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Evolution strategies for optimal design of mechanical systems
L. Moreau-Giraud, P. Lafon
Laboratoire LASMIS, Université de Technologie de Troyes

1. Abstract

Mechanical design problems are real-world problems, characterized by a number of inequality constraints, nonlinear
equations, mixed discrete-continuous variables and the presence of interdependent discrete parameters whose values are
taken from standardized tables. Because of the presence of discrete parameters, these problems are non trivial and they
can not be solved by classical gradient-based methods. We propose to use evolution strategies to solve this type of
problems. Evolution strategies (ES) are stochastic zero® order methods and are well-suited for complex numerical
functions. In order to find the best combination of genetic operators with ES for our class of problems, different
selection and recombination operators of the literature are tested.

The algorithm is applied to three mechanical design problems. The results are of good reliability and indicate that the
method is helpful but the number of evaluations with ES is important.

Then, in order to reduce the computational cost, we propose an hybrid method based on the coupling of ES with the
augmented lagrangian method. The comparison between ES alone and the hybrid method indicates that the hybrid
method can give results of equivalent reliability but with a number of evaluations divided by two.

2. Keywords
Evolution strategies, mechanical design problems, mixed variables, constraints.

3. Introduction:

In mechanical design, sizing a mechanical system implies solving a problem of optimization. The latter generally
contains nonlinear equations, inequality constraints, mixed discrete-continuous variables and interdependent discrete
parameters whose values are taken from standardized tables and which directly depend on the choice of one of the
discrete variables. Because of the presence of these interdependent discrete parameters, the gradients can not be
calculated in general. Thus, classical gradient-based methods are not suitable for this type of problems. In this paper, we
propose to use evolution strategies (ES) to solve these complex mechanical design problems. ESs are members of the
class of evolutionary algorithms - heuristic methods based on the principle of natural evolution and guided by the model
of Darwin. They are zero™ order algorithms and they allow to solve problems for which standard gradient-based
optimization methods can not be applied. ESs are robust optimization techniques which are well-suited for solving
difficult optimization problems but their drawback is the high computational cost. A large number of evaluations must
be performed in order to obtain a good result. In order to reduce the computational cost of ES, we propose an hybrid
method based on the coupling of ES with a determinist method - the augmented lagrangian method. According to a
frequency chosen by the user, the augmented lagrangian algorithm is applied on the continuous variables of each
individual in the population of parents, the discrete variables of each individual remain fixed during the application of
the augmented lagrangian method.

First, we present ES and its genetic operators. ES is applied to three mechanical design problems. Tests are realized in
order to find the best combination of genetic operators with ES for this type of problems. Then, the hybrid method
based on the coupling of ES with the augmented lagrangian method is described. The application of the hybrid method
to the three mechanical problems and the comparison with ES alone show the efficiency of this method.

4. Evolution Strategies :

Evolution strategies mimic the natural process where a population of individuals undergoes transformations of
recombination, mutation and selection. By means of randomized processes, the population evolves toward better and
better regions of the search space. The neo-Darwinian model of organic evolution is reflected by the algorithm:

t:=0

initialization of the population P(t)

evaluation of P(t)

while not terminated do
P’(t) = recombination (P(t))
P’’(t) = mutation (P’(t))
evaluation (P*’(t))
P(t+1) = selection (P*’(t) L P(t))
t=t+1

4.1 Representation
In this algorithm P(t) is a population of p individuals. In the standard ES (see [1], [2]), each individual is represented by

a pair of real-valued vectors a = (X, ¢), where X € R™ is a vector composed of continuous variables, n, is the number

of continuous variables and 6 € R.° contains standard deviations called strategy parameters. But this representation



can only be applied to continuous variables. In order to deal with mixed discrete-continuous variables, many extensions
have been proposed (see [3], [4]). In this paper, we have chosen to use the representation proposed in [3] in which each
individual is represented by four vectors a = (x¢, X, 6, p) where x;, € R™ is composed of discrete variables, n, is the

number of discrete variables, p € [0,1]™ contains the mutation probabilities. ¢ and p are strategy parameters which
control the application of mutation to the continuous and discrete variables. As suggested in [3], p; = p, i=1,..., n,.

4.2 Evaluation

In order to evaluate each individual, calculating the objective function value is generally used when the problem does
not contain any constraint. But as our problems have constraints, it was necessary to choose a method over all the
constraint-handling methods proposed in the literature. A good review of the constraint-handling methods with the
evolutionary algorithms can be found in [5], [6]. We have chosen a dynamic penalty method in which the penalty
coefficient increases during the evolution process every five generations. Penalty methods generally give good results in
a reasonable computation time.

4.3 Recombination

The recombination operator generates a new population P’(t) of A individuals (A > p). This mechanism allows a mixing
of parental information and passes this information to their descendants. Different recombination mechanisms exist (see
[11, [3], [7]). They can all be used either in their local form where two randomly selected parent individuals produce an
offspring, or in their global form where one randomly chosen parent is held fixed and the second parent is randomly
chosen anew for each single variable. Not only object variables but also strategy parameters are subject to
recombination and this strategy operator may be different for continuous variables, discrete variables, standard
deviations, and mutation probabilities. As no theoretical basis exists for choosing recombination operators, we decided
to test different combinations of recombination operators for the continuous and discrete variables and the strategy
parameters. Details of the tests are not presented in this paper.

4.4 Mutation

The mutation introduces innovation into the population. It operates by first mutating the strategy parameters with a
multiplicative, logarithmic, normally-distributed process, and then by mutating the continuous variables with a
normally-distributed random vector and modifying the discrete variables (see [1], [3]) :

For the continuous variables :

o, = o;.exp(t .N(0,1)+ 7.N,(0,1)) M
Xg =X +0; N;(0,]) @

where 'r'a(ﬁl:)_l and m( 2,/;)_1

N(O,1) denotes a normally distributed random variable with expectation zero and standard deviation one. The index i in
N;(0,1) indicates that the random variable is sampled anew for each value of the index i.

For the discrete variables :

-1
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where yot( Z,Ind)

The mutated mutation probability p’ is used to determine whether the discrete variable x; (ie {1,...,n,} should be
modified according to an uniform random variable u;. X; is a new discrete value chosen randomly in the set of possible
discrete values.

The evolution of the strategy parameters which adapt to the topology of the problem has been called "self-adaptation”
by Schwefel (see [2]).

4.5 Selection

The selection drives the process toward better regions. Two selection operators exist i.e. (i, A) selection and

(u+A) selection. The notation (1, A) indicates that the p best individuals out of the A offspring individuals are selected as
parents. The (u+A) strategy selects the p best individuals from the union of parents and offspring (see [1], [2]). The
selection operator is completely deterministic.



5. Application and results

5.1. Equations of the problems
The previously described algorithm has been applied to three design problems.

Probleml:

Figure 1: Pressure vessel

The first problem (probl) is the design of a pressure vessel [8] (see figure 1). The design variables are the dimensions T,
(the shell thickness), T}, (the spherical head thickness), R (the radius of the cylindrical shell), and L (the length of the
shell). The objective is to minimize the total manufacturing cost for the pressure vessel. The optimization problem
contains 2 discrete variables (T,, T,), 2 continuous variables (R, L) and 7 inequality constraints. Its equations are as
follows:

Minimize the objective function

f(T, T, R,L)=0.6224 T, RL + 1.7781 T, R*+3.1611 T2 L + 19.84 T2 R %)
Subject to the constraints:
g(T, T,,R,L)=0.0193R-T,<0 6)
g,(T,, Ty, R, L)=0.00954 R - T, < 0 ©)
g(T, T, R,L)=1.1-T,<0 8)
gT, T,, R,L)=752* 1728 -n R*L?*-4 7w R?/3<0 ©9)
g(T, T,, R, L)=0.6-T, <0 (10)
gS(Ts, Th,’L)=R'70S0 (11)
g7(Ts7 Th’ R) L)=L'5050 (12)
Problem2:
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Figure 2: A coupling with bolted rim

The second problem (prob2) is a coupling with bolted rim [9] (see figure 2). The formulated optimization problem
contains one discrete variable, one integer variable, 3 inequality constraints and 5 discrete bolt parameters. A torque is
transmitted by adhesion using N bolts of diameter d placed at radius R. The problem is to minimize a multiobjective
function: the aim is to find the coupling with the smallest diameter, the smallest number of bolts and the lowest torque.
In this study we assume that the restrained linkage between the shaft and the coupling was chosen. The shape of the rim
shape is fixed by some manufacturing conditions. The formulated optimization problem contains one discrete variable
(d), one integer variable (N), two continuous variables (Rg, M), 11 inequality constraints and 5 discrete bolt parameters
(0,(d), i=1, ..., 5). The equations of the problem are as follows:

Minimize the objective function:

N Ry +®,(d)+5 M
f(d, N, Rg, M) = (—)+ ( B¢ )+ ( ) 13
( s M) = B, 2 B, %0 Bs 2000 13)
Subject to the constraints:
8i(d, N, Ry, M) = —22___ (4)

T NRy.K@)
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d,N,R;j, M)= 1 - ——— 15
8( 5 M) ()N 15)
R
d,N,Rgp;, M)=1-——B 16
s( s M) ®,(d)+ 50 (16)
g(d, N, Rz, M)=N - 100 17)
g+(d, N, Ry, M) = R, - 1000.0 (18)
gs(d, N,Ry, M)=8-N (19)
g:d, N,R5, M)=50-Ry (20)
g:(d, N, Ry, M) =M - 1000 @1
g,(d, N, Ry, M) = 4000 - M 22)
gxo(d, N’ RB: M) = d -24 (23)
g1(d, N, Ry, M) =6 -d 24
2
with K(d) = 84.645m(®,(d))
2
alis 3(0.1@3((1) + 0.087d>2(d)))
@, (d)
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Figure 3 : Ball bearing pivot link

The last problem (prob3) is a ball bearing pivot link (see figure 3). The aim is to find the lengths x,, x, and the two ball
bearings R, and R, in order to minimize the weight of the assembly composed of a shaft and two ball bearings. These
ball bearings are chosen from a standardized table of prefabricated sizes. The formulated problem contains 4 variables,
2 continuous (x,, X,), 2 integer (R, R,) variables, 12 discrete parameters and 10 inequality constraints. R, and R,
represent the choice of the two ball bearings. In order to solve this problem with ES, we numbered the ball bearings,
having a diameter from 30 to 50, from 1 to 32, in the same order as the standardized table. R, and R, can take values
between 1 and 32. The parameters of the 2 ball bearings are (C,, d,, D,, b;, da,, m,) and (C,, d,, D,, b,, da,, m,)
respectively, depending on the choice of the ball bearing. m1 and m2 represent the mass of the two ball bearings. Thus,
we have the following formulation, with X={ R, R,, x,, X,} and the data: {b,, b, €,, €,, €,, Dy, Ly, bs, d¢, P}:

Minimize the objective function: .
f(X) = np(x,d,% + 0.5 (bed, - bda,? + b,d,?) + byda,” + x,da,* - b,da)® + b,d,* + d,*)/ 4 + m, + m, (25)

Subject to the constraints:

2(X)=0.5b,-x,+(0.5b,+¢e)<0 (26)
2,(X)=29216 (1 +x,/x,)-C, <0 27
g,(X)=29216 (x,/x,)-C,<0 (28)
2,X) =(615.51x, +3930)"*-d, <0 (29)
g{(X)=0.5b,+05b,-x, +(e,th;) <0 30)
g(X)=x,+x,+0.5b,-177<0 (€2))
8/(X)=D,-Dy<0 (32)
gs(X)=dy-d, <0 (33)
g8(X)=d;-d, <0 (34)

g,(X)=D,-100<0 (35)



3.2, Results

As seen in §4, a number of selection and recombination operators exist in the literature. As no theoretical basis exist for
the choice of these operators for our class of problems, we tested several operators (2 selection operators and 48
combinations of recombination operators) in order to find the best combination of operators for each design problems.

The operators which have given the best reliability are global discrete recombination (X or X' ) for the discrete

variables and global intermediate recombination (( X§ +0.5(X[ - X} )) for the probability of mutation. The indices S

and T denote two parents selected at random and u € [0, 1] is an uniform random variable. The index i in T; or y;
indicates that T or u are sampled anew for each value of i. For continuous variables and strategy parameters, the best

operators are for the simplest of our problems (prob1) respectively the local discrete ( X§ or X[ ) and the global
intermediate recombination. For the other two problems, they are a global extended generalized recombination for both
operators (X5 +u (X" - X$), y; € [0.5,1.5)). For the selection, the (i + A) strategy has always outperformed the

standard (, A) strategy for our problems. We must notice that these selection and recombination operators are different
from the standard operators of ES.

Results of ES for each problem with the best combination of operators are presented in table 1. We give the average
error for 15 runs with regard to the theoretical optimum and the error corresponding to the best run. In this application,
(15+100)ES was used and 15 runs were performed for each problem in order to obtain statistically significant data.

Probl Prob2 Prob3
best error (%) 0 0 0
average error for 15 runs (%) 1.05 0.77 3.28
number of evaluations 75225 75225 75225

Table 1: Results with ES

As we can see, the theoretical global optimum was always identified by ES and the average error is always smaller than
4 %. ES has enabled us to obtain results of good reliability for our difficult problems of optimal design but the price to
pay is the high computational cost.

6. Hybrid method

ES has been coupled with the augmented lagrangian method. One of the important characteristics of the optimal design
problems is that they have to be solved for a fixed set of data values. When these values change, the topology of the
solution set is modified and this set can change from a convex to a non convex set. The only mathematical programming
methods that do not require the assumption of convexity to establish a global property of convergence are dual methods
[10]. The augmented lagrangian algorithm in its principle is close to a classic algorithm based on dual method. It
consists in a minimization sequence with respect to x of the augmented lagrangian function alternated with an update of
dual variables A. The penalty parameter r is increased after each update of the dual variables. The augmented lagrangian
function [11] is an association of a classic dual function and a quadratic penalty function. Its expression is as follows:

m 1
L, 4 1) =00+ 2 (w00 + 1w (0) + Y b0+ 1.8 () (36)
1

j=1 k=
. A
with: y;(x) = Max gj(x),——z—
r
m: number of inequality constraints and 1: number of equality constraints

According to a frequency chosen by the user, the augmented lagrangian algorithm is applied on the continuous variables
of each individual in the population of parents, the discrete variables of each individual remain fixed during the
application of the augmented lagrangian method. By calling this determinist method, we can obtain for each individual
the optimal continuous variables corresponding to the discrete variables of this individual, with few generations. This
allows to accelerate the convergence. This acceleration is illustrated in figure 4. This figure presents the evolution of the
average objective function for 15 runs over the number of generations in problem 2 for ES alone and the hybrid method
when the augmented lagrangian algorithm is applied every five generations. We can see that the call of the augmented
lagrangian method has allowed to accelerate the convergence significantly.
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Figure 4: Comparison ES alone and the hybrid method

Finally the best compromise between reliability and computational cost was obtained with a two-stage procedure: ES is
used first during a fixed number of generations; then the augmented Larangian method is applied on the continuous
variables of the individuals of the final population. Results of this hybrid method for the three mechanical design
problems are presented in table 2.

Probl Prob2 Prob3
best error (%) 0 0 0
average error for 15 runs (%) 1.7 0.64 3.75
number of evaluations 32693 32330 30801

Table 2 : Results with the hybrid method

The reliability of these results is equivalent to that given by ES alone but the number of evaluations is twice smaller.
This hybrid method using ES to locate local minima and the augmented lagrangian method to accelerate local
convergence has allowed to reduce significantly the computational cost with regard to our mechanical design problems.

7. Conclusion

ESs are interesting tools to solve complex mechanical design problems, for which classical gradient-based methods can
not be used. For our three design problems, we have obtained results of good reliability. One of the advantages of
evolutionary algorithms is that they do not require any derivative information. Moreover they can provide a number of
potential solutions, which can leave a choice to the designer. But the inconvenient is the high computational cost. In
order to reduce the computational cost, we have proposed a coupling "in series” of ES with a determinist method. The
number of evaluations was reduced significantly. Those results are encouraging. Our next research should be on a
coupling "in parallel" of ES and determinist methods in order to improve the algorithm.
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