
HAL Id: hal-03620861
https://hal.science/hal-03620861

Submitted on 26 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit Dead-Time Compensation in Linear Parameter
Varying Model Predictive Control

Marcelo Menezes Morato, Tito Santos, Julio Normey-Rico

To cite this version:
Marcelo Menezes Morato, Tito Santos, Julio Normey-Rico. Explicit Dead-Time Compensation in Lin-
ear Parameter Varying Model Predictive Control. CAO 2022 - 18th IFAC Workshop on Control Appli-
cations of Optimization, Jul 2022, Gif-sur-Yvette, France. pp.278-283, �10.1016/j.ifacol.2022.09.037�.
�hal-03620861�

https://hal.science/hal-03620861
https://hal.archives-ouvertes.fr


Explicit Dead-Time Compensation in
Linear Parameter Varying Model

Predictive Control ⋆

Marcelo M. Morato ∗,∗∗∗ Tito L. M. Santos ∗∗

Julio E. Normey-Rico ∗

∗ Dept. de Automação e Sis., Univ. Fed. de Santa Catarina, Brazil.
∗∗ Dept. de Eng. Elétrica e Computação, Univ. Fed. da Bahia, Brazil.
∗∗∗ Univ. Grenoble Alpes, CNRS, Grenoble INP⊤, GIPSA-lab, 38000
Grenoble, France. ⊤Institute of Engineering Univ. Grenoble Alpes.

(marcelomnzm@gmail.com)

Abstract: Model Predictive Control (MPC) is able to directly deal with dead-time (DT)
phenomena. Nevertheless, implicit delay compensation heavily affects computational aspects
of such control algorithm. The corresponding stability and feasibility analyses also become
numerically tougher. Recently, the Linear Parameter Varying (LPV) toolkit has become a
popular representation for complex, nonlinear dynamics, with corresponding MPC algorithms
being developed over the last few years. In this context, we propose a novel MPC scheme
for DT LPV systems, which is able to ensure input-to-state stability, recursive feasibility, and
constraint satisfaction. The method operates under a DT compensation framework and uses a
DT-free model. Thereby, the DT is explicitly accounted for, and thus, augmented state-space
models are avoided. The scheme also offers robustness properties, which are synthesised w.r.t.
model-mismatches and delay estimation uncertainties. A solar collector benchmark example is
used to illustrate the advantages of the method, which is compared against a regular LPV MPC
algorithm (with standard implicit DT compensation).

Keywords: Dead-time, Model Predictive Control, Linear Parameter Varying Systems.

1. INTRODUCTION

Model Predictive Control (MPC) is very well recognised
and widely applied for constrained processes. Over the last
decade, there has been astounding progress on enhancing
the real-time capabilities of MPC algorithms (Gros et al.,
2020). In parallel to this advance, the Linear Parame-
ter Varying (LPV) toolkit has been widely popularised
(Sename et al., 2013). For many nonlinear and complex
systems, LPV realisations stand for an elegant modelling
strategy, with no nonlinear state transitions but rather
linear maps scheduled by (known, bounded) parameters
ρ. Accordingly, recent progress has been established on
LPV MPC algorithms, refer to (Morato et al., 2020a) and
references therein.

Dead-time (DT) phenomena are observed in many real-
life situations, such as when time is required to transport
energy, mass, or information, or due to the accumulation
of lags when a series of low-order systems are connected
in series, as argues Normey-Rico (2007). With regard to
this matter, we note that DT compensation is one of the
inherent advantages of MPC algorithms (Santos et al.,
2012). In these controllers, DTs are taken into account
by systematically augmenting the prediction model, using
additional state variables that linearly relate to the magni-
tude of the DT (da Silva et al., 2020). Nevertheless, recur-
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sive feasibility and stability properties of the closed-loop
system are typically demonstrated using terminal ingredi-
ents based on delay-free (nominal order) models (Köhler
et al., 2021) or via complex delay-dependent Lyapunov-
Krasovskii maps (Kharitonov and Zhabko, 2003). There-
fore, it is reasonable to conclude that implicit delay com-
pensation in MPC is not very practical in some cases,
especially since: (i) the resulting algorithm has an increase
on numerical demand, which complicates real-time appli-
cations; and (ii) stability-related tools, such as terminal
invariant sets, also become harder to determine (Normey-
Rico et al., 2015).

A widely used solution for the control of delayed processes
is the use of DT compensators (DTCs). Based on the sem-
inal work of Smith (Smith, 1957), these schemes are used
to eliminate the DT from the closed-loop characteristic
equation. DTCs have been studied and diversified over the
last six decades, with recent extensions for nonlinear (Lima
et al., 2015) and time-varying DT (Morato and Normey-
Rico, 2021) cases. Recent debate on the topic clearly indi-
cates that these scheme are still relevant (Skogestad, 2018;
da Silva et al., 2020).

Taking into account the previous discussion, our goal
in this paper is to assess on how MPC algorithms can
handle DT LPV systems by explicitly compensating the
effect of DT under a corresponding DTC. Specifically, we
build upon the ideas of (Santos et al., 2012), generalising



the prior result for the LPV case, while exploiting the
parameter-dependent stability conditions recently devel-
oped by the authors (Morato et al., 2020b, 2021a). The
contributions are as follows:

• An explicit DTC scheme is presented for the case of
delayed LPV processes (Sec. 2).

• A corresponding LPV MPC scheme is proposed with
parameter-dependent terminal ingredients (Sec. 3).

• Robustness analyses regarding DT estimation errors
are given (Sec. 4).

• A solar collector benchmark simulation is given in
order to illustrate and discuss the advantages of the
proposed method when compared to a standard LPV
MPC algorithm with an implicit DT model (Sec. 5).

Notation. The index set N[a,b] represents {i ∈ N | a ≤
i ≤ b}, with 0 ≤ a ≤ b. The identity matrix of
size j is denoted as Ij ; I{j} denotes the j-th row of
Ij ; col{·} denotes the vectorization of the entries and
diag{v} denotes the diagonal matrix generated with the
line vector v. The prediction of a given variable v(k) at
time instant k + i, computed based on the information
available at instant k, is denoted as v(k + i|k). K∞-class
scalar functions are positive,increasing, and pass through
the origin. A realC1 function f : Rm → Rn is such that
it is differentiable and holds continuous first derivatives.
Πb

i=a(A(ρ(i)) denotes the left-side matrix product from
i = a to i = b, i.e. A(ρ(a))A(ρ(a + 1)) . . . A(ρ(b)). The
Minkowski set addition is defined by A ⊕ B := {a +
b | a ∈ A , b ∈ B}, while the Pontryagin set difference is
defined by A ⊖ B := {a | a⊕B ⊆ A}.

2. PRELIMINARIES

2.1 Process model

Consider the following discrete-time LPV system:{
x(k + 1) = A(ρ(k))x(k) + B(ρ(k))u(k − d) ,
ρ(k) ∈ P ,

(1)

being k ∈ N the sampling instant, x(k) ∈ Rnx the vector
of the current state variables, u(k) ∈ Rnu the vector of
the current control inputs, and ρ(k) ∈ Rnp the current
scheduling variables. This LPV system is prone to DT,
since the control action u(k) takes d samples to have an
effect on the state dynamics.

The system in Eq. (1) is subject to state and input
constraints: x ∈ X := {x ∈ Rnx : Hxx ≤ gx} and
u ∈ U := {u ∈ Rnu : Huu ≤ gu}, which imply ∥xj∥ ≤
xj ,∀j ∈ N[1,nx], ∥ui∥ ≤ ui,∀i ∈ N[1,nu], respectively. Slew-
rate constraints are implied over the control increments,
this is δu ∈ δU := {δu ∈ Rnu : Hδuδu ≤ gδu}, where
δu(k + 1) = u(k + 1) − u(k). Without loss of generality,
the origin is considered an equilibrium point of Eq. (1).
Moreover, the state transition map is of class C1 over
Z := X × U , ∀ ρ ∈ P.

Assumption 1. The scheduling variables exhibit bounded
rates of variation, i.e. δρ(k+1) = (ρ(k + 1)− ρ(k)) ∈ δP,
with: δP := {δρj ∈ R : δρ

j
≤ δρj ≤ δρj ,∀j ∈ N[1,np]}.

Remark 1. Bounded rates of scheduling parameter vari-
ations is standard in LPV control (Mohammadpour and

Scherer, 2012). If δρ is unbounded, the following discus-
sions can still be used, but rather using ρ(k + 1) ∈ P
(which implies in further conservatism).

2.2 Problem statement

The states x and scheduling variables ρ are measurable
for all sampling instants. Therefore, we use a parameter-
dependent state-feedback

u(k) := κ(ρ(k))x(k) (2)

to ensure that the closed-loop dynamics adheres to desired
specifications.

W.r.t. this matter, the main objective is, thus, to derive
an MPC control law u(k) := κ(ρ(k))x(k), based on a
prediction model without DT, that is able to steer x to
the origin (regulation), while guaranteeing input-to-state
stability (ISS), recursive feasibility of the optimisation,
and constraint satisfaction.

2.3 Implicit DT Compensation in LPV MPC

As exposed in (Morato et al., 2020a), the stability of an
LPV system, as in Eq. (1), under state-feedback MPC
laws, as in Eq. (2), boils down to the existence of ter-
minal ingredients (a terminal offset cost, a terminal state
constraint, and a local stabilising feedback). Nevertheless,
in systems with DT, the following state measure x(k +
1) cannot be inferred from (x(k), u(k)). As of this, Eq.
(1) cannot be used directly in the synthesis of the MPC
scheme; it requires one to consider all control inputs (from
u(k−d) to u(k−1)) in order to represent the complete set
of state dynamics and, thus, derive the stabilising terminal
ingredients. As argued in (Lima et al., 2015), one can use
an implicit dead-time model to find a DT-free realisation
of Eq. (1), which is given as follows:

ξ(k + 1) =Ad(ρ(k))ξ(k) +Bdu(k) , (3)

where ξ(k) := [x(k)′ u(k − d)′ . . . u(k − 1)′] and 1 :

Ad(ρ) :=



A(ρ) B(ρ) 0 0 . . . 0
0 0 Inu

0 . . . 0
0 0 0 Inu

. . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Inu

0 0 0 0 . . . 0

 ,Bd :=



0
0
0
...
0
Inu

 .

The underlying concept in using implicit DT compensa-
tion, via the augmented state-space representation in Eq.
3, is that a regular LPV model is used to conceive the sta-
bilising terminal ingredients, with the same tools as in DT-
free LPV MPC, e.g. (Köehler et al., 2019; Morato et al.,
2019). Nevertheless, since ξ stores all past control signals,
the extended state representation grows linearly with the
length of the DT, which causes an undesirable increase
of the resulting numerical demand of the MPC (in terms
of numerical cost during the online implementation and
also in the sense of the offline synthesis of the stabilising
components).

1 In the case of models with DTs in the scheduling parameter
dependence, i.e. B(ρ(k − d))u(k − d), one can use an extended
scheduling variable Θ(k) := [ρ(k−d)′, . . . , ρ(k)] in a similar fashion.



2.4 Explicit DT Compensation

In this paper, we follow the idea of explicit DT compensa-
tion in MPC design, as proposed in (Santos et al., 2012).
The idea is to obtain a prediction for x(k + d) based on
the data available at the current sampling instant k. This
prediction, namely x(k+d|k), is directly obtained from the
DT model in Eq. (1), since the current control input u(k)
has no effect over x(k + j|k), ∀j ∈ N[1,d], due to the DT
phenomena. Due to this fact, x(k + d|k) depends only on
the prior state and scheduling parameter trajectory, and,
thus, we can express this prediction as in Eq. (4). We stress
that Eq. (4) can be presented in a compact form, for when
the scheduling parameters do not vary, i.e. ρ(k+ j|k) = ρ,
given by:

x(k + d|k) = (A(ρ))
d
x(k) +

d∑
j=1

(A(ρ))
j−1

B(ρ)u(k − j) .

We note, nevertheless, that the future scheduling variables
ρ(k + j|k),∀j ∈ N[1,d−1] are unknown, from the view-
point of the current sample, by definition. These future
scheduling variables could be estimated under a variety
of strategies, as those presented in (Morato et al., 2021b;
Cisneros and Werner, 2017). For ease of notation, we use
the simpler formulation from (Morato et al., 2019), using
ρ(k + j|k) = ρ(k),∀j ∈ N[1,d−1]. In Sec. 4, we assess on
how this ”frozen” scheduling trajectory guess affects the
robustness of the controller.

Taking into account the previous discussions, we cast Eq.
(4) into the explicit compact form from Eq. (5), where
x̆(k) := x(k+d|k). Note that this prediction model can be
considered to generate the desired MPC feedback policy.
The advantage is that, due to the DTC structure, the
derived model is free from DT and does not have any
additional state variable, as in the implicit DT model
from Eq. (3). Thus, from this fact, a traditional LPV
MPC synthesis procedure can be followed, using terminal
ingredients based on this same DT-compensated model.

x̆(k + 1) =A(ρ(k))x̆(k) +B(ρ(k))u(k) + w̃(k) . (5)

We note that the offset disturbance term w̃(k) ∈ W̃ in
Eq. (5) is used to bound the differences between the real
system prediction for the first sample ahead of the delay,
i.e. x(k + d + 1|k) = A(ρ(k))x(k + d|k) + B(ρ(k))u(k),
and the nominal DT-compensated prediction made at the
following instant, i.e. x(k + d + 1|k + 1) = x̆(k + 1). By
including w̃(k) = x(k + d + 1|k + 1) − x(k + d + 1|k) in
Eq. (5), we are able to limit the error propagation between
these predictions and, thus, ensure recursive feasibility of
the corresponding MPC. The explicit representation of
w̃(k) is given in Sec. 4, where we discuss properties of
the corresponding closed-loop.

The overall control structure is given in Fig. 1. This scheme
is very close to those seen in traditional DTC literature, i.e.
(Normey-Rico, 2007; Normey-Rico and Camacho, 2009;
Morato and Normey-Rico, 2021). In this paper, due to
brevity, we do not include input disturbances, which will
be dealt with in future works. We stress that corroborat-
ing analyses on the robustness properties of LPV MPC
schemes against the frozen scheduling trajectory estimate

(ρ(k + j|k) = ρ(k),∀j ∈ N[1,d−1]) are brought to focus in
(Morato et al., 2021a).

Fig. 1. Proposed LPV MPC with explicit dead-time com-
pensation.

3. LPV MPC WITH EXPLICIT DT COMPENSATION

The LPV system from Eq. (1), now represented under
the explicit DT compensated model in Eq. (5) must be
regulated in such way that the state trajectories are steered
to the origin, in an admissible manner (with all constraints
respected).

As discussed in the prequel, we apply a state-feedback
control policy, generated under the LPV MPC scheme
from Fig. 1. Therefore, we now use u(k) := κ(ρ(k))x̆(k),
since the state feedback measure, from the viewpoint of
the MPC, is given in terms of x̆.

Accordingly, at each sampling instant k, we measure the
DT-compensated state x̆(k) and the scheduling parameter
ρ(k), and solve the following optimization problem, which
embeds all process constraints given in Sec. 2:

min
Uk

V (x̆(k +Np|k)) +
Np−1∑
j=0

ℓ (x̆(k + j|k), u(k + j|k))(6)

s.t. x̆(k + j + 1|k) = A(ρ(k))x̆(k + j|k)
+B(ρ(k))u(k + j|k), ∀j ∈ N[0,Np−1],

x̆(k + j|k) ∈ XW(j), ∀j ∈ N[0,Np−1],

u(k + j|k) ∈ U , ∀j ∈ N[0,Np−1],

δu(k + j|k) ∈ δU , ∀j ∈ N[1,Np],

x̆(k +Np|k) ∈ Xf ,

where ℓ(x̆, u) = ∥x̆∥2Q + ∥u∥2R is a quadratic stage cost,

V (x̆) is a terminal cost and Xf is a terminal set. V (x̆)
and Xf are together named the terminal ingredients,
which are used to ensure ISS. The MPC considers a
moving-window horizon of Np steps. The first entry of
solution of this optimisation, namely U⋆

k = col{u⋆(k +
j)},∀j ∈ N[0,Np−1] is applied to the process under state-
feedback form. We note that the prediction model in this
optimisation problem does not include the w̃ term from
Eq. (5). Thus, sets XW(j) are related to the problem
uncertainties, used to tighten the state constraints over
the prediction horizon. These sets are presented in Sec. 4.

We note that the prediction model in Eq. (6), used to
describe the behaviour of the system along the horizon
window of Np steps is simply the forward expansion of Eq.
(5). Accordingly, the horizon does not have to comprise



x(k + d|k) :=
(
Πd−1

j=0A(ρ(k + j|k))
)
x(k) +

d−1∑
j=1

(
Πd−j

m=d−1
A(ρ(k +m|k)

)
B(ρ(k + d− 1− j|k))u(k − j − 1) +B(ρ(k + d− 1|k))u(k − 1).(4)

the size of the DT, as in implicit strategies, which require
Np > d.

3.1 Terminal Ingredients

In order to ensure input-to-state stability of the closed-
loop and recursive feasibility of the MPC optimisation,
the cost functions must satisfy the following assump-
tions (Mayne et al., 2000): ℓ(x, v) ≥ βℓ(∥x∥),∀x ∈
X , βℓ(·) ∈ K∞-class, 0 ≤ V (x) ≤ βV (∥x∥),∀x ∈
X , βV (·) ∈ K∞-class. Accordingly, in order to tacitly
ensure these requirements, we use parameter-dependent
terminal ingredients: an ellipsoidal terminal set Xf (ρ) :=
{x̆ | x̆′P (ρ)x̆ ≤ 1} and a sub-level cost V (x̆, ρ) = x̆′P (ρ)x̆.
Likewise, we consider a terminal local stabilising feedback
gain K(ρ), which derives from P (ρ).

The terminal set Xf must be a positively invariant set for
the DT-compensated dynamics from Eq. (5), as provides
the following Theorem.

Theorem 1. (Mayne et al., 2000)
Suppose ∃u = K(ρ)x̆. Consider that the MPC is given
by Eq. (6), with a terminal state set given by Xf (ρ) and
a terminal cost V (x̆, ρ). Then, input-to-state stability is
ensured if the following conditions hold ∀ρ ∈ P:
(C1) The origin lies in the interior of Xf (ρ);
(C2) Any consecutive state to x̆, in closed-loop given by
(A(ρ) +B(ρ)K(ρ)) x̆+ w̃ lies within Xf (ρ+ δρ),∀δρ ∈ δP
and w̃ ∈ W̃;
(C3) The discrete Lyapunov equation is verified within
this invariant set, this is, ∀ x̆ ∈ Xf (ρ) and ∀ ρ ∈ P and
∀ δρ ∈ δP: V ((A(ρ+B(ρ)K(ρ)) x̆, ρ+ δρ) − V (x̆, ρ) ≤
−x̆′Qx̆− x′(K(ρ)′RK(ρ)x̆.
(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x̆ ∈ U , ∀ρ ∈ P.
(C5) The terminal set Xf (ρ) is a subset of X , ∀ρ ∈ P.

Assuming that the initial solution of the MPC problem U⋆
k

is feasible, then, the MPC is recursively feasible, stabilising
the state x̆ to the origin.

Proof 1. Refer to (Mayne et al., 2000). □

Taking into account the requirements for ISS and recursive
feasibility presented in Theorem 1, the following Lemma
provides a Linear Matrix Inequality (LMI) solution that
generates the corresponding terminal ingredients.

Lemma 1. Terminal Ingredients (Morato et al., 2021a)
The conditions (C1)-(C5) of Theorem 1 are satisfied if
there exist a symmetric parameter-dependent positive
definite matrix P (ρ) : Rnp → Rnx×nx , a parameter-
dependent rectangular matrix W (ρ) : Rnp → Rnu×nx ,
and a scalar 0 < λ ∈ R, with Y (ρ) = (P (ρ))−1 > 0, and
W (ρ) = K(ρ)Y (ρ), s.t. (7)-(10) hold for all (ρ, δρ) ∈ P ×
δP, under min log det{Y (ρ)}. Use (·)∗ = (·)−1.

 λY (ρ) ⋆ ⋆
0 (1− λ) ⋆

A(ρ)Y (ρ) +B(ρ)W (ρ) w̃ Y (ρ+ δρ)

> 0 ,(7)

 Y (ρ) ⋆ ⋆ ⋆
(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+ δρ) ⋆ ⋆

Y (ρ) 0 Q∗ ⋆
W (ρ) 0 0 R∗

≥ 0, (8)

[
u2
i I{i}W (ρ)
⋆ Y (ρ)

]
≥ 0, i ∈ N[1,nu] , (9)[

x2
j I{j}Y (ρ)

I ′{j}Y
′(ρ) Y (ρ)

]
≥ 0, j ∈ N[1,nx] . (10)

Proof 2. This Theorem generates a positive definite pa-
rameter dependent matrix P (ρ) which is used to compute
the MPC terminal ingredients V (·) and Xf such that the
conditions from Theorem 1 are fulfilled. The full demon-
stration is enable through consecutive Schur complements,
refer to (Morato et al., 2021a). The BMI (7) ensures
the positive invariance of Xf w.r.t. the offset w̃ in Eq.
(5). LMI (8) ensures energy dissipation of the MPC cost,
while LMIs (9) and (10) imply in admissible input and
state trajectories, respectively. The corresponding result
is that for any initial condition x̆(0) ∈ Xf , the MPC
is recursively feasible for all k > 0 and ensures that the
closed-loop dynamics are ISS.

Remark 2. LMIs (9)-(10) in Theorem 1 require box-type
constraints on each ui and xj . Nonetheless, these can
be converted into more generic polyhedral constraints, if
necessary. The BMI (7) can be converted into an LMI using
simple bisection search over the optimisation plane.

Remark 3. Theorem 1 provides infinite-dimensional in-
equalities, which must hold ∀ ρ ∈ P and ∀ δρ ∈ δP.
In practice, the solution can be found by enforcing the
inequalities over a sufficiently dense grid of points (ρ, δρ)
along the P × δP plane. Then, the solution can be verified
over a denser grid. The parameter-dependency of P may
be dropped if the system is quadratically stabilisable, but
this may result in quite conservative performances.

Remark 4. Tracking objectives are out of the scope of this
paper, and thus we reference to (Köehler et al., 2019;
Morato and Normey-Rico, 2021). Nevertheless, it is worth
mentioning that the proposed scheme can be used for
tracking under slight modifications. Specifically, instead
of steering x̆ to the origin, the MPC should be set to steer
(x̆, u) to some steady-state target (xr , ur) ∈ Z. In this
case, an offline reference selector can be used to determine
such possible steady-state pairs. Moreover, the MPC stage
cost and terminal ingredients should be stated in terms of
the tracking error dynamics x̆(k + 1)− xr.

4. ROBUSTNESS ANALYSIS

In this Section, we analyse the stability of the corre-
sponding closed-loop system, as well as the robustness of
the controller against uncertainties on the delay. First,
we demonstrate the model uncertainty that arises when



prediction the state trajectories after the DT at sampling
instants k+ j and k+ j + 1. Then, we discuss on how the
”frozen” scheduling trajectory guess affects the prediction
error of the system. Finally, robustness, and recursive
feasibility of the optimisation are demonstrated by the
means of constraints tightening.

4.1 Model Uncertainty

As previously detailed, we include w̃(k) = x(k+ d+1|k+
1) − x(k + d + 1|k) in Eq. (5) in order to bound the
error propagation between these predictions at different
samples. Using ρ(k+j|k) = ρ(k) and ρ(k+j|k+1) = ρ(k+
1), we obtain x(k+ d+ 1|k+ 1) = A(ρ(k+ 1))dx(k+ 1) +∑d

j=1 A(ρ(k+ 1))j−1B(ρ(k+ 1))u(k+ 1− j), while x(k+

d+1|k) = A(ρ(k))d+1x(k)+
∑d+1

j=1 A(ρ(k))j−1B(ρ(k))u(k+

1−j). By subtracting these expressions, and using x(k+1)
from Eq. (1), we are able to obtain:

w̃(k) :=
[
A(ρ(k + 1))d −A(ρ(k))d

]
A(ρ(k))x(k) (11)

+
[
A(ρ(k + 1))d −A(ρ(k))d

]
B(ρ(k))u(k − d)

+

d∑
j=1

A(ρ(k + 1))j−1B(ρ(k + 1))u(k + 1− j)

−
d∑

j=1

A(ρ(k))j−1B(ρ(k))u(k + 1− j) .

Since all the involved variables in Eq. (11) are bounded

by definition, we get w̃(k) ∈ W̃, ∀k ≥ 1, where W̃ can be
generated by the means of zonotopes or interval algebra.
In App. A, we provide the corresponding full development.

4.2 Prediction Error

One has not only to take into account the prediction bias
of the nominal system trajectory, but also the error that
arises due to the mismatches between the nominal model x̆
and the real system trajectories x. We consider two factors:
(a) the error that arises due to the differences between
the real scheduling parameter trajectory ρ(k + j) and the
frozen trajectory estimate ρ(k+j|k) = ρ(k); and (b) badly
estimated DTs in the nominal model, which often occurs in
practice. Thus, we consider the error dynamics as follows
e(k+d) = x(k+d)−x̆(k) = x(k+d)−x(k+d|k). This error
variable is split as follows: e(k+d) = eρ(k+d)+ed(k+d),
where the first term relates to (a), and the latter to (b).

Firstly, we assess (a): eρ(k+d) derives from the differences
caused by the scheduling trajectory estimate. Thus, when
spanning Eq. (5) forward, we get x(k + d + j + 1|k) =
A(ρ(k+ j+d|k))x(k+d+ j|k)+B(ρ(k+ j+d|k))u(k+ j).
Thus, for ρ(k + d+ j|k) = ρ(k), we obtain:

eρ(k + d+ j) := [A(ρ(k + d+ j))−A(ρ(k))]x(k + d+ j|k)
+ [B(ρ(k + d+ j))−B(ρ(k))]u(k + j) . (12)

Due to the nature of the considered LPV system, we have
it ensured by design that eρ(k) ∈ Eρ, ∀k ≥ 0, where Eρ is
a compact and convex set that contains the origin.

Remark 5. We stress that eρ is directly related to the
strategy used to describe the values of the scheduling
parameter along the horizon which comprises the whole
prediction horizon, i.e. ρ(k + j|k), ∀j ∈ N[0,Np−1]. When
scheduling trajectory extrapolation strategies are used,
such as those presented in (Cisneros and Werner, 2017;
Hanema et al., 2017; Morato et al., 2021b), we are able
to accurate descriptions for ρ(k + j|k), which does reduce
the magnitude of eρ over the horizon. Through the sequel,
we consider the more generic case, for when only ρ(k) is
known and thus one uses ρ(k + j|k) = ρ(k).

Remark 6. For quasi-LPV (qLPV) systems, ρ(k+ j),∀j ∈
N[0,d] depends on the system variables (x(k+ j) and u(k+
j)). We note that in some of theses cases, when ρ(k+ j) =
fρ(u(k + j), the corresponding DT-compensated model
from Eq. (5) becomes much simpler. For these, ρ(k + j)
becomes known variables, since the control inputs u(k+j)
are inherently available from j = 0 to j = d. Thence, no
trajectory estimate for the future scheduling parameters
along the DT becomes necessary, and eρ naturally becomes
null.

With regard to (b): Consider that the nominal DT is given
by d, while the real DT is dr = d + δd, for δd ≥ 1. Then,
taking this into account, we can express the real state
trajectories by x(k + 1) = A(ρ(k))x(k) + B(ρ(k))u(k −
dr), whereas the DT-compensated predictions are given by

x̆(k+1). Thereof, using u(k−dr) = u(k−d)−
∑δd

j=1 δu(k−
d− j), we obtain, for eρ = 0, and for any δd > 1:

ed(k) :=−B(ρ(k))

δd−1∑
j=0

δu(k − d− j)

 . (13)

Taking into account the previous discussions, we stress
that the under-estimated DT leads to a cumulative effect
upon the prediction error ed(k) due to the control input
variations over samples. Accordingly we obtain ed(k) ∈
Ed, ∀k ≥ 0, where:

Ed :=

δd times︷ ︸︸ ︷
(BδU)⊕ · · · ⊕ (BδU) , (14)

where B stands for B(ρ) evaluated for the maximal energy
transfer due to ρ ∈ P. Synthetically, we use e(k) = eρ(k)+
ed(k) ∈ E, ∀k ≥ 0, where E = Eρ ⊕ Ed.

4.3 Properties

Now, we pay special attention to the robust constraint
satisfaction and ISS over the real state trajectories x
(instead of x̆). For this reason, we must take into account
how the prediction error e(k) affects the closed-loop.

Lemma 2. Constraints Tightening
Take XW(j) in the MPC optimisation (Eq. (6)) as follows:
XW(0) = X ⊖ E and XW(j) := XW(j − 1) ⊖ S(j),∀j ∈
N[1,Np]. Moreover, consider S(0) = W̃ and S(j) :=
[A(ρ(k + j|k + 1))−A(ρ(k + j|k))]S(j − 1),∀j ∈ N[1,Np].
These sets ensure the open-loop propagation of w̃ over the
prediction model and the according compensation in the
state constraints.

Proof 3. Refer to (Morato et al., 2021a).



Remark 7. Note that a nominal static feedback can be
used to attenuate the propagation of w̃ over the state pre-
dictions. Nevertheless, in such case, the input constraints
must also be accordingly tightened.

We stress that E grows with the size of the DT estimation
error δd, while S(j),∀j ≥ 1 depends on the scheduling
parameter changes between samples. In consonance with
(Mayne et al., 2006), Lemma 2 provides conditions such
that the MPC is able to ensure that x̆(k+j) ∈ XW(j),∀j ∈
N[1,Np], which conversely implies that x(k)−x̆(k) belong to
some subset of X⊕E, thus ensuring that x(k) ∈ X ,∀k ≥ d.
We stress that E is a compact polytope with contains the
origin, but grows in size w.r.t. the size of the DT estimation
error δd. The following Lemma provides ISS conditions
for the closed-loop under the action of the constraint-
tightened MPC algorithm.

Lemma 3. ISS under DT Estimation Error
Let u(k) = κ(ρ(k))z(k) be a control law such that z(k +
1) = A(ρ(k))z(k)+B(ρ(k))u(k) is ISS. Moreover, let x(k+

1) = A(ρ(k))x(k)+B(ρ(k))u(k−d)+w̃(k), with w̃(k) ∈ W̃
be controlled by u(k) = κ(ρ(k))x̆(k), where x̆(k) follows
from Eq. (4). Let the prediction error bound be E. Then:
(a) The dynamics of z are ISS for all w̃(k) ∈ W̃; (b) If
x̆(k) ∈ X ⊖ E, ∀k ≥ 0, then x(k) ∈ X , ∀k ≥ d.

Proof 4. Follows directly from (Santos et al., 2012; Morato
et al., 2021a), using w̃(k) as gives Eq. (11).

Remark 8. We stress that the convex set E defines the
admissible values for the prediction error e(k) = x(k+d)−
x̆(k), i.e. differences between the real system dynamics,
Eq. (1), and the DT-compensated ones, Eq (5), thus
encompassing the error from DT estimation (when δd ̸= 0)
and from the scheduling trajectory guess (when ρ(k +

j|k) ̸= ρ(k + j)). The disturbance propagation set W̃
bounds the step-ahead nominal prediction discrepancy,
which is non-null due to the variance between ρ(k+ j+1)
and ρ(k + j).

Remark 9. In the case of time-varying delay estimation
errors dr = d + δd(t), we recommend using the unified
method for time-varying delay compensation recently pro-
posed in (Morato and Normey-Rico, 2021).

5. CASE STUDY: A SOLAR COLLECTOR
BENCHMARK

In order to demonstrate the performances achieved with
the proposed control system, we consider a solar collector
benchmark, as illustrated in Fig. 2. In this plant, the
temperature of the heated fluid must be regulated, while
the input flow and temperature of the plates must stay
within predefined admissible sets. The solar plates are
heated due to solar irradiance, but also affected by the
external temperature. In accordance with (Pipino et al.,
2020), we use a qLPV model to represent this process:

x(k + 1) =A(ρ(k))x(k) +B(ρ(k))u(k − d) +Bww(k) ,

ρ1(k) = α1(1− e−τ1x1(k)) , ρ2(k) = α2(1− e−τ2x2(k)) .

This model has two states x, which describe the deviation
of the plate and fluid temperatures to a given constant
set-point. The control input u corresponds to flow of
the fluid that circulates the collector, while w stands

for the two known disturbances which affect this system
(solar irradiance and external temperature). We note that
this process exhibit a constant input dead-time d, which
corresponds to the time needed for the flow to pass through
the system, since the fluid temperature is only measured
at the exit of the collector. The model matrices and sets
are presented in Pipino et al., 2020, Tables 1,2, Eqs. (12)-
(14), whereas not shown herein due to lack of space. The
process constraints are x ∈ X , u ∈ U , and ρ ∈ P, which are
all convex and compact sets. The system operates under
a sampling period of Ts = 0.5 s; the dead-beat is d = 20
discrete-time samples.

Fig. 2. Solar Collector Field.

We consider a simulation scenario 2 with the following
temperature set-points: 120 oC (plates) and 100 oC (fluid).
The initial conditions are: 100 oC (plates) and 90 oC
(fluid). The disturbances w(k) vary over time, as shown
in Fig. 3. These variables are measured at each sampling
instant k, whereas assumed constant for prediction pur-
poses, which means that its effect over the state dynamics
can be analytically compensated, converting the previous
model into the likes of Eq. (1).
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Fig. 3. Simulation Scenario.

Two control systems are used 3 : an LPV MPC algorithm
with explicit DT compensation (denoted EDTC MPC),
as proposed in Sec. 3, and an LPV MPC algorithm with
implicit DT compensation (denoted IDTCMPC), with the
implicit DT model in the form of Eq. (3). Since d = 20,
we stress that the latter approach uses a state-space de-
scription with 22 states encompassed within ξ, whilst the
proposed method uses the DT-compensated description
from Eq. (5), with only 2 states. From this, as previously
discussed, we can already expect the proposed MPC to
run much fast during the implementation. Accordingly,
this phenomenon is observed in Fig. 4, which depicts the
average computational time (tc) required to solve the op-
timisation corresponding to each approach. The proposed
method is over twice faster than the IDTC MPC, which is
a significant advantage. We also stress that the terminal
ingredients from Sec. 4 are (numerically) much simpler to
synthesise for the proposed method.
2 Results were obtained in a 2.4 GHz, 8 GB RAM Macintosh
computer, using Matlab, yalmip, and SDPT3.
3 Both MPC are tuned with unitary stage cost weights Q and R.
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Next, we show the system trajectories under two different
situations: (a) for the case of perfectly known DT, consid-
ering both controllers and (b) for the case of different DT
estimation errors, considering only the EDTC controller.
We note that scenario (b) does not include the IDTC con-
troller since it embeds no robustness ingredients against
badly estimated DTs.

For the first scenario, Fig. 5 shows the state trajectories
and the fluid temperature behaviour under the action of
both controllers. As one can see, both methods ensure
very similar performances, with relatively small offsets to
the steady-state temperature goals (we stress that both
MPCs do not analytically include integral action, for
simplicity, see Remark 4). The results indicate that the
proposed EDTC MPC method can indeed well control
the considered solar collector process, despite using the
DT-compensated model from Eq. (5). We recall that
this nominal DT-compensated model is exposed to more
prediction errors than the implicit DT model from Eq. (3),
since it includes the presence of the scheduling parameter
prediction discrepancies, compacted in eρ. Even though eρ
turns null in steady-state, this model-mismatch variable
is not measured or estimated, but rather accounted for
robustly, since the proposed MPC takes only the upper
bound of eρ ∈ Eρ into account. The reason for this resides
on the use of the tightened constraints mechanism (Lemma
2), which evens out the prediction error caused by eρ.

Considering more abrupt solar irradiance variation (twice
the size of those from Fig. 3), we show how the magnitude
of the delay estimation error δd affects the system dynam-
ics (plate temperature, e.g. Fig. 6). As δd increases, the
size of the corresponding uncertainty propagation set Ed
grows, as gives Eq. (14). Thereof, larger offsets toward the
steady-state goal are observed. Nevertheless, we stress ISS
is ensured (as of Lemma 3), which is an elegant feature of
the proposed LPV MPC DTC scheme, ensuring stability
and robustness towards DT estimation errors.
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6. CONCLUSIONS

In this paper, we briefly studied how explicit dead-time
compensation can be incorporated to the design of LPV
MPC algorithms. Accordingly, we provided a synthe-
sis procedure which ensures input-to-state feasibility of
the closed-loop system, as well as recursive feasibility
of the MPC optimisation. The method used parameter-
dependent terminal ingredients, offered via standard LMI
synthesis. We also debate the issue of uncertain delay
estimation and how this can be counter-acted directly
in the MPC formulation. A solar collector benchmark
example is used to illustrate the features of the proposed
method, which is compared against a nominal LPV MPC
with implicit DT compensation. The proposed method
is significantly faster, while providing similar regulation
performances. We recall the main features of the proposed
method:

(1) It does not require any augmented state representa-
tion, thus maintaining the order of the system from
a prediction viewpoint.

(2) It offers reduced numerical burden in the sense of on-
line implementation of the MPC optimisation as well
as in terms of computing the terminal ingredients.

(3) It allows the computation of a scheduled response of
the free state dynamics x̆(k) = x(k + d|k). These
responses can be expressed linearly in an LPV setting.

(4) It offers simple robustness tools to directly tackle
delay estimation uncertainty.

For future works, we aim at generalising the proposed
scheme for the case of time-varying delays. We also pretend
to assess on how the uncertainty propagation (due to delay
estimation errors) can be better attenuated in closed-loop,
as well as how qLPV DT predictors can be used to enhance
the DT-compensated predictions (reducing mismatches).
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Mayne, D.Q., Raković, S.V., Findeisen, R., and Allgöwer,
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Appendix A. COMPLEMENTARY DEVELOPMENT

Take the nominal DT-compensated model using different
samplings, i.e. at k and at k+1, using a prediction horizon
of n samples ahead:

x(k + n|k) = (A(ρ(k)))nx(k)

+

n∑
j=1

(A(ρ(k)))j−1B(ρ(k))u(k − d+ n− j) ,

x(k + n|k + 1) = (A(ρ(k + 1)))n−1x(k + 1)

+

n−1∑
j=1

(A(ρ(k + 1)))j−1B(ρ(k + 1))u(k − d+ n− j) ,

Thus, using the real system trajectories x(k + 1) =
A(ρ(k))x(k) +B(ρ(k))u(k − d), we obtain:

x(k + d+ 1|k + 1) = (A(ρ(k + 1)))dx(k + 1)

+
d∑

j=1

(A(ρ(k + 1)))j−1B(ρ(k + 1))u(k + 1− j)

= (A(ρ(k + 1)))dA(ρ(k))x(k) (A.1)

+ (A(ρ(k + 1)))dB(ρ(k))u(k − d)

+

d∑
j=1

(A(ρ(k + 1)))j−1B(ρ(k + 1))u(k + 1− j) .

Complementary, we have:

x(k + d+ 1|k) = (A(ρ(k)))d+1x(k) (A.2)

+ (A(ρ(k))dB(ρ(k))u(k − d)

+

d∑
j=1

(A(ρ(k)))j−1B(ρ(k))u(k + 1− j) .

Using w̃(k) = x(k + d+ 1|k + 1)− x(k + d+ 1|k), we can
subtract Eq. (A.2) from (A.1) in order to get Eq. (11).


