�� so that the dis�

cretization of each boundary has �� segments� For
this discretization� let us notice that the value r of the
inner radius is calculated in order to identify the equi�
lateral mesh of the domain �in the sense of the best
possible mesh�� This mesh� illustrated by Figure ��
is actually made up of �
 layers of nearly equilateral
triangles� Then� a slightly di�erent discretization of
the inner boundary is considered� taking a step which

equals
�� r

��

 ������ Figure 
 shows an almost equi�

lateral mesh of the domain corresponding to this new
discretization� As shown in this �gure� non regular
triangles appear around the �fth and sixth layers�

In a classical context� two main types of discretization
of the domain boundary can be considered� The �rst
one involves uniform discretizations with a constant
stepsize� The advantage of this type of discretization
is its possibility� in general� to construct equilateral
meshes� However� it cannot guarantee a good repre�
sentation of the domain boundary for a given step�
size� Figures � and � show respectively two uniform



Figure �� Uniform discretization� Figure �� Another uniform discretization�

Figure �� Uniform mesh� Figure �� Another uniform mesh�

Figure 	� Uniform sizes� Figure 
� Other uniform sizes�

discretizations of the contour of a wheel cross�section
�French railway company�� each circle representing the
stepsize along any direction�

Given a uniform discretization of the domain bound�
ary� a regular mesh of the domain can only be a mesh
whose element size equals to the boundary stepsize�
So� the desired size of the elements is a priori known
at each vertex of the regular mesh of the domain� Fig�
ures � and � illustrate the two uniform �with constant
stepsize�� almost equilateral� meshes of the wheel cor�
responding to the two given discretizations of its con�
tour� The desired size �here constant� along all the
directions at each vertex of these meshes are drawn on
Figures � and �� We can notice that� at each vertex of
these meshes� the circle representing the desired size of
the elements almost passes through the adjacent ver�
tices� This is a characteristic� among others� of almost
equilateral meshes� Let us also notice that the domain
geometry is better represented by the second mesh�
conceding that the number of elements is greater�

Let us consider the case where the domain boundary is

made up of several connected components� discretized
with di�erent stepsizes �this is a frequent case for do�
mains involved in �uid dynamics problems�� A regular
mesh of such a domain is a mesh whose element size
in the neighborhood of each boundary is close to the
stepsize of the boundary discretization� As for the
element size at other points of the domain� it must re�
main locally almost constant� Figure � shows a domain
whose boundary contains �ve connected components�
one representing the in�nite� and the four others dif�
ferent parts of an aircraft wing� The in�nite compo�
nent is discretized with a relatively large stepsize� and
the others with much smaller and di�erent stepsizes�
Figures � and �� show almost equilateral mesh of the
domain� Figures �� and �
 show respective enlarge�
ments of these meshes around the wing body� thus
illustrating the boundary discretizations and the cor�
responding meshes�

The second type of discretization is called �geomet�
ric
� for it is adapted to the geometry of the domain
boundary� In that case� it can be shown that the step�



Figure �� Almost equilateral mesh of a domain in com�
putational �uid dynamics �CFD�� Figure ��� Partial enlargement around the wing body�

Figure ��� Another almost equilateral mesh of the do�
main�

Figure ��� Partial enlargement around the wing body�

size must be proportional to the radius of curvature�
The drawback of this type of discretization is that it
can give rise to large variations of the stepsize� To
reduce this phenomenon� di�erent methods of stepsize
smoothing can be used�

Figures �� and �� show� respectively� two geometric
discretizations of the wheel contour� The �rst one is
de�ned so that any edge of the discretization is su��
ciently close to the contour �the stepsizes are locally

proportional to the radii of curvature�� This condi�
tion guarantees� among others� that the angle between
each edge and the tangents at its extremities remains
smaller than a given threshold value �here ���� Re�
garding the second discretization� the stepsizes of the
�rst one are smoothed so that the ratio between the
lengthes of two consecutive edges is bounded� As can
be seen on the �gures� the circles representing the de�
sired sizes violate in the �rst case� and respect �more
or less� in the second case� the discretization obtained�



Figure ��� Geometric discretization� Figure ��� Controlled geometric discretization�

Figure ��� Geometric mesh� Figure ��� Controlled geometric mesh�

Figure �	� Geometric sizes� Figure �
� Controlled geometric sizes�
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Figure ��� Cartesian function of the sizes�
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Figure ��� Cartesian function of the controlled sizes�

Figures �� and �� show two almost equilateral meshes
corresponding to the two previous geometric dis�
cretizations �in the �rst case� the stepsizes are locally
proportional to the radii of curvature� while in the
second case the stepsizes are locally averaged� starting
from the �rst discretization�� As can be noticed on
these �gures� the second mesh is more regular� This

observation can be con�rmed by examining Figures
�� and ��� which show the sizes at the vertices of the
meshes�

As an indication� Figures �� and 
� show the surfaces
de�ned by the Cartesian functions of the sizes associ�
ated with these two meshes�



Remark� Apart from the discretization of the do�
main boundary� the geometric characteristics can have
an e�ect on the generation of the equilateral mesh
of the domain� These may be of di�erent natures�
amongst which are angular corners and very close
boundary segments �or thin domains��

In the case of a geometric discretization �generally non
uniform� of the domain boundary� it is not obvious to
a priori establish the desired size of the elements at
the vertices of the regular mesh of the domain� Let
us recall that a regular mesh is a mesh whose element
size variation is locally almost null� Accordingly� the
idea consists in �nding� among all the continuous size
functions which conform to the prescribed sizes on the
boundary� the least varying one� Therefore� this func�
tion represents a kind of �minimal variational surface
�
The size variation can be quanti�ed in two di�erent
ways which characterize the gradation of the related
meshes� Let h be the size function in the domain�
the �rst approach consists in considering the �usual

gradient rh of h� As for the second approach� the
variation is measured by the �logarithmic
 gradient
r logh of h� In the next sections� we de�ne the min�
imal variational surfaces based on these two types of
variations and we give a simple algorithm to construct
these surfaces�

�� MINIMAL VARIATIONAL SURFACES

Let us denote by ��h� the variation of h irrespective
of the type of variation considered� A surface with
minimal usual variation de�ned in a closed bounded
domain � of R�� supported by a given contour � �suf�
�ciently smooth�� is a surface in which the sum of the
square of the modulus of the variation on� is minimal�
Mathematically� if h corresponds to such a surface� it
is characterized by�

h��� � � and J�h� � min
u�H�

�
���

J�u� �

with J�u� �

Z

�

jj��u�jj� dX �

where � is the boundary of � and H�
���� �fu � L���� 	 �i �i�u� � L����g � L� denoting the

space of functions having a summable square on ��
and �i�u� the i�th component of ��u��

In the case where ��h� � rh and assuming that � is
regular enough� this surface is nothing other than the
solution of the non homogeneous Dirichlet problem�

h��� � � and �h � � in � �

which characterizes harmonic functions� Using a clas�
sical result of numerical analysis� it can be proved that
h is a solution of the problem�

h��� � � and �v � H�
���� �Z

�

� rh�rv � dX � � �

where H�
� ��� is the set of fonctions in the Sobolev

space of order �� H����� having a null value on the
boundary � of domain �� Likewise� if ��h� � r logh�
it can be shown that h is a solution of the problem�

h��� � � and �v � H�
���� �Z

�

�
� �

h�
jjrhjj�v 


�

h�
� rh�rv �

�
dX � � �

These two problems can be solved using the �nite ele�
ment method� Considering piecewise P� solutions� in
the �rst case� the problem reduces to solving a linear
system and� in the second case� a non linear system�
Although these solutions give the desired exact sur�
faces� we �nd it simpler to use a collocation method�
as will be seen in the following� to approximate these
minimal variational surfaces�

�� APPROXIMATE CONSTRUCTION

ALGORITHM

Like in the �nite element method� we search for min�
imal variational surfaces by using a given mesh of ��
Then� the problem consists in determining the eleva�
tions at the vertices of this mesh� Let T be a uniform
mesh of domain �� including N vertices� the M �rst
vertices being on the boundary� Knowing the con�
tour � �which represents the sizes associated with the
discretization of the boundary � of ��� we have the
elevations at the M �rst vertices of T � We must now
determine the elevations at the other vertices�

Let �D�h� e� be a discrete measure of the variation
of h along the edge e of the mesh� we consider the
following optimization problem�

Minimize J�h� with J�h� �
�

�

X
e�T

��D�h� e� �

where e sweeps all the edges of the mesh� This prob�
lem consists in minimizing the size variation along the
directions given by the mesh considered� We �nd that
this simpler formulation is more e�cient in practice to
approximate the minimal variational surfaces�

Let us denote by hi the elevation �or the desired size�
at vertex i of the mesh� and by dij the ��theoretically

constant� size of edge ij of the mesh� Considering the
�rst type of variation� we have�

�D�h� ij� �
hi � hj

dij
and



J�h� �
�

�

X
M���i�j�N

�hi � hj

dij

��
�

and� in this case� we obtain a simple problem of con�
vex quadratic optimization which reduces to solving
a linear system whose matrix is de�nite positive� It
can be shown that this system of equations represents�
indeed� the discretization at order 
 of a non homoge�
neous and non isotropic transport�di�usion equation�
of the type�

��X�
�h

�x

 	�X�

�h

�y

�a�X�
��h

��x
� b�X�

��h

�x�y
� c�X�

��h

��y
� � �

with h��� � � �X � �x� y� representing the generic
point of the domain��

Similarly� analyzing the second type of variation� we
can consider�

�D�h� ij� �
�

dij

hi � hj

hi 
 hj
and

J�h� �
�

�

X
M���i�j�N

� �

dij

hi � hj

hi 
 hj

��
�

which corresponds to a more complex optimization
problem which can be solved by an approach based on
a quasi�Newton method �algorithm �BFGS
� cf� 	����
Analyzing this new discrete criterion would exhibit
a non linear partial di�erential equation� having the
same anisotropic feature as the �rst type of varia�
tion� Considering a uniform mesh of the domain would
partly avoid this shortcoming�

�� EXAMPLES

In this section� we present the academic example of a
circular ring which is centered at the origin and whose
outer boundary has a radius equal to �� We suppose
that the boundary of this domain is discretized con�
forming to a size function with a sinusoidal variation�
This discretization is illustrated in �gure 
�� Besides�
we consider a uniform mesh of the domain �Figure 

��
on which we will construct the minimal surfaces sup�
ported by the curve de�ned by the size function on the
domain boundary� Figures 
� and 
� show� respec�
tively� the two types of minimal variational surfaces�
usual and logarithmic� obtained by solving the opti�
mization problem introduced in the previous section�
These two surfaces can be di�erentiated by examining
the isovalues corresponding to constant elevations� To
solve both problems� the iterative algorithm BFGS is
used� In the �rst case� the searched function h is ini�
tialized on the domain boundary by the speci�ed size

function and� for each vertex inside the domain� by

hmin 
 �hmax � hmin�
i

N
� In the latter expression�

hmin and hmax are respectively the smallest and the
largest size prescribed on the boundary� i is the ver�
tex number� and N is the number of vertices of the
uniform mesh considered �this initialization voluntar�
ily brings a perturbation of rJ�h� in the domain��
The initial values obtained are J�h� � ����e�� and
jjrJ�h�jj � ���e��� The convergence of the method
is obtained after ��� iterations in � seconds �on a
HP�����J��������Mhz� and corresponds to J�h� �
���
e�
 and jjrJ�h�jj � ��
e��
� In the second case�
the searched function h is initialized by the size func�
tion obtained in the �rst case� and the initial values
are J�h� � ��
�e�� and jjrJ�h�jj� 
��e��� The con�
vergence of the method is obtained after �
� iterations
in � seconds and corresponds to J�h� � ����e�� and
jjrJ�h�jj � ����

The meshes on �gures 
� and 
� represent respectively
the meshes conforming to the size �elds given by the
minimal variational surfaces obtained� and are made
up of respectively ���� and 
��� elements� The av�
erage shape quality of these meshes �using a chosen
monotonous measure varying from � ��at triangle� to
� �regular triangle�� is in the order of ���� and �����
These meshes are generated by a method based on a
combined frontal�Delaunay approach 	��� 	���
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Figure ��� Speci�ed boundary discretization� Figure ��� Uniform mesh�
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Figure ��� Minimal usual variational surface�
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Figure ��� Minimal Logarithmic variational surface�

Figure ��� Usual quality mesh� Figure ��� Logarithmic quality mesh�


