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Abstract: This paper represents an effective approach in shape and material optimization of a vertical floating
breakwater. Using the potential-flow theory, the hydrodynamic pressure deduced from sea wave’s propagation has
been computed based on the non linear theory of Stocks. Then, an analytical structural study of the floating
breakwater, exposed to the wave pressure, is elaborated based on the frame theory.  Finally, the optimization
process is performed on the shape and type of material of a floating breakwater; where the structural deflections
and the stress distribution constitute the constraints of the optimization problem.
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1 Introduction
Shape optimization is a subject which has attracted the
interest of the researches for many years. It refers to
the optimal design of the shape of structural
components and is of great importance in structural and
mechanical engineering. The problem consists in
finding the best shape of a structural component under
certain loading, in order to have minimum weight, or
uniformly distributed equivalent stresses or even to
control the deflections of the structural components. A
shape optimization procedure is an iterative process in
which repeated improvements are carried out over
successive designs until the optimal design is
acceptable.
        In this paper, we consider the problem of
determining the optimal shape and material of a 2D
vertical floating breakwater, which constitutes a new
ascending type of coastal structures. These structures
are designed mainly to provide protection by reflection
and/or dissipation of wave energy, where rubble-
mound and fixed bottom vertical breakwaters have
been extensively used for sheltering harbours [1].
Nevertheless, at many locations, the site specific
parameters as deep water or poor bottom conditions as
well as environmental requirements including the
phenomena of intense shore erosion, water quality and
aesthetic considerations, advocate for the application of
floating structures.
       Research engineers and scientists have realized the
potential for floating breakwaters in certain areas, and
research interest has been directed towards this subject
during the last decades due to its numerous advantages
in comparison with the fixed ones. As  a   result   many

types of floating breakwaters have been developed, as
described by McCartney [12]; however, the most
commonly used are the rectangular pontoon-type
breakwaters, which are moored to the sea bottom with
cables or chains.

Moreover, many studies have been produced on
floating breakwaters [13],[14]  (Twu and  Lee, 1983;
Johansson 1989; Murali and Mani, 1997; etc.), mainly
concerning the wave protection improvement by
different types of floating structures. Other studies
have been directed towards the mooring forces and
motion responses to understand the behaviour of the
floating breakwaters due to sea waves (Williams and
Abul-Azm,1997; Sannasiraj, 1998; and Lee and Cho,
2003) [15], [16]. This paper seeks not only to develop a
floating breakwater until that would have the capability
of withstanding more severe wave loading conditions
such that these structures will become a viable
alternative to conventional breakwaters for moderately
exposed locations, but also to optimize the shape and
material of these breakwaters. This requires a
comprehensive structural analysis study which
constitutes the foundation of the optimization problem.

Although, the protection of marine structures has
been extensively studied in recent years, understanding
of their interaction with waves, marine structures and
the seabed is far from complete [3]. Damage of marine
structures still occurs from time to time, with two
general failure modes evident. The first mode is that of
structural failure, caused by wave forces acting on and
damaging the structure itself. The second mode, which
has attracted many of the scientists (Biot-1941; Jeng
1997; Mitzutani 1998), is that of foundation failure
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caused by liquefaction or erosion of the seabed in the
vicinity of the structure, resulting in collapse of the
structure (case of fixed bottom breakwaters only),
where our work is mainly directed towards the
structure failure due to the lack of knowledge in this
domain. Moreover, the physical understanding and
computation of wave–structure interaction, one of the
most important hydrodynamic processes in both coastal
and offshore engineering, are crucial to assess wave
impacts on structures as well as structural responses to
wave attacks. Traditionally, the estimation of wave
loads on a structure is often done by either empirical
approach [2] (ex: Morison equation Sainflou, Hiroi,
Goda, Svendson…) or a computational approach. The
empirical formulas are simple but crude and will not be
able to provide detailed and accurate information about
pressure distribution on a structure. The computational
approach can be further divided into two types: the
Laplace equation solver for potential flows [3] and the
Navier–Stokes Equations (NSE) solver for viscous
flows, where the latter is used for simulation of wave–
structure interaction during which both vortices and
turbulence may be present, where solving the Laplace
equation by imposing the boundary conditions
constitutes the wave modelling part in this study.

In this paper it is interesting to consider the case of
a breakwater appearing in ports’ constructions far from
the shore, at a constant depth, and at a fixed point.
Then, the problems of wave’s propagation over a
varying bathymetry and shallow water consequences
are eliminated.

2 Wave modeling
       A cartesian coordinate system Oxyz is employed,
where Oxy coincide with plane of the free surface at
rest, Oz directed positive upwards, and Ox directed
positive in the direction of propagation of the waves.
The incident wave propagates in a straight line in the
direction defined by the angle γ , formed with the Ox
axe. In this study, it is supposed that the waves can
strike the breakwater in a perpendicular direction to
obtain the maximum pressure applied by the waves on
the breakwater. Then, the angle is taken as 0=γ
(incident wave normal to the breakwater) and the
movement is reduced to two dimensions (Fig 1)

Fig.1      Wave notations

The fluid motion is defined as follows: Let t denote
time, x and z the horizontal and vertical coordinates,

respectively, and η  the free-surface elevation above
the still water level. The characteristic parameters of
the wave are defined in (Fig 1). The high values of the
density and sound velocity in water render the
compressibility effects negligible in sea water, so it is
considered incompressible. The fluid is considered also
irrotational. Then, the fluid motion can be described by
a velocity potential, Φ , related to the velocity ),( wuU
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Once the parameters characterizing the sea waves
are   known (Length of wave L, Period T, Height H), a
model  is  needed  to study the waves’ propagations
and transforms their evolution into loads on the
breakwater. The well known equation, Bernoulli-
Lagrange constitutes the essential equation to
determine the field of wave’s pressure.
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     In general, the study of marine structures’
behaviours due to waves’ propagations is mostly made
as part of a linear theory [4], where the interest in this
paper is to orient the work towards the non linear
approximation (Stokes 2nd order expansion). It is clear
that if Φ  is known throughout the fluid, the physical
quantities (pressure and velocity) can be obtained from
Bernoulli's equation. The boundary value problem is
then defined as follows:
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at the free surface;
      The used method for the nonlinear theory (Stockes
2nd order expansion), called perturbation method [5],
consists of developing the different variables into
power series depending on a parameter LH /=ε , where
the linear theory constitutes the first order yielding
exact solutions only for waves with infinitesimal
amplitudes.
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The nonlinear approximation is achieved by
substituting for the first order in the perturbation series,
where this expression of velocity potential describes
the physical properties of the waves in the absence of
any structure, but the reflection phenomenon must be
taken into consideration during the collision of the
waves by the breakwater. Finally, the expression of the



pressure distribution (pressure at any point in the fluid
domain.) in the case of wave-breakwater interaction,
where all the waves are reflected by the breakwater (no
diffraction or transmission) is given by: [17]
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(Where Lk /2π= designates the wave number and ω
the frequency). This repartition of the hydrodynamic
pressure has a curved shape (obtained using  Matlab);
where its maximum is around the still water level and it
decreases to zero at the top of the breakwater (with the
wave height) and also decreases with water depth
(Fig.2). Fixing 0=x (exterior breakwater surface), and
the phase angle 0=β (vertical impermeable wall, [9]),
the pressure distribution over the vertical breakwater is
obtained.

       Fig. 2    Hydrodynamic pressure distribution over the breakwater

This hydrodynamic pressure is acting on the exterior
surface of the breakwater due to the assumption that all
the waves propagating from the ocean side are totally
reflected outside the port (no transmission). It can be
written as follows:
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    It is reduced to an equation with hyperbolic
functions of z (altitude), where the other variables
independent of the altitude are collected together in the
terms ,a ,b and f . The setup for a sea wave is as flows
(choosing the parameters of a strong wave): wave
properties [L=140 m, T=9 sec, d=40 m, L=120 m, H=3
m, r=0.8, t=0, sea water density=1025 kg/m3]

3 Shape optimization
A moored floating breakwater should be properly
designed in order to ensure: (a) effective reduction of
the transmitted energy, hence adequate protection of

the area behind the floating system, (b) non-failure of
the floating breakwater itself and (c) non-failure of the
mooring lines. The satisfaction of these 3 requirements
represents the overall desired performance of the
floating breakwater. The non-failure of the mooring
lines has been widely studied and discussed, so the
efforts in this paper are directed towards the first two
issues.
      The reduction of the transmitted energy is achieved
by the floating breakwater itself due to a considerable
depth and by the fixed seawall concept under the
breakwater for the rest underwater region. Moreover,
for a breakwater to float it is obviously designed with a
hollow form to reduce the total weight of the structure;
where such form complicates the problem and
implicates more constraints to be considered during the
design.

         Fig.3     Characteristics of floating breakwater

      An additional rectangular wall can be used to
protect the sheltered regions from high waves; where it
is sufficient to place it only from the ocean side since it
has non sense to construct a rectangular breakwater
with its height over the free surface level equals to a
strong wave height. Then, it can be simply deduced
that a floating breakwater can be assimilated to two
parts: the main rectangular body possessing sufficient
dimensions considering the fixed seawall concept, and
a second part formed by a small rectangular wall fixed
on the ocean side of the breakwater to attenuate the
high waves. The dimensions of the second part are
easily determined, where its height is equal to the wave
height H, and its width c is taken to be 0.7 m [10].
     Improving the performance of floating breakwaters
could open up multiple of possible uses and this
because the floating breakwater, in contrary to the
fixed one (the only parameter to calculate is the width
being deduced from the stability condition), has many
parameters characterizing its geometry and defining its
shape FxxxxxL ,,,,,, 54321  (Fig.3). Some of these
parameters are related to the same physical constraint
where the rest are determined from other independent
constraints, and therefore determining its geometrical
dimensions cannot be performed as an ordinary
calculation problem but it needs an optimisation
process in order to compute these parameters taking
into consideration their effects on each other. The
optimisation problem is assumed to be finite
dimensional constrained minimization problem, which



is symbolically expressed as:
     Find a design variable vector x ;
     to minimize the weight function )(xf ob

     subject to the n constraints 0)( <xf i

3.1 Objective Function
The optimal solution is to design a breakwater
respecting all the constraints with a minimum volume,
hence the objective is to minimize the weight of the
breakwater,

HcxxLxLxFxxxxxfob +−−−= )(),,,,,( 432154321

3.2  Dynamic Pressure Constraint
The concept of the fixed seawall permits to determine
the height of the breakwater in accordance with low
hydrodynamic pressure acting on this seawall. The
dynamic wave pressure is mainly concentrated near the
free surface and its induced perturbation is low under a
certain height (Fig.4); then the height of the breakwater
can be limited to where the pressure is approximately
unvarying corresponding to an approximate value of

0max1.0 =− PP , where )0(max == zPP . Finally, the
height can be considered to be mL 8= , where this
height is indeed satisfactory for a strong wave )4( mH = .

           Fig.4        Wave Pressure Modelling

  This constraint is independent of the other constraints,
and then the height of the breakwater is determined
only from it and no need to still consider the height as a
variable for the rest of the optimization process.

3.3 Floating Constraint
The forces acting on the floating breakwater are
numerous (Fig.5) and of various sources thus they are
defined as follows:
P1=hydrostatic pressure acting on the two sides,
P2=hydrostatic pressure acting on bottom surface,
P3=hydrodynamic pressure acting from the ocean side,

Fig.5   Applied forces on a floating breakwater

    P3 is modelled in the structural analysis as two
triangular forces where the maximum is located at the

height z=0 (water free surface) and it is evaluated by
substituting the value of z in the equation of
hydrodynamic pressure (Eq.4) ,

fkdbkdaP ++= )2cosh()cosh(max3

The equilibrium equation for floating can be written as:
0)( =ρ++ρ− gVgVV Termm , where mρ and eρ designates

the densities of the material (concrete) and the sea
water respectively, mV designates the volume of the
inside material of the whole breakwater without the
upper rectangular wall, oV designates the volume of the
hollow part (atmospheric pressure inside),

rV designates the volume of the upper rectangular part,
where TV designates the volume of the submerged part
of the breakwater ,  and then Tom VVV =+

A relation between the hollow volume and the
submerged volume can be simply deduced:
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The floating constraint can be expressed as follows:
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But, really the floating constraint yields to a simple
relation between the variables that can be used to
reduce the number of variables in the optimization.
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3.4 Stability Constraint
Stability is defined as the ability of the breakwater to
right itself after being heeled over. This ability is
achieved by developing moments that tend to restore
the breakwater to its original condition. There are a
number of calculated values that together determine the
stability of a floating breakwater: 1- Initial horizontal
equilibrium, 2- Heeled angle, 3- Tension in mooring
lines.
      First of all, this floating breakwater has a non-
symmetrical shape, so initially (before any disturbance)
it is necessary to maintain a horizontal equilibrium
position. This is performed by dividing the breakwater
into 5 rectangles and calculating the new position of
the centre of gravity (Fig.5) in terms of the variables
and then aligning it with the centre of buoyancy for the
floating breakwater (Fig.6) which lies at the geometric
centre of volume of the displaced water ( 2/1x ).
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When the breakwater is disturbed by a wave, the centre
of buoyancy moves from B to B1 (Fig.6) because   the
shape   of   the   submerged volume is changed; then



the weight and the buoyancy force form a couple
capable to restore the breakwater to its original
position.

Fig.6   Stability of floating breakwater

    Moreover, the distance GM known as the
metacentric height illustrates the fundamental law of
stability, where it must be always positive to create a
restoring couple and maintain stability. The equation of
motion can be written as: ∑ θ= &&IM ⇒ at equilibrium

0=−− BF MMMp , where Mp is the moment of the
disturbing force (wave), MF is the moment of the
tension in the mooring lines, and MB is the moment of
the buoyant fore (restoring couple), the stability
constraint can be expressed as
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being the angle formed by the mooring lines and the
vertical ( =20°), and θ is the angle of disturbance
(heeled angle); in fact it is fixed by the designer, and
since the breakwater must be very rigid and stable in
order to protect the ports from waves, it is taken to be
1.2°.(slope of 2%)
The second relevant stability constraint is

2/1xx = (horizontal equilibrium condition)
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3.5  Structural constraints
This constraint constitutes a pure structural analysis of
the floating breakwater, where a comprehensive
structural study is requested in order to determine the
bending moments, stresses, and deflections that must
be restricted to certain limits. The floating breakwater
is modelled as a frame structure fixed on two simple
supports at its bottom, where it can be simply divided
into four beams with assimilating the upper rectangular
wall as a concentrated force on the upper beam. Each
beam is equilibrated by the internal reactions and
moments generated from frame division, and hence the
equilibrium conditions can be applied for each beam
alone to determine the internal efforts and moments
yielding to the deflection and stress
calculations, 0,0,0 =Σ=Σ=Σ MFF yx . All the forces are

distinguished from each other by different colours (Fig
7).

                       Fig. 7    Forces and moments distributions

     This constitutes a problem of 12 variables
( ,Ni ,Vi and Mi where 4,3,2,1=i ) with 12 equations, but in
fact there is only 9 effective equations (equilibrium
conditions for beam 1-4, 1-2, 2-3) and the last 3
equations (beam 3-4) are linearly dependant and will
not help to solve the system of 12 variables.
     This problem is of the hyper-elastic type, where the
number of equations is not sufficient to determine the
corresponding variables [11], and it is necessary to
include three other relations deduced from applying
Castigliano’s theorem on the fixed nodes (beam 1-4
and 1-2). ∫

∂
=

∂
∂

=λ
EI
dx

F
MM

F
W

ii
i   , iλ being the

displacement of the node where the force iF  is applied,
and M  the distribution of moment along the beam.
Applying the global equilibrium conditions for the
whole frame: 0,0,0 =Σ=Σ=Σ MFF yx , the support
reactions ( )xxyy RRRR 4141 ,, − are expressed in terms of the
variable vector x.
      Applying the local equilibrium conditions for each
of the beams 1-2, 2-3, 1-4, we obtain 9 equations in
terms of the normal forces ( )4321 ,,, NNNN , shear forces
( )4321 ,,, VVVV , and the moments ( )4321 ,,, MMMM . Then,
Castigliano’s theorem is applied in beam 1-4 on the
node1 and on the node 4, and beam 1-2 on the node 1;
which give 3 new equations to complete the system.)
      Finally, it ends up with a system of 12 variables
with 12 equations, where these 12 variables
( ,Ni ,Vi and Mi ) are determined in terms of the
breakwater geometrical dimensions 54321 ,,,, xxxxx .The
next step in this structural part, after determining the
internal efforts and moments, is to develop the
expressions of the bending stresses, and the
deflections, in order to present them as new constraints
needed to be respected in design. It can be easily
deduced based on the following relation:

)(xMyEI =′′ , where y ′′ is the second derivative of the
beam deflection, E is the Young Modulus of the inside
material, I is the moment of Inertia of the beam.

I
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=σ  , where e is the beam thickness



The deflections’ constraints are expressed as follows:
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The bending stresses’ constraints are expressed as
follows:
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All the constraints are expressed in long and
complicated equations in terms of the four geometrical
parameters 5432 ,,, xxxx , characterising the floating
breakwater. Finally, the optimization problem is
summarized as follows:
Objective function:
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Aside from the constraints of stability, structural, and
floating, it was also necessary to establish some
additional geometrical constraints:
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Using the Matlab optimization toolbox and mainly the
function fmincon; which is based on the SQP method
(sequential quadratic programming), the problem can
be solved to determine the variables Fxxxx ,,,, 5432 .
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     In order to validate this analytical calculation, a
comparison is realized with a numerical approach
using the ABAQUS software. The comparison
comprises the deflections and the bending stresses of
the beams (1-2, 2-3, and1-4). Using the Matlab, all the
preceding equations (moments, deflections, stresses)
are programmed to yield to the explanatory curves
defining the real state of the floating breakwater when
exposed to sea waves. First, the upper beam (2-3) is

compressed from the two sides, by the hydrostatic
pressure from both sides and a hydrodynamic pressure
from one side, yielding to an upward deflection of
6.3x10-4m. The same trace has been drawn by ABAQUS
with a close maximum deflection of 5x10-4m. The lower
horizontal beam (1-4) is supporting all the weight and
also the hydrostatic pressure applied at its bottom
which is strong enough to cause an upper deflection
5.6x10-4m towards the hollow section and very close to
the results given by ABAQUS 6.2x10-4m, except for
the position of the upward maximum deflection where
it is approximately located in the middle of the beam in
our analytical calculation and shifted smoothly towards
the right in ABAQUS.

   For the vertical beam (1-2), it is fixed from it lower
end, and left free from above reaching a horizontal
deflection of 2x10-3m, due to the hydrodynamic pressure;
where the Abaqus shows a deflection of 1.9x10-3m.

        Concerning the bending stresses, a similar
comparison to the deflection is realized. The bending
stress in the upper beam (2-3) is increasing from 0.75
MPa on the left side to a value of 1.2MPa on the right
side where it is reaching 1.36 MPa in ABAQUS. For
the lower beam it is decreasing from 2.8 MPa to  a
minimum of -1.45 MPa and then increasing again. In
ABAQUS, we can notice that the bending stress is
decreasing from 3.64  MPa to  -1.68 MPa and then
increasing again.



It is also showing good agreement for the bending
stresses in the vertical beam (1-2).

4 Material optimization
Minimum weight of structures is not only restricted to
shape optimization, but moreover to material
optimization. Finding the best material type that can
withstand all the exerted mechanical constraints
constitutes an important step on the road of designing
an optimal floating breakwater. The above analysis is
performed by considering, the most utilized material in
the field of marine structures, the “concrete”. In this
part, a comparison will be made between the concrete
and other materials aiming to search for a more
suitable material that can be applicable for our case.

4.1 Aluminium
Aluminium is a high quality material and also a
corrosion-resistant, where it is mainly used in aircraft
and ships construction due to its weight lightness and
its flexibility in performing complex shapes.
The basic physical and mechanical properties are as
follows:

Density 3/2700 mKg=ρ

   Elasticity Module MPaE 4105.6 ×=
   Tensile strength MPa50=σ
  Replacing the mechanical properties of Aluminium in
the equations describing the breakwater deflections,
moments, and stresses and then repeating the
optimization procedure, it ends up in the following:







×===

===

mNFmxmx

mxmxmx

1/108.1,72.0,8.0

,24.0,5.5,29.7
5

54

321

4.2 Steel
Steel is a very resistant material where it can be
benefited from its high mechanical properties. The
basic physical and mechanical properties are as
follows:

Density 3/7850 mKg=ρ

   Elasticity Module MPaE 5102 ×=

   Tensile strength MPa200=σ
  The calculations proved that steel cannot respect the
mechanical constraints subjected to the problem of a
floating breakwater, and this is clearly noticed from its
great weight (high density). Because of its great
weight, a floating breakwater constructed from steel
must reserve a hollow part of 86 % with respect to total
structure, and which is really a high ratio resulting in
thin beams in the breakwater that cannot respect the
deflection constraints at all. In this manner, the steel is
totally excluded from the domain of materials that can
be applied for a floating breakwater.

4.3 Composite materials
The accumulated experience proved that the employing
of composite materials permit, with equal performance,
a gain of mass varying from 10 % to 50 % over the
same component in metal alloys, and with a cost of
10% to 20% less. The following properties are given
for a composite material fabricated from glass/epoxy:

Density 3/1700 mKg=ρ

    Elasticity Module MPaE 3104.12 ×=
    Tensile strength MPa90=σ
Repeating the same optimization procedure, it ends up
with the following results:
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It is noticed that we obtained unsatisfactory results,
where the frame theory is not applicable anymore (very
thick vertical beams: beam 1-2, x5=1.6m; beam 3-4,
e=2m). In fact this is due to the lightness of the
composite materials yielding to a low percentage of the
hollow part with respect to the total structure (40 %).
Due to the many advantages of the composite
materials, this problem can be omitted by increasing
this ratio to a higher value; this is done by fixing a
concentrated or a uniform weight inside the hollow
part. The floating equation is then written as follows:
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ρ
ρ
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−
= , where V is the volume of the

additional weight, and ρ is the density of a reference
material, Fig.8 (for example: concrete). The additional
material is distributed over the length of the hollow
part and a height of 1.8 m.

               Fig.8   Floating breakwater with composite materials
    It is important to note that all the beams are mainly
exposed to bending effects as the Abaqus results above



have proved, so the glass fibers can be placed in the
direction of 0° for the horizontal beams and in the 90°
for the vertical beams (Fig.8). In this type of fiber
distribution, the composite material will be working in
its best performance since the bending is a combination
between traction for the upper part and compression for
the lower part or vice versa.
     Applying the optimization procedure, after
increasing the ratio of the hollow part (decreasing the
percentage of filled material part), we end with the
following results:







×===

===

mNFmxmx

mxmxmx

1/108.1,63.0,8.0

,36.0,83.5,43.7
5

54

321

     By this manner, the composite materials have
proved its reliability and affectivity to replace other
materials. The additional material approximated by 240
KN is modelled as a concentrated force applied on the
lower beam, and then the new deflection is calculated
referring to the deflection constraint 4f  (see figure
below).  Finally, the total deflection of the lower beam
(1-4) including the additional material is still small and
far enough from the limiting constraint m01.0 .

In order to achieve the best explanation for the
different materials, a comprehensive comparison (same
wire tension) is elaborated in the following table:

As demonstrated in the table above, the composite
materials seem to have the optimum choice over the
rest of materials. This is not only restricted by
possessing the minimum material volume, but also to
the additional weight that it can hold in its hollow part.
This additional material, approximated by 240 KN, can
be any stocking goods and materials for the need of the
ports instead of the considered reference material.

5 Conclusion
In this paper, a comprehensive study was performed
towards realizing a floating breakwater that can
attenuate and withstand strong waves similarly to a
fixed bottom breakwater and it ended up by satisfying
results. Also, an optimization process is performed to
attain an optimal shape for the design of floating
breakwaters. As deduced from the optimization
problem, minimum weight of structures is not only

restricted to shape optimization, but moreover to
material optimization leading to select the composite
materials from the rest. In fact, it is not only a problem
of volume consuming, but also an extra load that may
be used for needs storage and other used equipments in
the case of the composite materials.
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Material x1(m) x2(m) x3(m) x4(m) x5(m) V(m3)

Concrete 7.68 5.65 0.8 0.8 0.85 27
Aluminum 7.29 5.5 0.24 0.8 0.72 22.3
Composite 7.43 5.83 0.36 0.8 0.63 21.7


