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Abstract: This article presents a new
optimization  agorithm  for  noninea
optimization poblems with mixed variables.
This agorithm is based on a cougding d
deterministic and evolutionnary methods of
optimization. We first point out the generd
context of optima design poblems and the
charaderistics of the these noninea
problems with mixed variables. We briefly
recdl the genera principles of the
evolutionrery and deterministic methodks.
Then the principle of coupging ketween these
two approaches is presented. Finaly we
discussthe results obtained onatest problem
of the literature ad a problem of
dimensioning d agea pair. We show in bah
cases the profits compared to evolutionrary
methods in terms of reliability and speed of
convergence

Résumé: Cet article présente un nouw
algorithme d'optimisation  destiné  aux
problémes d'optimisation non linédres en
variables mixtes. Cet agorithme repaose sur
un coupage d'ure méthode déterministe &
évolutionraire d'ogtimisation. Nous
rappelons tout d'abord le cntexte général des
problémes de nception opimae d les
particularités de ces problémes non linédres
en variables mixtes. Les principes généraux
des méthodes évolutionraires et
déterministes ont ensuite exposés. Puis le
principe du coupage etre ce deux
approches est présenté. Enfin nous exposons
les résultats obtenus sur un pobléme test de
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la littérature @ ensuite sur un probléme de
dimensionrement d'untrain engrenage. Nous
montrons dans les deux cas les gains obtenus
par rappat a une méhode éolutionraire
seule en termes de prédsion et de vitese de
convergence.

1. Introduction : In today's Computer Aided
Design software, a medhanicd system is
esentialy represented by the volumes of its
parts. Even if concepts of fedure and

complex assembly structure have been added

to this representation, it is not well suited for
an easy design d the medianicd system.
Dimensioning medanicd comporent is
quite difficult with this kind d software. Our
aim isto propaose design-making toads, which
can beintroduced in Computer Aided Design
software. Thank to the analysis of the design
process of a known medhanicd system, we
can formulate the mechanicd design problem
as an optimizaion poblem, cdled problem
of optimal design. The latter contains norn
linear equations, inequality constraints and
mixed variables that are @ntinuows and
discrete. There ae dso interdependent
discrete parameters whose values may be
taken in namalized tables and which dredly
depend onthe doice of one of the discrete
variables.

These problems of optimal design have been
solved with genetic dgorithm [3] and
evolution strategy [5]. The obtained results
have shown the dficiency of these
algorithms, bu many evaluations of function



are necessry to readqr a good opima
solution. In this paper, a hybrid evolution
strategy is presented to solve this optimal
design poblems with a low number of
evaluations.

2. The optimal design problem: The
general mixed dscrete continuows problem is
defined as:

Minimize
f(x)
Subject to :
g;(x)<0,j=1.m

g;(x)=0,j =m+1.m+|
usx<v, uVv,xOR"=R™[OR™
where f is the objedive function and g; are

norlinea inequality constraint functions. The
comporents of the mixed variable vedor
T Lo . .
x:(xc,xD) are divided into n. continous
variables, expresed as x. OR™ and n,
continous  variables, expressed as
X, OE™ OR™. Here E™ OR™ s the
gpace of discrete values, accetable by the
problem and it can be randamly distributed.
In this class of optimal design poblem, we
consider that the first order derivatives of the
objedive function and constraints with
resped the continuouws variables exist, bu the
first derivatives of the functions with respea
to the discrete variables are supposed
unknonvn. Moreover, this type of problems

are strondy norlinea and typicdly contain
about ten variables.

3. Evolutionary strategies: Evolutionary
algorithms have started to receve significant
attention duingthe last decale [1,2,6,7. Part
of their successis due to the large domain of
applicagion d those methods, ther
robustnessand their gain o flexibility. Those
methods are spedally well suited for solving
difficult optimization poblems [9,14,15,1§.
However, their computational cost is
generally very high. A large number of
evauations must generally be performed for
a satisfying result to be found. Evolution
strategies are based on the principle of

evolution, i.e. survival of the fittest. Unlike
classcd methods, they do na use asingle
seach pant but apopuation d points cdled
individuals. Eadh individua represents a
potential solution to the problem. At ead
iteration, cdled a generation, a new
popdation d x offspring individuas is
creaded by means of rewmmbination and
mutation, starting from the old popudation o
u parents (x> ). This new popuation is
then evaluated with an evaluation function.
This evauation function is equal to the
function to be minimized when the problem
does nat contain any constraint. It may be a
quadratic pendty function for handing
constraints of the optimization poblem [10].
The p best individuals out of the popuation
of parents and dfspring are seleded to
reproduce and replacethe old popdation o
parents. By means of these randomized
processes, the popdation evolves toward

better and better regions of the search space.

4. Deterministic methods: On the other
hand, deterministic methods, which exploit
locd information like gradient information
are rapid methods when the gradients of the
functions can be cdculated. But their domain
of applicaion is reduced to the dass of
differentiable  problems. Deterministic
methods asaume that the objedive and
constraint functions are differentiable. They
do nd use probabilistic rules and they
generaly converge quickly. Those methods
have asingle seach pant. At ead iteration
k, a new pant x.,*"* is determined by the
point x.* and astep in a caculated dredion
d“ such as : x'=xf+a*.d". The
cdculation o the step a*and the diredion
d* depend on the dosen deterministic
method. They are generaly based on the
gradients of the functions.

5. Coupling evolutionary and
deterministic methods: In order to combine

the respective advantages of the deterministic



P(k) of u parents.

Random generation of a population

l

Evaluation o the population P(k)
(caculation of the augmented lagrangian function).

l

Creaion of a offspring's population P°(k) from P(k).

A

l

For ead offspring individual of P°(k) :

Recombination and mutation for discrete variables
Deterministic step for continuous variables

l

Evaluation o P°(k)

l

(P(k) O P(K)

New population of parents P(k+1) = best individuals among

|

k=k+1

Minimum of the augmented
lagrangien function ?

Update dual variables

NO

M aximum of the dual
function ?

Figure 1 : Hybrid algorithm

method and evolution strategy we have
propcsed to coupe the two methods. We
have dhosen to use adual formulation o the
problem with the agmented lagrangian
function. This function is used to evauate
ead individual in the evolution strategy. The
algorithm is based ona maximizaion d the
dual augmented function with resped to the
dual variables. This dual augmented function
is obtaned by a minimizaion d the
augmented lagrangian function with resped
the prima variables, i.e the mixed-
continuows variables of the optimizaion
problem. In this paper we ae handing a
popdation d u parents, where eab
individual is represented by a 3 vedors

T

X=X, %o, D)

X., X, are the ntinuows

and dscrete variables aswciated to the
individual. p are strategy parameters which
control the application of mutation.

The basic iteration d the dgorithm consists
in upditing the discrete variable x, by

creaing x offspring individuals by means of
recombination and mutation d the parent
individuals. The @ntinuows variables x. of

eatcv individual ae updaed by a
minimization along a descent diredion d of
the augmented lagrangian function. These
updated continuows variables are the new
continuous variables of each offspring.

This descent diredion d is a quasi-Newton
diredion besed onthe gproximate Hessan



matrix of the augmented lagrangian function.
The step a along this diredion is cdculated
by using the monaonicity analysis [13] when
the constraints and ohedive function d the
optimal design poblem are monaonic. Here
Of(x) and Og(x) are the gradients of the
objedive ad constraint functions with
resped to the ontinuows variables, the
discrete variables being kept fixed. The
method d monaonicity analysis is based on

the identificaion o adive or inadive

constraints.
ar =0Of (x)'d (1)
da|,_,

and a0, =0g. (x)'d,j=1,..m (2
da cx:O_ 9, R

For motion in the descent diredion d, we
identify constraints for which the derivatives
in equations (1) and (2) have oppasite signs.
Only constraints <dowing an oppaite

derivative sign talf/da are able to be active.

We use a linea approximation d the
constraints to compute the motion o

correspondng to ead o these candidate
active constraints.

(X
%" T g (k) .d” ®)
The onstraint showing the small est value of

a, is considered daminant and defines the

step size along the direction

When the objedive and constraints function
are not mondonic, the step a aong the
descent diredion d is cdculated with a
golden sedion seach couded with a
polynomial interpolation.

This basic iteration is repea until the
minimum of the aigmented lagrangian
function is readed. The dua variables, i.e
the lagrange multipliers are then updited and
the overall procedure is repeaed urtil the
maximum of the dual function is reached.

6. Application and results:

We have gplied this hybrid algorithm to
several problems of optima design. We
present here the detail of the results obtained
on two of these problems.

6.1 Presaure vessl : The first one is the
design o presaure vessl [17]. The objedive
IS to minimize the total manufaduring cost
for the presaure vessel. The design variables
are the dimensions T_ (the shell thicknesy, T,
(the sphericd hea thicknesg, R (the radius
of the g/lindricd shell), and L (the length of
the shell).

C Th = T

Figure 2: Pressure vessel

The optimization poblem contains 2 dscrete
variables (T, T,), 2 continuous variables (R,
L) and 7inequality constraints. Its equations
are as follows:

Minimize the objective function
f(x) = 0,6224TsR.L + 1,7781T,.R
+3,1611TZ L + 19,84TSR

Subeda to
constraints:

the non linea inequality

0,x) =0,0193R-T,<0

g,(x) = 0,00954R - T. < 0

g.(X) =752x 1728-n.R.L*- (4n.R)/3< 0
09, =11-T.<0

0.x)=0,6-T, <0

Variables: x={ T, T, R L}’



Bounds on variables
1,1<T;<1,9375

0,5625< Th< 1,5
50<R=<70
30<L <50

This problem belong to a set test problems
for which we know the theoreticd optimal
solution. Here , this solution is :

Xtheo:{ 1’125’0’625,58,29,43,69}T
ftheO: 7197’7289

The results presented in table 1 were
obtained a the end d 15 exeautions for a
popdation d 7 parents and 50 offsprings.
The earor between the theoreticd optimum
and the best solution identified by the hybrid
algorithm is indicated in the column "Error"”.
The olumn "Average Error %" spedfies the
average aror on 15exeautions. The lumn
"Eva 10%" indicates the average number of
evauations of functions necessry to read
the theoreticd optimum with 10% of error.
The ®lumn " Eval tota" gives the total
number of evaluations for 15 runs. This table
allowsto compare the hybrid algorithm with
the evolution strategy alone.

Error | Average| Eval Eval

Error 10% total

ES 0% [1,69% |267 37605
hybrid|0 % [0,84% 174 17507

Table 1 : Results for the pressure vessel

problem

Figure 3 shows the evolution d the objedive
function duing @enerations. It makes it
possble to highlight the best speead of
convergence of the hybrid algorithm.

—>— Hybrid
ES

N N
re <

7000 + -

1 2 4 6 8 10 12
Number of generation

Figure 3 : Evolution of objective function
along with the number of generation

6.2 : Cylindrical gear pair : The second
problem of optimal design is a problem of
optimization d transmisson d power by a
cylindrical gear pair with helical teeth.

Figure 4 :Parallelhelicalgear pair

The determination d the teghesisa complex
operation. There ae however smplified and
standardized methods usually used in the
engineaing and design departments. The
formulation d the problem that we present is
based on the simplified "C" method
recommended by standard [18].

From kinematics impaosed condtions (agiven
spedal ratio reduction), the normal modue
m,,, the helix angle 3,, the number of teeh of
the pinion Z,, the facevidth b and finally the
addendum modification d the pinion x, and



the whed x,, are determined. The standard
reommends to first determine the
parameters m,, (3, Z, b cheking d the
condtions of strength on surface presaure
and d rupture on the level of tegh. The
addendum modificaions x, and x, are then
cdculated from condtions on the balancing
of the spedfic dips and fatigue strength
Although these parameters are  dl
interdependent, the cdculation complexity
does not alow to takle the problem
differently.

The formulation d this problem like a
problem of optimal design was drealy
undertaken [3]. However becaise of the
intrinsic limitations of the used optimization
methods , the aithors had to solve this
problems in three steps. At the time of the
first step, the values of b and d, are
determined. This alows to olkian an
optimization poblem with continuows
variables. Then the values of m, 3, Z,, are
obtained by an ogimization method kesed on
the graphs of variations [8], and finaly the
addendun modificaion d tedah are

determined, thanks to a particular algorithm. gl(x): 1-

We propcse to formulate this problem of
optimal design owral, in oder to
simultaneously determine the values of the
variables of design: m, B, Z,, Z, X, X, b.
The objedive function is formulated to
minimize the mass of the geas and the
relative variation d the speafic dlips of the
whed and the pinion. The importance of eat
criterion is given by the values of a, and a,,.
The functions g,(x) and g,(x) are condtions
on the accetable maximum powers with the
surface pressure and the rupture of teeth.
The functions g,(x) and g,(x) are condtions
on the transverse @ntad ratio & and the
overlap ratio &. The function g,(x) expresses
a ondtion onthe linea velocity of tedh.
The functions g,(x) and g.(x) limit the values
of the addendum modificaion. The functions
0,(X) and g,(x) expresscondtions on meshing
interference. The functions g,(x) and g,,(X)
are @ndtions on the minima and maximum
values of the diameter of the pinion.

The function g,,(X) impases a maximum error

on the speal reduction ratio u. Finaly the
functions g,,(x) and g,,(X) limit the minimal
value of the facevidth compared to the
diameters of the pinion and the whed. The
expresson d this problem thus requires 14
norinea constraint functions, and 7
variables including 4 continuoss and 3
discrete. It is thus a particularly complex
problem of optimal design, the more so as the
cdculation d the fador C,, requires to solve,
for ead evaluation d the function g,(x), the
equation inv(a) =0 (inv(a) = a - tan(@)).

The optimization problem formulation is :

Minimize the objective function

b(m,Z,)*
(COSZ Bobmaxi dlzmaxi )

a EzlYlul B Zzquz E
0 zyYuU, O

F() =04

Subeda to
constraints:

the non linea inequality

Cey [Cp, [Cp; [T, [Ty [C
Kg P

R mini

g,(X)=1-

9,(x)=1.3-¢,<0

zZN | 7
X)= —— -10<0
%4 100\ 27 +2;
X)=-X —-%<0

= 1——m”OZl <0
d1mini COSBO
mnOZl

d cosp,

-1<0

Imaxi



a, =1 a,=0 a, =
a,=0 a,=1 a, =
Solution ES Hybrid ES Hybrid ES Hybrid
of [3]
Z |21 22 22 30 30 26 22
Z |58 60 61 82 83 71 61
m_ |18 18 18 14 28 16 18
x, |0.273 0.551 0.000 0.810 0.817 [0.821 0.805
X, |-0.273 |0.449 1.000 0.163 0.171 [0.170 0.101
B, [19.127 |[19.575 [19.975 |[15.168 15.098 |17.660 |19.906
b 182.0 152.95 [143.360 [320.216 [472.273[147.55 [159.525
d [400.092 [420.291 [421.347 |435.160 [870.032[436.574 |412.163
f 2.40210° |2.31010” [3.99410" |0.000 |2.50010° |2.51510°
fore 2.58910° 0.4664 0.492
1944740 |1986958 | 1893340 |1675088 19313990 1748959
+42218 -218252 -165031
Table 2 :Results fothegear paitoptimization
912( ) u- i_j 0.01<0 Oy = Ed @
0 O
0.(x)=1- br(r:lrgsﬁo 0 dy i = MaxEd = 6%"1”%
q (x): 01 m.,Z, _1<0 Data on the materlals ;
14 bcosp, O.m =1500MPa, o, =460MPa,
Bounds on variables R,=3,5um, Hg,,,=560HB, v,=v,=0,3,
B Sb<b, . E,=E,=206GPa
Bomin < Bo < Bomaxi Specific data problems
Mg SM <My N,=263tr/mm, u=2,75, P, =2740KW,
Z,. <Z, <7, . V,.»=25m/s, d,,,=20mm, d,,, =1500mm,
Z, SZ,<Z, . d,,=20mm, d,,, =15000mm,K ,=1.5,
leini s Xl = leaxi KR:l’ ZN :1’ YNT =1.
Kot S Xy S Xy Data forK; coefficient [18] :
A=1,11,B,=0,18,C,=1,510°, D,=1
Variables: Data forY,; coefficient [18] :

x={ My Z,Z, B, % % b} A,=0,04, B,=0,93

) ) ) Y. iCci :
Dataassociateavith bounds on variables Data for Yoy coefficient [18]

b, =10mm, b__.=500mm, S, =10°, A,=1,674,B,=0,329,C,=0,1

B,...=20°, M, =0,5mm, Data forY, coefficient [18] :
Omaxi — ' Oomini —

Myomee =50 MM, Z,. =15, Z, =45, A,=1,03,B,=0,003

7, =40.7Z, =150, —x  =1mm Data forY;, coefficient [18] :
2mini — ’ 2n:1I-aX| X1m|n| 2mini — ’ hao :1.25’ Cao -0.375

leaxi = XZmaxi =1lmm

1maxi



Detail expressonsfor coefficient C; and Cy
for j=1..5 can be found in [18].

Table 2 shows the mputation results
obtained at the end d 20 exeautions with an
initial popdation d 7 parents and 50
offspring individuas, for several values
combinations forr, anda,,.

The cae a, =1 and a, = 0 corresponds to a
minimizaion d the mass of the geas. For
a,=0 and a,=1, we only minimize the
relative diff erence between the spedfic dlips
of the pinion and the whed. Findly for
a,=1 and a,=1, the two criteria ae
simultaneously optimized. In table 2 we
present the optimal values of the design
variables after convergence of the method, as
well as the results obtained Daidié [3].
These last results are cdculated with the
same data values. By comparing the lines "f "
and "f"™', we can nde that the solutions
identified by the evolution strategy (column
"ES') and the hybrid agorithm (column
"hybrid") are better than those obtained by
[3]. This difference is explained by the fad
that the sum of the adldendum modificationis
nul in the solution cdculated by Daidié.
These restrictions were made in order to
simplify the cdculation d the aldendum
modificaion. The difference between the
number of evaluation d functions with ES
and this with the hybrid methodis much less
significant than in the cae of the problem of
the presaure vessel. This can be explained by
the fad that the monaonous analysis can na
be used for this problem to determine the
continuows variables of ead ofspring
individual.

5. Conclusions: In this paper, we have
propcsed a hybrid method, kased on the
cougding d the evolution strategy with
deterministic methods. Our aim wasto usein
pardlel the alvantages of evolutionary
algorithms for the discrete variables and
those of deterministic methods for the
continuous variables. In the proposed hytrid
method, the aedion d a new individua is

redized at eat generation by a step in the
discrete seach space by mean o
recombination and mutation, and a step in the
continuows each spaceby mean of a move
in a Lagrangian based quesi-Newton
diredion. The hybrid method, applied to two
strondy constrained medanicd design
problems with mixed variables, has given in
asciation with the monaonicity anaysis
interesting results.
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