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Many p h ysical phenomena in science and engineering can be modelled by partial di erential equations (PDEs) and solved using the nite element method (FEM). Such a method uses as computational spatial support a mesh of the domain where the equations are formulated. The mesh quality i s a k ey-point for the accuracy of the numerical solution. This paper describes a methodology to construct a quality mesh of the domain from a given discretization of its boundary. W e show that the size map related to such a mesh constitutes a minimal variational surface supported by a given contour. This surface can be constructed, from its boundary, using the nite element method or by the resolution of a simple discrete optimization problem. The quality mesh of the domain is then a mesh conforming to the size map given by this surface. A numerical example is given to demonstrate the method.

INTRODUCTION

The resolution of a physical problem formulated in terms of PDEs using the nite element method (FEM) is based on a spatial discretization, or mesh, of the computational domain. The convergence of such a method, as well as the quality of the resulting solution, is strongly related to the element shape quality (the ideal shape is that of an equilateral or regular element). Many methods (cf. 2]) can be used to construct a mesh of the domain, in general from the data of its boundary. Historically, the rst methods have been based on the \local" regularity of the mesh. One can realize that such methods can fail in the case of a signi cant size variation in the boundary discretization of the domain. The present methods establish a continuous size eld in the domain from the size given by the speci ed boundary discretization, and propose various algorithms to generate a mesh that conforms to this size eld.

This paper discusses what can be an optimal size eld which is related to a quality mesh of the domain (i.e. a mesh which is as regular as possible). Such a s i z e eld presents a \minimal size variation" among all the size elds verifying the speci ed size on the boundary of the domain. The size variation can be quanti ed in two di erent w ays which c haracterize the gradation of the related meshes. Let h be the size function in the domain, the rst approach consists in considering the \usual" gradient rh of h. As for the second approach, the variation is measured by the \logarithmic" gradient r logh of h. Let us denote by (h) the variation of h irrespective of the type of variation. A surface with minimal variation de ned in a domain supported by a given smooth contour i s a s u rface in which the sum of the square of the modulus of the variation on is minimal. Mathematically, i f h corresponds to such a surface, it is characterized by: h(;) = and J (h) =min u2H 1 ( ) J (u)

with J (u) = Z jj (u)jj 2 dX
where ; is the boundary of and

H 1 ( ) = fu 2 L 2 ( ) 8i i (u) 2 L 2 ( )g i (u) denot- ing the i-th component o f (u).
T o solve this problem, we propose a collocation method which allows us to construct approximatively the minimal variational surfaces. In Section 1, the concept of a regular mesh is recalled. In Section 2, the minimal variational surfaces are introduced and their relation with regular meshes is indicated. In Section 3, an algorithm which creates approximatively minimal variational surfaces is given. In Section 4, the method is applied to build regular meshes of a domain whose boundary discretization in prescribed.

REGULAR MESH

Let be a closed bounded domain in R 2 de ned by its boundary. A quality triangular mesh, equilateral or regular, o f is a mesh whose elements are equilateral or regular. The existence of such a mesh is not guaranteed in general. Indeed, it depends, to some degree, on the domain boundary discretization. Therefore, we will call a regular triangular mesh the \best" triangular mesh which can be completed. As the issue of constructing a regular mesh for an arbitrary domain is still an open problem, there are various methods which allow the construction of \almost"open regular meshes.

As an illustration, let us consider the domain de ned by a circular ring whose outer boundary is a circle with radius R = 1 centered at the origin, and the inner boundary is a circle with radius r = ( 1 ; p 3 80 ) [START_REF] Borouchaki | Generation de maillages de qualite, la marche unite, traite MIM, methodes numeriques, maillage[END_REF] also centered at the origin. First, the outer (resp. inner) boundary is discretized with a constant step which equals 2 R 80 (resp. 2 r 80 ), so that the dis- cretization of each boundary has 80 segments. For this discretization, let us notice that the value r of the inner radius is calculated in order to identify the equilateral mesh of the domain (in the sense of the best possible mesh). This mesh, illustrated by F i g u r e 1 , is actually made up of 12 layers of nearly equilateral triangles. Then, a slightly di erent discretization of the inner boundary is considered, taking a step which equals 2 r 80 + 0 :007. Figure 2 shows an almost equilateral mesh of the domain corresponding to this new discretization. As shown in this gure, non regular triangles appear around the fth and sixth layers.

In a classical context, two main types of discretization of the domain boundary can be considered. The rst one involves uniform discretizations with a constant stepsize. The advantage of this type of discretization is its possibility, in general, to construct equilateral meshes. However, it cannot guarantee a good representation of the domain boundary for a given stepsize. Figures 3 and4 show respectively two uniform discretizations of the contour of a wheel cross-section (French railway company), each circle representing the stepsize along any direction. Given a uniform discretization of the domain boundary, a regular mesh of the domain can only be a mesh whose element size equals to the boundary stepsize. So, the desired size of the elements is a priori known at each v ertex of the regular mesh of the domain. Figures 5 and 6 illustrate the two uniform (with constant stepsize), almost equilateral, meshes of the wheel corresponding to the two g i v en discretizations of its contour. The desired size (here constant) along all the directions at each v ertex of these meshes are drawn on Figures 7 and8. We can notice that, at each v ertex of these meshes, the circle representing the desired size of the elements almost passes through the adjacent v ertices. This is a characteristic, among others, of almost equilateral meshes. Let us also notice that the domain geometry is better represented by the second mesh, conceding that the number of elements is greater.

Let us consider the case where the domain boundary is made up of several connected components, discretized with di erent stepsizes (this is a frequent case for domains involved in uid dynamics problems). A regular mesh of such a domain is a mesh whose element s i z e in the neighborhood of each boundary is close to the stepsize of the boundary discretization. As for the element size at other points of the domain, it must remain locally almost constant. Figure 9 shows a domain whose boundary contains ve connected components, one representing the in nite, and the four others different parts of an aircraft wing. The in nite component is discretized with a relatively large stepsize, and the others with much smaller and di erent stepsizes. Figures 9 and11 show almost equilateral mesh of the domain. Figures 10 and12 show respective enlargements of these meshes around the wing body, t h us illustrating the boundary discretizations and the corresponding meshes.

The second type of discretization is called \geometric", for it is adapted to the geometry of the domain boundary. In that case, it can be shown that the step-Figure 9. Almost equilateral mesh of a domain in computational uid dynamics (CFD). size must be proportional to the radius of curvature.

The drawback o f t h i s t ype of discretization is that it can give rise to large variations of the stepsize. To reduce this phenomenon, di erent methods of stepsize smoothing can be used.

Figures 13 and14 show, respectively, t wo geometric discretizations of the wheel contour. The rst one is de ned so that any edge of the discretization is suciently close to the contour (the stepsizes are locally proportional to the radii of curvature). This condition guarantees, among others, that the angle between each edge and the tangents at its extremities remains smaller than a given threshold value (here 4 ). Regarding the second discretization, the stepsizes of the rst one are smoothed so that the ratio between the lengthes of two consecutive edges is bounded. As can be seen on the gures, the circles representing the desired sizes violate in the rst case, and respect (more or less) in the second case, the discretization obtained. Figure 16. Controlled g e ometric mesh. Figures 15 and 16 show t wo almost equilateral meshes corresponding to the two previous geometric discretizations (in the rst case, the stepsizes are locally proportional to the radii of curvature, while in the second case the stepsizes are locally averaged, starting from the rst discretization). As can be noticed on these gures, the second mesh is more regular. This observation can be con rmed by examining Figures 17 and18, which s h o w the sizes at the vertices of the meshes.

As an indication, Figures 19 and20 show the surfaces de ned by the Cartesian functions of the sizes associated with these two meshes.

Remark. Apart from the discretization of the domain boundary, the geometric characteristics can have an e ect on the generation of the equilateral mesh of the domain. These may b e o f d i e r e n t natures, amongst which are angular corners and very close boundary segments (or thin domains).

In the case of a geometric discretization (generally non uniform) of the domain boundary, it is not obvious to a priori establish the desired size of the elements at the vertices of the regular mesh of the domain. Let us recall that a regular mesh is a mesh whose element size variation is locally almost null. Accordingly, t h e idea consists in nding, among all the continuous size functions which conform to the prescribed sizes on the boundary, the least varying one. Therefore, this function represents a kind of \minimal variational surface".

The size variation can be quanti ed in two di erent ways which c haracterize the gradation of the related meshes. Let h be the size function in the domain, the rst approach consists in considering the \usual" gradient rh of h. As for the second approach, the variation is measured by the \logarithmic" gradient r logh of h. In the next sections, we de ne the minimal variational surfaces based on these two t ypes of variations and we g i v e a simple algorithm to construct these surfaces.

MINIMAL VARIATIONAL SURFACES

Let us denote by (h) the variation of h irrespective of the type of variation considered. A surface with minimal usual variation de ned in a closed bounded domain of R 2 , supported by a g i v en contour (sufciently smooth), is a surface in which the sum of the square of the modulus of the variation on is minimal. Mathematically, i f h corresponds to such a surface, it is characterized by: h(;) = and J (h) =min u2H 1 ( ) J (u)

with J (u) = Z jj (u)jj 2 dX where ; is the boundary of and H 1 ( ) = fu 2 L 2 ( ) 8i i (u) 2 L 2 ( )g L 2 denoting the space of functions having a summable square on , and i (u) the i-th component o f (u). In the case where (h) = rh and assuming that ; is regular enough, this surface is nothing other than the solution of the non homogeneous Dirichlet problem: h(;) = and h = 0in which c haracterizes harmonic functions. Using a classical result of numerical analysis, it can be proved that h is a solution of the problem:

h(;) = and 8v 2 H 1 0 ( ) Z < rh rv > d X = 0
where H 1 0 ( ) is the set of fonctions in the Sobolev space of order 1, H 1 ( ), h a ving a null value on the boundary ; of domain . Likewise, if (h) = r log h, it can be shown that h is a solution of the problem:

h(;) = and 8v 2 H 1 0 ( ) Z ; 2 h 3 jjrhjj 2 v + 1 h 2 < rh rv > dX = 0 :
These two problems can be solved using the nite element method. Considering piecewise P 1 solutions, in the rst case, the problem reduces to solving a linear system and, in the second case, a non linear system. Although these solutions give the desired exact surfaces, we nd it simpler to use a collocation method, as will be seen in the following, to approximate these minimal variational surfaces.

APPROXIMATE CONSTRUCTION ALGORITHM

Like in the nite element method, we s e a r c h for minimal variational surfaces by using a given mesh of .

Then, the problem consists in determining the elevations at the vertices of this mesh. Let T be a uniform mesh of domain , including N vertices, the M rst vertices being on the boundary. Knowing the contour (which represents the sizes associated with the discretization of the boundary ; of ), we h a ve t h e elevations at the M rst vertices of T . W e m ust now determine the elevations at the other vertices.

Let D (h e) be a discrete measure of the variation of h along the edge e of the mesh, we consider the following optimization problem:

Minimize J (h) with J (h) = 1 2 X e2T 2 D (h e)
where e sweeps all the edges of the mesh. This problem consists in minimizing the size variation along the directions given by the mesh considered. We nd that this simpler formulation is more e cient in practice to approximate the minimal variational surfaces. Let us denote by h i the elevation (or the desired size) at vertex i of the mesh, and by d ij the (\theoretically" constant) size of edge ij of the mesh. Considering the rst ty p e o f v ariation, we h a ve:

D (h ij) = h i ; h j d ij and M+1 i j N h i ; h j d ij 2
and, in this case, we obtain a simple problem of convex quadratic optimization which reduces to solving a linear system whose matrix is de nite positive. It can be shown that this system of equations represents, indeed, the discretization at order 2 of a non homogeneous and non isotropic transport-di usion equation, of the type:

(X) @h @x + (X) @h @y ;a(X) @ 2 h @ 2 x ; b(X ) @ 2 h @x @y ; c(X ) @ 2 h @ 2 y = 0 : with h(;) = (X = ( x y) representing the generic point of the domain). Similarly, analyzing the second ty p e o f v ariation, we can consider:

D (h ij) = 1 d ij h i ; h j h i + h j and J (h) = 1 2 X M+1 i j N 1 d ij h i ; h j h i + h j 2
which corresponds to a more complex optimization problem which can be solved by an approach based on a quasi-Newton method (algorithm \BFGS", cf. 3]).

Analyzing this new discrete criterion would exhibit a non linear partial di erential equation, having the same anisotropic feature as the rst type of variation. Considering a uniform mesh of the domain would partly avoid this shortcoming.

EXAMPLES

In this section, we present the academic example of a circular ring which is centered at the origin and whose outer boundary has a radius equal to 1. We s u p p o s e that the boundary of this domain is discretized conforming to a size function with a sinusoidal variation. This discretization is illustrated in gure 21. Besides, we consider a uniform mesh of the domain (Figure 22), on which w e will construct the minimal surfaces supported by the curve de ned by the size function on the domain boundary. Figures 23 and24 show, respectively, the two t ypes of minimal variational surfaces, usual and logarithmic, obtained by solving the optimization problem introduced in the previous section. These two surfaces can be di erentiated by examining the isovalues corresponding to constant e l e v ations. To solve both problems, the iterative algorithm BFGS is used. In the rst case, the searched function h is initialized on the domain boundary by the speci ed size function and, for each v ertex inside the domain, by h min + ( h max ; h min ) i N : In the latter expression, h min and h max are respectively the smallest and the largest size prescribed on the boundary, i is the vertex number, and N is the number of vertices of the uniform mesh considered (this initialization voluntarily brings a perturbation of rJ(h) in the domain).

The initial values obtained are J (h) = 4.43e04 and jjrJ(h)jj = 4.9e04. The convergence of the method is obtained after 119 iterations in 6 seconds (on a HP9000-J7000-440Mhz) and corresponds to J (h) = 9.12e02 and jjrJ(h)jj = 1.2e-02. In the second case, the searched function h is initialized by the size function obtained in the rst case, and the initial values are J (h) = 1.21e05 and jjrJ(h)jj = 2.9e05. The convergence of the method is obtained after 129 iterations in 8 seconds and corresponds to J (h) = 1.07e05 and jjrJ(h)jj = 1.7.

The meshes on gures 25 and 26 represent respectively the meshes conforming to the size elds given by t h e minimal variational surfaces obtained, and are made up of respectively 1638 and 2460 elements. The average shape quality of these meshes (using a chosen monotonous measure varying from 0 ( at triangle) to 1 (regular triangle)) is in the order of 0.96 and 0.97. These meshes are generated by a method based on a combined frontal-Delaunay approach 1], 4]. Figure 26. Logarithmic quality mesh.
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 1 Figure 1. Equilateral mesh.
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 2 Figure 2. Almost equilateral mesh.
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 3 Figure 3. Uniform discretization.
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 4 Figure 4. Another uniform discretization.
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 5 Figure 5. Uniform mesh.Figure6. Another uniform mesh.
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 7 Figure 7. Uniform sizes.Figure8. Other uniform sizes.
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 8 Figure 7. Uniform sizes.Figure8. Other uniform sizes.
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 10 Figure 9. Almost equilateral mesh of a domain in computational uid dynamics (CFD).Figure10. Partial enlargement around the wing body.
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 11 Figure 11. Another almost equilateral mesh of the domain.Figure12. Partial enlargement around the wing body.
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 13 Figure 13. Geometric discretization.
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 14 Figure 14. Controlled g e ometric discretization.
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 15 Figure 15. Geometric mesh.Figure16. Controlled g e ometric mesh.
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 171920 Figure 17. Geometric sizes.Figure18. Controlled g e ometric sizes.
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 21 Figure 21. Speci ed b oundary discretization.
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 2224 Figure 22. Uniform mesh.
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 25 Figure 25. Usual quality mesh.Figure26. Logarithmic quality mesh.