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Abstract : This article presents a new
optimization algorithm for nonlinear
optimization problems with mixed variables.
This algorithm is based on a coupling of
deterministic and evolutionnary methods of
optimization. We first point out the general
context of optimal design problems and the
characteristics of the these nonlinear
problems with mixed variables. We briefly
recall the general principles of the
evolutionnary  and deterministic methods.
Then the principle of coupling between these
two approaches is presented. Finally we
discuss the results obtained on a test problem
of the literature and a problem of
dimensioning of a gear pair. We show in both
cases the profits compared to evolutionnary
methods in terms of reliabilit y and speed of
convergence.

Résumé : Cet article présente un nouvel
algorithme d'optimisation destiné aux
problèmes d'optimisation non linéaires en
variables mixtes. Cet algorithme repose sur
un couplage d'une méthode déterministe et
évolutionnaire d'optimisation. Nous
rappelons tout d'abord le contexte général des
problèmes de conception optimale et les
particularités de ces problèmes non linéaires
en variables mixtes. Les principes généraux
des méthodes évolutionnaires et
déterministes sont ensuite exposés. Puis le
principe du couplage entre ces deux
approches est présenté. Enfin nous exposons
les résultats obtenus sur un problème test de

la littérature et ensuite sur un problème de
dimensionnement d'un train engrenage. Nous
montrons dans les deux cas les gains obtenus
par rapport à une méthode évolutionnaire
seule en termes de précision et de vitesse de
convergence.

1. Introduction : In today's Computer Aided
Design software, a mechanical system is
essentially represented by the volumes of its
parts. Even if concepts of feature and
complex assembly structure have been added
to this representation, it is not well suited for
an easy design of the mechanical system.
Dimensioning mechanical component is
quite diff icult with this kind of software. Our
aim is to propose design-making tools, which
can be introduced in Computer Aided Design
software. Thank to the analysis of the design
process of a known mechanical system, we
can formulate the mechanical design problem
as an optimization problem, called problem
of optimal design. The latter contains non-
linear equations, inequality constraints and
mixed variables that are continuous and
discrete. There are also interdependent
discrete parameters whose values may be
taken in normalized tables and which directly
depend on the choice of one of the discrete
variables.
These problems of optimal design have been
solved with genetic algorithm [3] and
evolution strategy [5]. The obtained results
have shown the eff iciency of these
algorithms, but many evaluations of function



are necessary to reach a good optimal
solution. In this paper, a hybrid evolution
strategy is presented to solve this optimal
design problems with a low number of
evaluations.

2. The optimal design problem : The
general mixed discrete continuous problem is
defined as:
Minimize 
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where f is the objective function and g j  are

nonlinear inequality constraint functions. The
components of the mixed variable vector

( )x x xC D

T
= ,  are divided into nC  continous

variables, expressed as x RC
nC∈  and nD

continous variables, expressed as
x E RD

n nD D∈ ⊂ . Here E Rn nD D⊂  is the
space of discrete values, acceptable by the
problem and it can be randomly distributed.
In this class of optimal design problem, we
consider that the first order derivatives of the
objective function and constraints with
respect the continuous variables exist, but the
first derivatives of the functions with respect
to the discrete variables are supposed
unknown. Moreover, this type of problems
are strongly nonlinear and typically contain
about ten variables.

3. Evolutionary strategies : Evolutionary
algorithms have started to receive significant
attention during the last decade [1,2,6,7]. Part
of their success is due to the large domain of
application of those methods, their
robustness and their gain of f lexibilit y. Those
methods are specially well suited for solving
diff icult optimization problems [9,14,15,16].
However, their computational cost is
generally very high. A large number of
evaluations must generally be performed for
a satisfying result to be found. Evolution
strategies are based on the principle of

evolution, i.e. survival of the fittest. Unlike
classical methods, they do not use a single
search point but a population of points called
individuals. Each individual represents a
potential solution to the problem. At each
iteration, called a generation, a new
population of χ offspring individuals is
created by means of recombination and
mutation, starting from the old population of
µ parents (χ > µ). This new population is
then evaluated with an evaluation function.
This evaluation function is equal to the
function to be minimized when the problem
does not contain any constraint. It may be a
quadratic penalty function for handling
constraints of the optimization problem [10].
The µ best individuals out of the population
of parents and offspring are selected to
reproduce and replace the old population of
parents. By means of these randomized
processes, the population evolves toward
better and better regions of the search space.

4. Deterministic methods : On the other
hand, deterministic methods, which exploit
local information like gradient information
are rapid methods when the gradients of the
functions can be calculated. But their domain
of application is reduced to the class of
differentiable problems. Deterministic
methods assume that the objective and
constraint functions are differentiable. They
do not use probabili stic rules and they
generally converge quickly. Those methods
have a single search point. At each iteration
k, a new point xC

k +1  is determined by the

point xC
k  and a step in a calculated direction

d k  such as : x x dC
k

C
k k k+ = +1 α . . The

calculation of the step α k and the direction
d k  depend on the chosen deterministic
method. They are generally based on the
gradients of the functions.

5. Coupling evolutionary and
deterministic methods : In order to combine
the respective advantages of the deterministic



method and evolution strategy we have
proposed to couple the two methods. We
have chosen to use a dual formulation of the
problem with the augmented lagrangian
function. This function is used to evaluate
each individual in the evolution strategy. The
algorithm is based on a maximization of the
dual augmented function with respect to the
dual variables. This dual augmented function
is obtained by a minimization of the
augmented lagrangian function with respect
the primal variables, i.e the mixed-
continuous variables of the optimization
problem. In this paper we are handling a
population of µ parents, where each
individual is represented by a 3 vectors

( )T
DC pxxx ,,= . DC xx ,  are the continuous

and discrete variables associated to the
individual. p are strategy parameters which
control the application of mutation.
The basic iteration of the algorithm consists
in updating the discrete variable xD  by

creating χ offspring individuals by means of
recombination and mutation of the parent
individuals. The continuous variables xC  of
each individual are updated by a
minimization along a descent direction d of
the augmented lagrangian function. These
updated continuous variables are the new
continuous variables of each offspring.
This descent direction d is a quasi-Newton
direction based on the approximate Hessian

Update dual variablesM inimum of the augmented
lagrangien function ?

M aximum of the dual
function ?

STOP

YES

YES

NO

NO

New population of parents P(k+1) = best individuals among
(P(k) ∪  Pe(k))

Creation of a off spring's population Pe(k) from P(k).

k = k + 1

Evaluation of Pe(k)

For each off spring individual of Pe(k) :
Recombination and mutation for discrete variables
Deterministic step for continuous variables

Evaluation of the population P(k)
(calculation of the augmented lagrangian function).

Random generation of a population
P(k) of µ parents.

Figure 1 : Hybrid algorithm



matrix of the augmented lagrangian function.
The step α along this direction is calculated
by using the monotonicity analysis [13] when
the constraints and objective function of the
optimal design problem are monotonic. Here
∇ f(xk) and ∇ gj(x

k) are the gradients of the
objective and constraint functions with
respect to the continuous variables, the
discrete variables being kept fixed. The
method of monotonicity analysis is based on
the identification of active or inactive
constraints.

df

d
f x dk T

α α =

= ∇
0
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For motion in the descent direction d, we
identify constraints for which the derivatives
in equations (1) and (2) have opposite signs.
Only constraints showing an opposite
derivative sign to df/dα are able to be active.
We use a linear approximation of the
constraints to compute the motion α j

corresponding to each of these candidate
active constraints.

α j

j
k

j
T k

g x

g x d
= −

∇
( )

( ).
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The constraint showing the smallest value of
α j  is considered dominant and defines the

step size along the direction d.
When the objective and constraints function
are not monotonic, the step α along the
descent direction d is calculated with a
golden section search coupled with a
polynomial interpolation.
This basic iteration is repeat until the
minimum of the augmented lagrangian
function is reached. The dual variables, i.e
the lagrange multipliers are then updated and
the overall procedure is repeated until the
maximum of the dual function is reached.

6. Application and results :

We have applied this hybrid algorithm to
several problems of optimal design. We
present here the detail of the results obtained
on two of these problems.

6.1 Pressure vessel : The first one is the
design of pressure vessel [17]. The objective
is to minimize the total manufacturing cost
for the pressure vessel. The design variables
are the dimensions Ts (the shell thickness), Th

(the spherical head thickness), R (the radius
of the cylindrical shell ), and L (the length of
the shell).

Th

R

Ts

R

L

Figure 2: Pressure vessel

The optimization problem contains 2 discrete
variables (Ts, Th), 2 continuous variables (R,
L) and 7 inequality constraints. Its equations
are as follows:

Minimize the objective function  :

f(x) = 0,6224.Ts.R.L + 1,7781.Th.R
2 

+ 3,1611.Ts
2 L + 19,84.Ts

2.R

Subject to the non linear inequality
constraints  :

g1(x) = 0,0193.R - Ts ≤ 0
g2(x) = 0,00954.R - Th ≤ 0
g3(x) = 752 x 1728 - π.R2.L2 - (4π.R2)/3 ≤ 0
g4(x) = 1,1 - Ts ≤ 0
g5(x) = 0,6 - Th ≤ 0

Variables : x = {  Ts, Th, R, L } T



Bounds on variables :

1,1 ≤ Ts ≤ 1,9375

0,5625 ≤ Th ≤ 1,5
50 ≤ R ≤ 70
30 ≤ L ≤ 50

This problem belong to a set test problems
for which we know the theoretical optimal
solution. Here , this solution is :

xtheo = {  1,125; 0,625; 58,29; 43,69 } T.
ftheo = 7197,7289

The results presented in table 1 were
obtained at the end of 15 executions for a
population of 7 parents and 50 offsprings.
The error between the theoretical optimum
and the best solution identified by the hybrid
algorithm is indicated in the column "Error".
The column "Average Error %" specifies the
average error on 15 executions. The column
"Eval 10%" indicates the average number of
evaluations of functions necessary to reach
the theoretical optimum with 10% of error.
The column " Eval total" gives the total
number of evaluations for 15 runs. This table
allows to  compare the hybrid algorithm with
the evolution strategy alone.

Error Average
Error

Eval
10%

Eval
total

ES 0 % 1,69 % 267 37605
hybrid 0 % 0,84 % 174 17507

Table 1 : Results for the pressure vessel
problem

Figure 3 shows the evolution of the objective
function during generations. It makes it
possible to highlight the best speed of
convergence of the hybrid algorithm.
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Figure 3 : Evolution of objective function
along with the number of generation

6.2 : Cylindr ical gear pair : The second
problem of optimal design is a problem of
optimization of transmission of power by a
cylindrical gear pair with helical teeth.

d2maxi

d1maxi

bmaxi

Figure 4 : Parallel helical gear pair

The determination of the teethes is a complex
operation. There are however simpli fied and
standardized methods usually used in the
engineering and design departments. The
formulation of the problem that we present is
based on the simpli fied "C" method
recommended by standard [18].

From kinematics imposed conditions (a given
speed ratio reduction), the normal module
mn0, the helix angle β0, the number of teeth of
the pinion Z1, the facewidth b and finally the
addendum modification of the pinion x1 and



the wheel x2, are determined. The standard
recommends to first determine the
parameters mn0, β0, Z1, b checking of the
conditions of strength on surface pressure
and of rupture on the level of teeth. The
addendum modifications x1 and x2 are then
calculated from conditions on the balancing
of the specific slips and fatigue strength
Although these parameters are all
interdependent, the calculation complexity
does not allow to tackle the problem
differently.
The formulation of this problem like a
problem of optimal design was already
undertaken [3]. However because of the
intrinsic limitations of the used optimization
methods , the authors had to solve this
problems in three steps. At the time of the
first step, the values of b and d10 are
determined. This allows to obtain an
optimization problem with continuous
variables. Then the values of mn0, β0, Z1, are
obtained by an optimization method based on
the graphs of variations [8], and finally the
addendum modification of teeth are
determined, thanks to a particular algorithm.
We propose to formulate this problem of
optimal design overall , in order to
simultaneously determine the values of the
variables of design: mn0, β0, Z1, Z2, x1, x2, b.
The objective function is formulated to
minimize the mass of the gears and the
relative variation of the specific slips of the
wheel and the pinion. The importance of each
criterion is given by the values of α1 and α2.
The functions g1(x) and g2(x) are conditions
on the acceptable maximum powers with the
surface pressure and the rupture of teeth.
The functions g3(x) and g4(x) are conditions
on the transverse contact ratio εα and the
overlap ratio εβ. The function g5(x) expresses
a condition on the linear velocity of teeth.
The functions g6(x) and g7(x) limit the values
of the addendum modification. The functions
g8(x) and g9(x) express conditions on meshing
interference. The functions g10(x) and g11(x)
are conditions on the minimal and maximum
values of the diameter of the pinion.
The function g12(x) imposes a maximum error

on the speed reduction ratio u. Finally the
functions g13(x) and g14(x) limit the minimal
value of the facewidth compared to the
diameters of the pinion and the wheel. The
expression of this problem thus requires 14
nonlinear constraint functions, and 7
variables including 4 continuous and 3
discrete. It is thus a particularly complex
problem of optimal design, the more so as the
calculation of the factor CB4 requires to solve,
for each evaluation of the function g2(x), the
equation : inv(α) = 0 (inv(α) = α - tan(α)).

The optimization problem formulation is :

Minimize the objective function  :

=)(xf α
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0 1
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Bounds on variables :

maximini bbb ≤≤

0maxi00mini βββ ≤≤

maxi00mini0 nnn mmm ≤≤

maxi111mini ZZZ ≤≤

2maxi22mini ZZZ ≤≤

1maxi11mini xxx ≤≤

2maxi22mini xxx ≤≤

Variables :
x = {  mn0, Z1, Z2, β0, x1, x2, b } T

Data associated with bounds on variables :

minib =10 mm, maxib =500 mm, mini0β =10°,

maxi0β =20°, mini0nm =0,5 mm,

maxi0nm =50 mm, 1miniZ =15, 1maxiZ =45,

mini2Z =40, maxi2Z =150, mini1x = mini2x =-1 mm,

maxi1x = 2maxix =1 mm
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Data on the materials :

limHσ =1500 MPa, limFσ =460 MPa,

mR =3,5 µm, BroueH =560 HB, 1ν = 2ν =0,3,

1E = 2E =206 GPa
Specific data problems :

1N =263 tr/mm, u =2,75, miniP =2740 KW,

maxV =25 m/s, md1 =20 mm, Md1 =1500 mm,

md2 =20 mm, Md2 =15000 mm, AK =1.5,

RK =1, NZ =1, NTY =1.

Data for KHβ  coefficient [18] :

1A =1,11, 1B =0,18, 1C =1,5 10-4, 1D =1
Data for Y relTδ  coefficient [18] :

2A =0,04, 2B =0,93
Data for YRrelT  coefficient [18] :

3A =1,674, 3B =0,329, 3C =0,1

Data for YX  coefficient [18] :

4A =1,03, 4B =0,003
Data for YFA  coefficient [18] :

0ah =1.25, 0aς =0.375

α1 = 1
α2 = 0

α1 = 0
α2 = 1

α1 = 1
α2 = 1

Solution
of [3]

ES Hybrid ES Hybrid ES Hybrid

Z1

* 21 22 22 30 30 26 22
Z2

* 58 60 61 82 83 71 61
mno

* 18 18 18 14 28 16 18
x1

* 0.273 0.551 0.000 0.810 0.817 0.821 0.805
x2

* -0.273 0.449 1.000 0.163 0.171 0.170 0.101
β0

* 19.127 19.575 19.975 15.168 15.098 17.660 19.906
b 182.0 152.95 143.360 320.216 472.273 147.55 159.525
d1

* 400.092 420.291 421.347 435.160 870.032 436.574 412.163
f* 2.402 10-2 2.310 10-2 3.994 10-11 0.000 2.500 10-2 2.515 10-2

fDaidié 2.589 10-2 0.4664 0.492
1944740 1986958 1893340 1675088 19313990 1748959

+42218 -218252 -165031
Table 2 : Results for the gear pair optimization



Detail expressions for coeff icient C j  and CBj

for j=1..5 can be found in [18].

Table 2 shows the computation results
obtained at the end of 20 executions with an
initial population of 7 parents and 50
offspring individuals, for several values
combinations for α1 and α2.
The case α1 = 1 and α2 = 0 corresponds to a
minimization of the mass of the gears. For
α1 = 0 and α2 = 1, we only minimize the
relative difference between the specific slips
of the pinion and the wheel. Finally for
α1 = 1 and α2 = 1, the two criteria are
simultaneously optimized. In table 2 we
present the optimal values of the design
variables after convergence of the method, as
well as the results obtained by Daidié [3].
These last results are calculated with the
same data values. By comparing the lines "f*"
and "fDaidié", we can note that the solutions
identified by the evolution strategy (column
"ES") and the hybrid algorithm (column
"hybrid") are better than those obtained by
[3]. This difference is explained by the fact
that the sum of the addendum modification is
null i n the solution calculated by Daidié.
These restrictions were made in order to
simpli fy the calculation of the addendum
modification. The difference between the
number of evaluation of functions with ES
and this with the hybrid method is much less
significant than in the case of the problem of
the pressure vessel. This can be explained by
the fact that the monotonous analysis can not
be used for this problem to determine the
continuous variables of each offspring
individual.

5. Conclusions : In this paper, we have
proposed a hybrid method, based on the
coupling of the evolution strategy with
deterministic methods. Our aim was to use in
parallel the advantages of evolutionary
algorithms for the discrete variables and
those of deterministic methods for the
continuous variables. In the proposed hybrid
method, the creation of a new individual is

realized at each generation by a step in the
discrete search space by mean of
recombination and mutation, and a step in the
continuous search space by mean of a move
in a Lagrangian based quasi-Newton
direction. The hybrid method, applied to two
strongly constrained mechanical design
problems with mixed variables, has given in
association with the monotonicity analysis
interesting results.
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