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Coupling of evolution strategy and lagrangian augmented algorithm for optimal design of mechanical system

This article presents a new optimization algorithm for nonlinear optimization problems with mixed variables. This algorithm is based on a coupling of deterministic and evolutionnary methods of optimization. We first point out the general context of optimal design problems and the characteristics of the these nonlinear problems with mixed variables. We briefly recall the general principles of the evolutionnary and deterministic methods. Then the principle of coupling between these two approaches is presented. Finally we discuss the results obtained on a test problem of the literature and a problem of dimensioning of a gear pair. We show in both cases the profits compared to evolutionnary methods in terms of reliability and speed of convergence.

Résumé

: Cet article présente un nouvel algorithme d'optimisation destiné aux problèmes d'optimisation non linéaires en variables mixtes. Cet algorithme repose sur un couplage d'une méthode déterministe et évolutionnaire d'optimisation. Nous rappelons tout d'abord le contexte général des problèmes de conception optimale et les particularités de ces problèmes non linéaires en variables mixtes. Les principes généraux des méthodes évolutionnaires et déterministes sont ensuite exposés. Puis le principe du couplage entre ces deux approches est présenté. Enfin nous exposons les résultats obtenus sur un problème test de la littérature et ensuite sur un problème de dimensionnement d'un train engrenage. Nous montrons dans les deux cas les gains obtenus par rapport à une méthode évolutionnaire seule en termes de précision et de vitesse de convergence.

Introduction : In today's Computer Aided

Design software, a mechanical system is essentially represented by the volumes of its parts. Even if concepts of feature and complex assembly structure have been added to this representation, it is not well suited for an easy design of the mechanical system. Dimensioning mechanical component is quite difficult with this kind of software. Our aim is to propose design-making tools, which can be introduced in Computer Aided Design software. Thank to the analysis of the design process of a known mechanical system, we can formulate the mechanical design problem as an optimization problem, called problem of optimal design. The latter contains nonlinear equations, inequality constraints and mixed variables that are continuous and discrete. There are also interdependent discrete parameters whose values may be taken in normalized tables and which directly depend on the choice of one of the discrete variables. These problems of optimal design have been solved with genetic algorithm [START_REF] Daidié | Réalisation d'un logiciel de conception automatique appliqué à la détermination des engrenages cylindriques : interfaçage avec un logiciel industriel de CAO[END_REF] and evolution strategy [START_REF] Giraud | Evolution strategies for optimal design of mechanical systems[END_REF]. The obtained results have shown the efficiency of these algorithms, but many evaluations of function are necessary to reach a good optimal solution. In this paper, a hybrid evolution strategy is presented to solve this optimal design problems with a low number of evaluations.

2.

The optimal design problem : The general mixed discrete continuous problem is defined as: Minimize f x ( ) Subject to :
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where f is the objective function and g j are nonlinear inequality constraint functions. The components of the mixed variable vector ( )

x x x C D T = , are divided into n C continous variables, expressed as x R C n C ∈ and n D continous variables, expressed as x E R D n n D D ∈ ⊂ . Here E R n n D D
⊂ is the space of discrete values, acceptable by the problem and it can be randomly distributed. In this class of optimal design problem, we consider that the first order derivatives of the objective function and constraints with respect the continuous variables exist, but the first derivatives of the functions with respect to the discrete variables are supposed unknown. Moreover, this type of problems are strongly nonlinear and typically contain about ten variables.

Evolutionary strategies :

Evolutionary algorithms have started to receive significant attention during the last decade [START_REF] Bäck | Evolutionary algorithms in theory and practice[END_REF][START_REF] Bäck | Evolutionnary computation : comments on the history and current state[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF][START_REF] Holland | Adaptation in natural and artificial systems[END_REF]. Part of their success is due to the large domain of application of those methods, their robustness and their gain of flexibility. Those methods are specially well suited for solving difficult optimization problems [START_REF] Le Riche | Optimisation de structures composites par algorithmes génétiques[END_REF][START_REF] Powell | Using genetic algorithms in engineering design optimization with non linear constraints[END_REF][START_REF] Wu | Genetic Algorithms for solving mixed-discrete optimization problems[END_REF][START_REF] Wu | Steady-state genetic algorithms for discrete optimization of trusses[END_REF]. However, their computational cost is generally very high. A large number of evaluations must generally be performed for a satisfying result to be found. Evolution strategies are based on the principle of evolution, i.e. survival of the fittest. Unlike classical methods, they do not use a single search point but a population of points called individuals. Each individual represents a potential solution to the problem. At each iteration, called a generation, a new population of χ offspring individuals is created by means of recombination and mutation, starting from the old population of µ parents (χ > µ). This new population is then evaluated with an evaluation function. This evaluation function is equal to the function to be minimized when the problem does not contain any constraint. It may be a quadratic penalty function for handling constraints of the optimization problem [START_REF] Michalewicz | Genetic Algorithms + Data Structures = Evolution Programs[END_REF]. The µ best individuals out of the population of parents and offspring are selected to reproduce and replace the old population of parents. By means of these randomized processes, the population evolves toward better and better regions of the search space.

Deterministic methods :

On the other hand, deterministic methods, which exploit local information like gradient information are rapid methods when the gradients of the functions can be calculated. But 

d k such as : x x d C k C k k k + = + 1 α .
. The calculation of the step α k and the direction d k depend on the chosen deterministic method. They are generally based on the gradients of the functions.

5.

Coupling evolutionary and deterministic methods : In order to combine the respective advantages of the deterministic method and evolution strategy we have proposed to couple the two methods. We have chosen to use a dual formulation of the problem with the augmented lagrangian function. This function is used to evaluate each individual in the evolution strategy. The algorithm is based on a maximization of the dual augmented function with respect to the dual variables. This dual augmented function is obtained by a minimization of the augmented lagrangian function with respect the primal variables, i.e the mixedcontinuous variables of the optimization problem. In this paper we are handling a population of µ parents, where each individual is represented by a 3 vectors The step α along this direction is calculated by using the monotonicity analysis [START_REF] Papalambros | Regional monotonicity in optimum design[END_REF] when the constraints and objective function of the optimal design problem are monotonic. Here ∇f(x k ) and ∇g j (x k ) are the gradients of the objective and constraint functions with respect to the continuous variables, the discrete variables being kept fixed. The method of monotonicity analysis is based on the identification of active or inactive constraints.

df d f x d k T α α = = ∇ 0 ( ) (1) 
and

dg d g x d j j k T α α = = ∇ 0 ( ) , j=1,.., m (2) 
For motion in the descent direction d, we identify constraints for which the derivatives in equations ( 1) and ( 2) have opposite signs.

Only constraints showing an opposite derivative sign to df/dα are able to be active. We use a linear approximation of the constraints to compute the motion α j corresponding to each of these candidate active constraints.

α j j k j T k g x g x d = -∇ ( ) ( ). , (3) 
The constraint showing the smallest value of α j is considered dominant and defines the step size along the direction d.

When the objective and constraints function are not monotonic, the step α along the descent direction d is calculated with a golden section search coupled with a polynomial interpolation. This basic iteration is repeat until the minimum of the augmented lagrangian function is reached. The dual variables, i.e the lagrange multipliers are then updated and the overall procedure is repeated until the maximum of the dual function is reached.

Application and results :

We have applied this hybrid algorithm to several problems of optimal design. We present here the detail of the results obtained on two of these problems.

Pressure vessel :

The first one is the design of pressure vessel [START_REF] Zhang | Mixed discrete nonlinear optimization with simulated annealing[END_REF]. The objective is to minimize the total manufacturing cost for the pressure vessel. The design variables are the dimensions T s (the shell thickness), T h (the spherical head thickness), R (the radius of the cylindrical shell), and L (the length of the shell). Minimize the objective function :

f(x) = 0,6224.T s .R.L + 1,7781.T h .R 2 + 3,1611.T s 2 L + 19,84.T s 2 .R
Subject to the non linear inequality constraints :

g 1 (x) = 0,0193.R -T s ≤ 0 g 2 (x) = 0,00954.R -T h ≤ 0 g 3 (x) = 752 x 1728 -π.R 2 .L 2 -(4π.R 2 )/3 ≤ 0 g 4 (x) = 1,1 -T s ≤ 0 g 5 (x) = 0,6 -T h ≤ 0 Variables : x = { T s , T h, R, L } T Bounds on variables : 1,1 ≤ T s ≤ 1,9375 0,5625 ≤ T h ≤ 1,5 50 ≤ R ≤ 70 30 ≤ L ≤ 50
This problem belong to a set test problems for which we know the theoretical optimal solution. Here , this solution is : The determination of the teethes is a complex operation. There are however simplified and standardized methods usually used in the engineering and design departments. The formulation of the problem that we present is based on the simplified "C" method recommended by standard [START_REF] Nf E | Engrenages : détermination de la capacité de de charge des engrenages cylindriques extérieurs de mécanique générale[END_REF].

x theo = {
From kinematics imposed conditions (a given speed ratio reduction), the normal module m n0 , the helix angle β 0 , the number of teeth of the pinion Z 1 , the facewidth b and finally the addendum modification of the pinion x 1 and the wheel x 2 , are determined. The standard recommends to first determine the parameters m n0 , β 0 , Z 1 , b checking of the conditions of strength on surface pressure and of rupture on the level of teeth. The addendum modifications x 1 and x 2 are then calculated from conditions on the balancing of the specific slips and fatigue strength Although these parameters are all interdependent, the calculation complexity does not allow to tackle the problem differently.

The formulation of this problem like a problem of optimal design was already undertaken [START_REF] Daidié | Réalisation d'un logiciel de conception automatique appliqué à la détermination des engrenages cylindriques : interfaçage avec un logiciel industriel de CAO[END_REF]. However because of the intrinsic limitations of the used optimization methods , the authors had to solve this problems in three steps. At the time of the first step, the values of b and d 10 are determined. This allows to obtain an optimization problem with continuous variables. Then the values of m n0 , β 0 , Z 1 , are obtained by an optimization method based on the graphs of variations [START_REF] Lafon | Conception optimale de systèmes mécaniques : optimisation en variables mixtes[END_REF], and finally the addendum modification of teeth are determined, thanks to a particular algorithm.

We propose to formulate this problem of optimal design overall, in order to simultaneously determine the values of the variables of design:

m n0 , β 0 , Z 1 , Z 2 , x 1 , x 2 , b.
The objective function is formulated to minimize the mass of the gears and the relative variation of the specific slips of the wheel and the pinion. The importance of each criterion is given by the values of α 1 and α 2 .

The functions g 1 (x) and g 2 (x) are conditions on the acceptable maximum powers with the surface pressure and the rupture of teeth. The functions g 3 (x) and g 4 (x) are conditions on the transverse contact ratio ε α and the overlap ratio ε β . The function g 5 (x) expresses a condition on the linear velocity of teeth. The functions g 6 (x) and g 7 (x) limit the values of the addendum modification. The functions g 8 (x) and g 9 (x) express conditions on meshing interference. The functions g 10 (x) and g 11 (x) are conditions on the minimal and maximum values of the diameter of the pinion. The function g 12 (x) imposes a maximum error on the speed reduction ratio u. Finally the functions g 13 (x) and g 14 (x) limit the minimal value of the facewidth compared to the diameters of the pinion and the wheel. The expression of this problem thus requires 14 nonlinear constraint functions, and 7 variables including 4 continuous and 3 discrete. It is thus a particularly complex problem of optimal design, the more so as the calculation of the factor C B4 requires to solve, for each evaluation of the function g 2 (x), the equation :

inv(α) = 0 (inv(α) = α -tan(α)).
The optimization problem formulation is :

Minimize the objective function :
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Subject to the non linear inequality constraints :
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Data associated with bounds on variables :

mini b =10 mm, maxi b =500 mm, mini 0 β =10°, maxi 0 β =20°, mini 0 n m =0,5 mm, maxi 0 n m =50 mm, 1mini Z =15, 1maxi Z =45, mini 2 Z =40, maxi 2 Z =150, mini 1 x = mini 2 x =-1 mm, maxi 1 x = 2maxi x =1 mm d Max d d u m m 1mini =      1 2 , ; d Max d d u V N M M 1maxi =      1 2 1 60 , , max π
Data on the materials : 2 : Results for the gear pair optimization Detail expressions for coefficient C j and C Bj for j=1..5 can be found in [START_REF] Nf E | Engrenages : détermination de la capacité de de charge des engrenages cylindriques extérieurs de mécanique générale[END_REF].

lim H σ =1500 MPa, lim F σ =460 MPa, m R =3,5 µm, Broue H =560 HB, 1 ν = 2 ν =0,3, 1 E = 2 E =206 GPa Specific data problems : 1 N =263 tr/mm, u =2,75, mini P =2740 KW, max V =25 m/s, m d 1 =20 mm, M d 1 =1500 mm, m d 2 =20 mm, M d 2 =15000 mm, A K =1.5, R K =1, N Z =1, NT Y =1. Data for K Hβ coefficient [18] : 1 A =1,11, 1 B =0,18, 1 C =1,5 10 -4 , 1 D =1 Data for Y relT δ coefficient [18] : 2 A =0,04, 2 B =0,93 Data for Y RrelT coefficient [18] : 3 A =1,674, 3 B =0,329, 3 C =0,1 Data for Y X coefficient [18] : 4 A =1,03, 4 B =0,003 Data for Y FA coefficient [18] : 0 a h =1.25, 0 a ς =0.375 α 1 = 1 α 2 = 0 α 1 = 0 α 2 = 1 α 1 = 1 α 2 =
Table 2 shows the computation results obtained at the end of 20 executions with an initial population of 7 parents and 50 offspring individuals, for several values combinations for α 1 and α 2 . The case α 1 = 1 and α 2 = 0 corresponds to a minimization of the mass of the gears. For α 1 = 0 and α 2 = 1, we only minimize the relative difference between the specific slips of the pinion and the wheel. Finally for α 1 = 1 and α 2 = 1, the two criteria are simultaneously optimized. In table 2 we present the optimal values of the design variables after convergence of the method, as well as the results obtained by Daidié [START_REF] Daidié | Réalisation d'un logiciel de conception automatique appliqué à la détermination des engrenages cylindriques : interfaçage avec un logiciel industriel de CAO[END_REF]. These last results are calculated with the same data values. By comparing the lines "f * " and "f Daidié ", we can note that the solutions identified by the evolution strategy (column "ES") and the hybrid algorithm (column "hybrid") are better than those obtained by [START_REF] Daidié | Réalisation d'un logiciel de conception automatique appliqué à la détermination des engrenages cylindriques : interfaçage avec un logiciel industriel de CAO[END_REF]. This difference is explained by the fact that the sum of the addendum modification is null in the solution calculated by Daidié. These restrictions were made in order to simplify the calculation of the addendum modification. The difference between the number of evaluation of functions with ES and this with the hybrid method is much less significant than in the case of the problem of the pressure vessel. This can be explained by the fact that the monotonous analysis can not be used for this problem to determine the continuous variables of each offspring individual.

Conclusions :

In this paper, we have proposed a hybrid method, based on the coupling of the evolution strategy with deterministic methods. Our aim was to use in parallel the advantages of evolutionary algorithms for the discrete variables and those of deterministic methods for the continuous variables. In the proposed hybrid method, the creation of a new individual is realized at each generation by a step in the discrete search space by mean of recombination and mutation, and a step in the continuous search space by mean of a move in a Lagrangian based quasi-Newton direction. The hybrid method, applied to two strongly constrained mechanical design problems with mixed variables, has given in association with the monotonicity analysis interesting results.

  and discrete variables associated to the individual. p are strategy parameters which control the application of mutation. The basic iteration of the algorithm consists in updating the discrete variable x D by creating χ offspring individuals by means of recombination and mutation of the parent individuals. The continuous variables x C of each individual are updated by a minimization along a descent direction d of the augmented lagrangian function. These updated continuous variables are the new continuous variables of each offspring. This descent direction d is a quasi-Newton direction based on the approximate Hessian parents P(k+1) = best individuals among (P(k) ∪ P e (k)) Creation of a offspring's population P e (k) from P(k). k = k + 1 Evaluation of P e (k) For each offspring individual of P e (k) : Recombination and mutation for discrete variables Deterministic step for continuous variables Evaluation of the population P(k) (calculation of the augmented lagrangian function). Random generation of a population P(k) of µ parents.
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 3 Figure 3 shows the evolution of the objective function during generations. It makes it possible to highlight the best speed of convergence of the hybrid algorithm.
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 3624 Figure 3 : Evolution of objective function along with the number of generation

Table 1 :

 1 Results for the pressure vessel problem

		1,125; 0,625; 58,29; 43,69 } T .
		f	theo = 7197,7289	
	The results presented in table 1 were
	obtained at the end of 15 executions for a
	population of 7 parents and 50 offsprings.
	The error between the theoretical optimum
	and the best solution identified by the hybrid
	algorithm is indicated in the column "Error".
	The column "Average Error %" specifies the
	average error on 15 executions. The column
	"Eval 10%" indicates the average number of
	evaluations of functions necessary to reach
	the theoretical optimum with 10% of error.
	The column " Eval total" gives the total
	number of evaluations for 15 runs. This table
	allows to compare the hybrid algorithm with
	the evolution strategy alone.	
		Error Average	Eval	Eval
			Error	10%	total
	ES	0 %	1,69 %	267	37605
	hybrid 0 %	0,84 %	174	17507