
HAL Id: hal-03620798
https://hal.science/hal-03620798

Submitted on 26 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probability Collectives Algorithm applied to
Decentralized Intersection Coordination for Connected

Autonomous Vehicles
Charles Philippe, Lounis Adouane, Antonios Tsourdos, Hyo-Sang Shin, Benoit

Thuilot

To cite this version:
Charles Philippe, Lounis Adouane, Antonios Tsourdos, Hyo-Sang Shin, Benoit Thuilot. Probability
Collectives Algorithm applied to Decentralized Intersection Coordination for Connected Autonomous
Vehicles. 2019 IEEE Intelligent Vehicles Symposium (IV), Jun 2019, Paris, France. pp.1928-1934,
�10.1109/IVS.2019.8813827�. �hal-03620798�

https://hal.science/hal-03620798
https://hal.archives-ouvertes.fr

Probability Collectives Algorithm applied to Decentralized Intersection
Coordination for Connected Autonomous Vehicles

Charles Philippe1,2, Lounis Adouane1, Antonios Tsourdos2, Hyo-Sang Shin2, Benoı̂t Thuilot1

Abstract— In this paper, a multi-agent probabilistic optimiza-
tion algorithm is applied to the problem of multi-vehicle coor-
dination. The algorithm is known as “Probability Collectives”
(PC) and has roots in Game Theory and Optimization theory.
It is traditionally used for finding optimal solutions of NP-
hard problems such as the travelling salesman problem. On the
other end, the proposed PC formulation presented in this paper
focuses on a minimal complexity implementation for solving
the coordination problem in a time of the order of magnitude
of 0.1. Besides time constraints, the emphasis in the design
is put on ensuring that the algorithm always comes up with
a feasible solution. Simulations show that both objectives are
reached while having a decentralized algorithm, and flexible
with respect to the type of situations it can deal with. Additional
benefits of the PC algorithm include robustness to agent failure
and the possibility to accommodate non-collaborative vehicles
(market penetration of autonomous vehicles < 100%).

I. INTRODUCTION

In the last decade, autonomous vehicles have emerged as
having a great potential to reduce congestion in cities and
reduce casualties on the road [1]. The transition phase from
only human-driven vehicles on the roads to only autonomous
vehicles will be the most difficult to cope with. Some studies
even underline the challenges linked to estimating the public
acceptance and what passengers would be likely to accept
from autonomous vehicles [2].

In the field of intersection coordination, several approaches
coexist depending on the hypotheses considered by the au-
thors. For instance, coordination can be achieved by changing
the traffic lights pattern [3], by assigning slots to vehicles
[4] or by direct vehicle control [5]. While some of those
approaches work under the hypothesis of 100% of connected
autonomous vehicles on the road [4, 6], the others focus
on shorter-term hypotheses in which some vehicles present
on the road would be neither connected nor autonomous
[3]. In this case when not all vehicles are autonomous it
is more difficult to find and enforce truly optimal solutions
regarding the specific problem objectives (fuel consumption,
time for crossing the intersection, ...). It is of interest to notice
that even “simply” using platooning can double intersection
throughput [7]. Thus, it seems that big gains are reachable
despite not having a truly optimal coordination.

Some coordination techniques rely on mutual exclusion
from a shared zone [4] (the centre of the intersection for
example). More generally, the main difficulty in intersection
coordination is to avoid conflicting motions which can lead

1 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut
Pascal, F-63000 Clermont-Ferrand, France name.surname@uca.fr

2 Cranfield University, Cranfield, United Kingdom
name.surname@cranfield.ac.uk

to collisions. Mutual exclusion techniques are one way of
achieving that which is compatible with human driving since
it is what traffic lights achieve. This paper does not work
under this hypothesis, while keeping the door open for
humans to share the road. This is achieved through the
use of the Probability Collectives (PC) algorithm. While
the demonstrations in this paper only include autonomous
vehicles, the PC algorithm has been proven to be robust
to agent failure [8]. Its probabilistic nature also allows the
insertion of probabilistic hypotheses about the behaviour of
human driven vehicles without changing the way it works.

The proposed approach thus fills a gap between human-
compatible intersection coordination (based on traffic light
management and/or mutual exclusion of vehicles from a
shared space) and optimal coordination techniques based on
100% of connected autonomous vehicles on the road. Its de-
centralized nature allows it to be used even without dedicated
infrastructure. Other significant benefits of the algorithm are:
the robustness to agent failure [8], compatibility with mixed-
traffic scenarios (human drivers on the road) and its risk-
averse behaviour based on its probabilistic characteristics.

In this paper the demonstrations focus on showing the
useability of the proposed algorithm for road scenarios since
it has never been applied this way. The examples shown are
for intersection crossing but the algorithm can be used for
any kind of coordination, including platooning or highway
insertion. The trade-off between performance and execution
time will be investigated to evaluate its potential to run in
real time. The overall aim is to allow the algorithm to run
a full optimization in around 0.2s (cf. Section III-B). This
would allow reducing the distance at which the vehicles have
to start synchronizing, and maybe running the optimization
several times whenever a new event occurs.

The proposed method uses the Probability Collectives (PC)
algorithm. It originates from the field of optimization and
Game-Theory [8]. It is a decentralized agent-based algorithm
based on probabilistic hypotheses and has been shown to be
able to accommodate agent failure (if one of the agents is
non-collaborative).

The remainder of this paper is organized as follows:
• Section II presents the state of the art on the Probability

Collectives algorithm and the proposed developments to
apply it to intersection coordination.

• Section III presents some experiments to show the capa-
bilities of the proposed algorithm. The first experiment
is a proof of concept with detail on the optimization
variables. The second experiment is a repetition of an
optimization on a fixed initial situation. The aim is

to determine how variable the result is from the PC
algorithm (since it is based on a Monte-Carlo sampling,
it has an element of randomness). The third experiment
serves to study the effect of the search space sampling.

II. PROPOSED INTERSECTION COORDINATION
ALGORITHM

A. Probability Collectives algorithm
The Probability Collectives (PC) algorithm is extensively

presented in [9, 10, 8]. It is a multiagent optimization method
in which different agents are playing a game iteratively.
For each agent, the game consists of finding its own action
(among a set of possible actions) that maximizes the overall
expected utility. In mathematical uses of the PC algorithm,
agents are variables of a problem and “actions” are possible
values of the variables. In the proposed approach and in
[12], agents are the actual vehicles trying to solve a con-
flicting situation and the actions are possible trajectories.
The performance of the PC algorithm has been shown to
be superior to classic Genetic Algoritms (GA) [11]. It can
also accommodate agent failure and non-collaborative agents
[10].

The PC algorithm has the following main characteristics:
• It is probabilistic. Each agent computes the expected

utility for each of its possible actions. To do so it gets
(or estimates) the probability of the actions of the other
agents.

• It does not directly output a specific action, but rather
a probability distribution qi(Xi) for its set Xi =
(Xi

1, ..., X
i
N) of possible actions (for the vehicle i). An

action Xi
k more likely to be the best choice will have

a high probability number.
• It is collaborative: the probability distribution is com-

municated to other agents (cf. first bullet point). It has
been shown that the algorithm properties and agents be-
haviour (rational players) make the algorithm converge
to a Nash equilibrium, which is at least a local minimum
of the utility function [12].

• The probabilistic aspect is coupled with Simulated
Annealing (SA) to allow good exploration properties
when starting up the algorithm and exploitation of
promising solutions at the end. To achieve that, SA
techniques use a “temperature” T to define an “entropy”
that starts high and is close to zero at the end of the
optimization.

Most of the applications of the PC algorithm are for NP-
hard problems like the salesman problem, the circle packing
problem or others. These applications consist of one-off
offline optimizations and the goal is to find a high-quality
solution with a high computational time (several minutes).
To the knowledge of the authors, the only application of the
PC algorithm close to the topic of this paper is presented in
[12] for airplane conflict resolution. The PC algorithm is used
as either a fully decentralized or semi-centralized intensive
optimization algorithm. The implementation in [12] relies
on a high volume of communications and a relatively com-
plex problem formulation. It has been favourably compared

to the Iterative Peer-to-Peer Collision Avoidance (IPPCA)
algorithm which is a benchmark in the domain of airplane
collision avoidance [12].

A coarse outline of the PC algorithm is presented below
in Algorithm II-A from the point of view of one of the
agents. For a more detailed description, the reader is invited
to read [10], [12] or any reference mentioned above on the
PC algorithm.

Algorithm 1 Basic outline of the PC optimization
Data: Own set of possible actions Xi

Result: Probabilities vector qi(Xi)
Initialize qi(Xi) to a uniform distribution
Initialize the SA temperature T
while no convergence of qi(Xi) do

for vehicles j 6= i do
if j is collaborative then

Get set Xj from communication
Get qj(Xj) from communication

else
Estimate Xj

Estimate qj(Xj)
end if

end for
for each Xi

k in Xi do
for j 6= i do

Randomly sample some Xj based on the probabil-
ities qj(Xj)

end for
Compute expected utility E(Xi

k) of action Xi
k

(based on the sampled strategies for other vehicles)
Store E(Xi

k) in a vector E(Xi)
end for
Find qi(Xi) minimizing f(E(Xi), T) (f is described
in Eq. (2))
Update T

end while
Apply action Xi

opt = argmax(qi(Xi))

Usually the algorithm starts in a synchronized manner
for all agents but there is no obligation to do so. In this
paper the simulations have been run with a synchronized start
of the algorithm on all vehicles. The effects of inserting a
new vehicle in the optimization while it is running will be
explored later.

B. Application to Intersection Coordination

The proposed formulation of the PC algorithm introduces
several novelties. All the design choices have been oriented
towards a low complexity and fast optimization. The prob-
lem is also very different from airplane collision avoidance
because of the highly constrained environment, its dynamic
nature and the low time available to solve the coordination
problem. The proposed PC was also made specifically for
dealing with any type of collaborative manoeuvre (inter-
section crossing, highway insertion, platooning). Thus the

proposed algorithm and formulation should not be seen
exclusively as an intersection coordination algorithm but
more of a polyvalent collaborative planner.

Different aspects of the proposed PC formulation for
intersection crossing will be detailed. The main contributions
are the formulation of the search space, the specific 2-
step optimization to break down complexity, the form of
the utility function and the specific PC parameters to reach
an interesting trade-off in terms of solution quality and
execution time.

1) Problem formulation: In this paper, the path of the
vehicles is considered fixed through the intersection. Thus
the only degree of freedom is their speed. The problem
geometry is thus entirely defined by the set of all the 2D
paths of the vehicles on the road. This set of 2D paths will
depend on the topology of the intersection. However, the
only information needed by the algorithm is the shape of
the paths. As a consequence, the algorithm can cope with
any type of situation as long as some paths are defined. An
example of such a situation is shown in Fig. 1 for a “cross”
intersection and a roundabout.

-10 -5 0 5 10

x (m)

-10

-5

0

5

10

y
 (

m
)

-15 -10 -5 0 5 10 15

x (m)

-15

-10

-5

0

5

10

15

y
 (

m
)

Fig. 1. Example of intersection configuration and paths of the vehicles.
The vehicles are at their initial position and have to follow the dotted paths
to their intersection exit at a suitable speed.

In the proposed PC formulation, an element of the search
space is a preset speed profile over the whole intersection.
Thus, the size of the search space does not depend on the
length of the conflict zone but on the number of sampled
speed profiles considered. Changing this number is an easy
way to modify the complexity of the optimization. The
consequences of that will be discussed later.

An illustration of the possible actions (speed profiles)
of a vehicle at each step of the optimization is shown in
Fig. 2. On the upper plot, there are 10 available options to
the vehicle. These options are all composed of an accelera-
tion/deceleration of constant magnitude to a fixed speed. In
this formulation the speed profiles could be summed up as
a couple (amax, vend) (acceleration, end speed). However, it
shall be noted that this set could contain randomly shaped
speed profiles and is not limited to such simple shapes. Any
speed profile of the form v = f(t) (where f is any con-
tinuous function that respects the vehicle’s dynamics) could
be considered. On the bottom plot, the available options are
10 speed profiles that all start following the profile chosen

at phase 1 and have reaccelerations to a nominal speed at
different times. The available options could have any shape
that the designer sees fit.

For the intersection application, the optimization is done
in two steps (Fig. 2). First of all the agents are looking for a
speed profile with a fixed end speed (“Phase 1” subplot) that
allows them to avoid any collision. At this step, the algorithm
is guaranteed to find a feasible solution if it is started when
the vehicles are far enough upstream of the intersection. This
way, the vehicles have the option to come to a complete stop
(or an arbitrary low speed, here 0.1m/s) before the shared
zone. However their aim is to find a better speed profile
that allows them to clear the intersection without coming
to a stop and without colliding with any other vehicle. The
second step is a reacceleration to a speed that allows the
vehicles to clear the intersection as fast as possible while
maintaining the collision-free characteristic of the solution.

0 5 10 15 20
t(s)0

1

2

3

s
p

e
e

d
 (

m
/s

)

Phase 1 actions set X
1

chosen phase 1 speed

0 5 10 15 20
t(s)0

1

2

3

s
p

e
e

d
 (

m
/s

)

Phase 2 actions set X
1

chosen phase 1 speed

chosen phase 2 speed

Fig. 2. Search space representation with two-step optimization

To ensure a sampling of good quality during the first step,
the final speeds have to span:
• A wide range, that needs to include 0m/s (a complete

stop, to ensure the availability of a safe solution) and
vmax (the maximal speed in the intersection for fast
clearing)

• Closely “enough” spaced speeds so that the vehicle can
“squeeze” in slots between other vehicles.

If the speed profiles sampling is too coarse, some solutions
could be unattainable. For example, a car willing to insert
itself on a lane between two other cars could be unable to
find a suitable speed profile if its options are too coarse. One
action will be too fast and the next slightly slower variation
will be too slow. Thus, it will lead to a suboptimal solution
through suboptimal use of space.

2) Objective Function: In this paper, the proposed local
utility to minimize is as follows for an agent i:

J(X) =Wsep

∑
iv 6=i

kmax∑
k=1

1

dk(iv, iself)2

+Wspeed(vmax − vavg)
2

+Wcontrol

kmax∑
k=1

|viself(k)− viself(0)|

(1)

Where dk(iv, iself) is the distance between the ego vehicle
and the vehicle iv at time step k. The sum over k is for all
the time steps. The first term penalizes low separation dis-
tances between the vehicles. The second term penalizes slow
average speeds through the intersection, and thus favours a
fast crossing. The last term penalizes the control effort, that
is the deviation from the initial speed of the vehicle when it
approaches the intersection.

Constraints are imposed on the separation distance. For
simplicity the vehicles are represented as discs and thus
the separation constraint is a distance between the vehicles
centres.

As usual in the PC framework, the vehicle i will not di-
rectly optimize this function. Instead, it will find a probability
distribution qi(Xi) = (qi(Xi

1), ..., q
i(Xi

N)) for its set of N
actions Xi = (Xi

1, ..., X
i
N) such that:

qi(Xi) = argmin

(
N∑

k=1

qi(Xi
k)E(J(Xi

k))− TS(qi(Xi))

)
(2)

Where E(J(Xi
k)) is the expectancy of the utility function

J for the strategy Xi
k of the vehicle i. It is computed by

randomly sampling the other vehicles’ strategies and com-
puting the obtained utility J . The obtained utility is averaged
over several samplings of the other vehicles’ strategies. This
random sampling is done according to the latest probability
distribution of the actions of the other vehicles’, as they
communicated it to vehicle i. This distribution is denoted
qj(Xj) (for j 6= i). The parameter T is specific for the
Simulated Annealing (SA) and is called the temperature. The
function S is an entropy defined as:

S(qi(Xi)) = −
N∑

k=1

qi(Xi
k) ln(q

i(Xi
k)) (3)

At the beginning of the PC optimization, the parameter T ∈
R is big, which weighs the entropy term more. If T is infinite,
the optimal qi(Xi) is uniform and the qi(Xi

k) are all equal to
1/N . This favors the exploration of all possible solutions. At
the end, T is brought close to zero to weight the expectancy
term more.

As the speed profiles span the whole duration of the
intersection crossing, the PC optimization can be run just
once. This comes from the fact that the shared road space
has finite dimensions and well-defined bounds. One run
of the PC algorithm corresponds to several iterations in
which the probabilities of each action are exchanged at each
iteration between the vehicles as they update their probability
distribution.

It shall be noted that the probability distributions qj(Xj)
of other vehicles’ actions may not be available. For instance,
some vehicles may be human-driven. In that case, an es-
timation of the probability distribution should be carried
out based on sensory information: use of blinkers, speed of
entry...

C. Comparison with existing work using PC

Several key differences exist between our approach and
the approach for airplane collision avoidance presented in
[12]. In this airplane collision avoidance approach, the search
space is a succession of heading changes over a rolling
horizon. The headings are determined one by one at regular
time intervals. In our approach, an element of the search
space is a whole speed profile over a fixed time horizon,
greatly limiting the complexity of the search space. In
[12] the environment is not dense (airspace) so a solution
can always be found. The minimal separation distance is
implemented as a soft constraint. The emphasis is not on
finding a feasible solution (easy to do in this case) but on
finding a really optimal solution. In our approach the space
is very constrained: there are a lot of vehicles in a small
area. The emphasis is on finding a feasible collision in a
very short time that corresponds to the time constants found
in ground traffic.

In [12], objective functions are shared and agreed upon
so they are homogeneous through the range of all agents.
It is interesting to note that the optimization runs at regular
interval when the horizon has moved. Thus, the future col-
lisions (or separation distance violations) are less penalized
than the imminent collisions in the cost function. Because
of the heavily constrained space for traffic management,
the horizon of the optimization has been chosen to span
the whole intersection. This is possible for ground traffic
because the boundaries of the shared zone are usually clearly
identified.

Finally, a typical optimization in [12] will see 800MB of
data exchanged between airplanes in the fully decentralized
version. The time spent for optimization is up to 120s for
a round of PC optimization with 25 aircraft. There is a
linear complexity dependence for the decentralized PC im-
plementation under some realistic hypotheses (broadcasting
messages about partial costs and predictions). The semi-
centralized PC operation takes longer, at 610s for the same
conflict. The fully decentralized approach is thus better at
scaling. In the proposed PC formulation and implementation,
the data exchange is intended to be minimal and a solving
time of 0.2s is targeted (0.8s have been achieved so far for
4 vehicles on non-optimized Matlab code). The typical data
exchange would be in the range of several MB (detailed in
section III-A).

III. EXPERIMENTS

This section presents experiments done with a first imple-
mentation in Matlab. Simulations show a cross intersection
scenario, but the work is generalizable to any type of
collaborative maneuver.

The algorithm has been implemented in its fully decen-
tralized version for better scaling [12].

A. Proof of concept

This section details a simulation done on a given initial
situation with 4 vehicles at a cross intersection. Table I
shows the main parameters chosen for the PC algorithm.

The sampling time is used to represent the speed profiles
and to integrate the positions of the vehicles over the time
horizon. This information is used to compute the cost J .
In this simulation, the cost function contains only the terms
on the average crossing time (altruistic objective) and on
the separation distance. If a solution violates the separation
constraint (represented by the dotted circles in Fig. 3), an
additional cost Jcons is added for each constraint violated.
The algorithm stops if the global solution does not change for
Nstop iterations. The weight on the control effort has been
left at zero for the moment to focus on the “altruistic” terms
of the utility function. The M1 column is the regular mode
of the PC algorithm for fast optimization, and the M2 mode
has been used as a longer optimization to find an optimal
solution. The annealing schedule is much slower and starts
at a higher temperature to allow the algorithm to explore
more possibilities. The number of possible actions is also
higher. This mode will be used in section III-B.

A snapshot of the results of the optimization is shown in
Fig. 3. The vehicles are represented as circles so far for the
sake of simplicity. The solution seems intuitive, because it
allows the two vehicles with the highest entry speed (yellow
and orange) to carry their speed through the intersection. The
purple (resp. blue) vehicle lowers its speed just enough to
yield to the yellow (resp. orange) vehicle. Thus during this
fully decentralized optimization, the algorithm has arrived at
a relevant solution without any constraint violation.

At the beginning of the simulation, each vehicle broadcasts
its set of strategies to other vehicles. Each strategy is a float
vector of size 200 (40s horizon and 0.2s sampling time)
and the set has 10 strategies. That is a total of 2000 floats
exchanged per vehicle, or 8kB (kilobytes). This is done again
at the beginning of the phase 2 (reacceleration, cf. subsection
II-B.1). Then for each iteration the vehicle broadcasts its
updated probability vector qi(Xi) of 10 floats. The optimiza-
tion in the M1 mode runs in around 20 iterations so it will
be a total broadcasted per vehicle of 200 floats (0.8kB). For 4
vehicles, the data volume broadcasted will be around 16.8kB
per vehicle and 67.2kB in total. If the objective of doing
the optimization in 0.2s is respected, it means the required
network thoughput should be in the order of magnitude of
0.4MB/s. Of course this does not consider the overhead due
to the communication protocols, and considers that messages
can be broadcasted. Even with a pessimistic hypothesis of
a requirement ten times superior, it would stay well within
what is physically possible (4MB/s required).

B. Analysis of consistency on fixed initial situation

For this series of simulations, the initial situation has been
fixed to be the same as in section III-A. The algorithm has
been run several times to check consistency. For reference,
the performance metric distribution has been compared with
the performance found with a run of the algorithm in the
M2 mode (slower and more “optimal” solution). The results
are shown in Table II. It shall be noted that the algorithm
provided solutions with no constraint violation in 100% of
the cases.

TABLE I
MAIN PC PARAMETERS

Parameter Notation Value
M1 M2

Number of strategies Ns 10 20
Sampling time Ts 0.2s
Weight on control effort Wcontrol 0
Weight on separation dist. Wsep 1
Weight on avg. crossing time Wavg 10
Penalty for constraint violation Jcons 105

Samples to get expected utility Nsamples 10 20
Stopping criteria Nstop 4 10
SA start temperature Tinit 1 10
SA end temperature Tend 0 0
SA temperature step Tstep 0.2 0.66

0 5 10 15

t (s)

0

1

2

3

v
 (

m
/s

)

Best solution

-15 -10 -5 0 5 10 15

x (m)

-8

-6

-4

-2

0

2

4

6

8

y
 (

m
)

Trajectories across the intersection

Fig. 3. Snapshot of the application of the best solution when t = 4s. The
purple vehicle is entering from the right lane and will exit at the bottom.
It slowed down just enough to yield for the yellow vehicle (yellow vehicle
came from the right, exits at the top). The red vehicle (coming from the
left, exits to the right) accelerated up to its maximal allowed speed so that
the blue one has to wait the minimal amount of time before entering the
intersection (blue enters from the bottom). Full video available at https:
//youtu.be/XTgY-4RUFz0

TABLE II
RESULTS OF THE PC CONSISTENCY TEST (100 RUNS)

Parameter Notation Distribution
M1 mode
Average crossing time tavg,M1 8.4s ± 0.7s
Max crossing time tmax,M1 12.5s ± 1.9s
Execution time texec,M1 3.3s ± 0.4s
M2 mode
Average crossing time tavg,M2 7.8s ± 0.2s
Max crossing time tmax,M2 10.6s ± 0.2s
Execution time texec,M2 14.6s ± 1.0s

The distribution is shown in Fig. 4. The distribution in
the histograms seems discrete for the average time and max
time because of the discrete nature of the search space. The
algorithm used in Mode 1 found most of the time a single
solution yielding a crossing time of 8.5s, and sometimes
solutions yielding either tavg = 7.5s or tavg = 9.5s.

When running the algorithm in the more precise mode
M2, the crossing times for the vehicles are slightly im-
proved in terms of average value and highly improved in
terms of standard deviation. This comes however with a
4.4 times higher computation time. The fast mode (and low
complexity) of the PC optimization thus seems to give a
good balance between the quality of the solution and the
execution time. The overall consistency is quite good and
even the suboptimality is not critical. The main interest of
the M2 mode is the increased consistency. In both cases, the
best solution the algorithm can output (at 7.2s of average
crossing time) has only been found a handful of times.

It shall be noted that computation time is given for a
Matlab simulation where the code for all the vehicles is
not parallelized. The execution time per vehicle would be
4 times less for these conditions with the same code. It
means that would be around 0.8s in this case. It is expected
that the code could run much faster when implemented in
C++. With the current figure or a vehicle going at 14m/s
(50km/h), it means that the synchronization should start
around 11m before the point where any braking should start.
For reference, an emergency braking to a full stop at this
speed is around 14m on modern cars and dry roads. Thus,
the distance needed for synchronization is of an acceptable
magnitude for the considered application. The authors expect
to bring the optimization time down to 0.2s (3m travelled at
50km/h).

Fig. 4. Results of 100 runs of the PC optimization for the same initial
conditions. Mode 1 in blue and Mode 2 in orange.

C. Influence of search space sampling

In this experiment the effect of changing the number
of available actions is tested. The available actions refer
here to several speed profiles that the vehicle can choose
from to cross the intersection. Instinctively, if a vehicle has

fewer actions to chose from, it should show a decrease
in performance. The simulations are done on the same
settings as before on a cross intersection and with 4 vehicles.
Optimization parameters are the same as shown in Table
I (Mode 1). The number of available actions is changed
between 4 and 14.

The results are shown in Fig. 5. The average performance
does not really decrease (average crossing time, max crossing
time) but more and more outliers appear on the middle
plot (distribution of the crossing time of the last vehicle).
This means that the algorithm struggles to guarantee con-
sistent performance. The outliers most likely correspond to
situations where an additional intermediate action should
have been undertaken to squeeze between two (or several)
vehicles.

However, the execution time plot shows a significant
decrease in execution time. For a search space of size
Nstrats = 4, the average execution time is 1.7s. This
corresponds to 0.4s per vehicle, and 5.6m travelled at 14m/s
(50km/h). With this setting, the algorithm starts to show real
time capabilities (considering the code is not yet optimized)
but fails to propose refined enough solutions in some cases.
Ideally, a very low number of available options could be kept
if a post-processing of the speed profile is applied: it is easy
to detect if a vehicle waits more than is necessary because
of not enough available options. It would keep the execution
time low but would not solve the situations where a vehicle
failed to find a solution to “squeeze” between other vehicles.

4 6 8 10 12 14

N
strats

6

8

10

12

14

t
(s

)

Average crossing time

4 6 8 10 12 14

N
strats

10

15

20

25

t
(s

)

Max crossing time

4 6 8 10 12 14

N
strats

2
4
6
8

10

t
(s

)

Execution time

Fig. 5. Effect of the size of the search space on the performance of the
coordination algorithm.

IV. CONCLUSIONS

A novel formulation of the Probability Collectives (PC)
algorithm has been presented to apply it to ground traffic
coordination. The main interests of the proposed algorithm

are its low complexity compared to usual PC applications
and its flexibility to any kind of road scenario. Its capabilities
have been demonstrated for an intersection crossing in which
the space is highly constrained. The algorithm exhibits good
exploration properties to find relevant solutions in a very
short time (0.8s in average for the demonstrated scenarios). It
is also fully decentralized and can be applied to collaborative
manoeuvre. Trade-offs between performance, consistency
and execution time have been highlighted. The current
performance hints towards true real-time implementation of
the proposed algorithm. In order to further minimize the
execution time, it is planned in the near future to switch
to a ROS-based C++ implementation.

Further work will focus on practical implementation prob-
lems. For example the algorithm should re-run if a new
vehicle wants to join the collaboration. In this case some
continuity of the already computed speed profiles shall
be enforced. Furthermore, the algorithm will be tested in
situations where the cost functions of the vehicles are non-
homogeneous. Non-collaborative vehicles or human-driven
vehicles will also be inserted to check the robustness of the
proposed algorithm to such elements.

ACKNOWLEDGMENT

This work has been sponsored by the French government
research program Investissements d’avenir through the Robo-
tEx Equipment of Excellence (ANR-10-EQPX-44) and the
IMoBS3 Laboratory of Excellence (ANR-10-LABX-16-01),
by the European Union through the program Regional com-
petitiveness and employment 2014-2020 (FEDER - AURA
region) and by the AURA region.

REFERENCES

[1] Daniel J. Fagnant and Kara Kockelman. “Preparing a
nation for autonomous vehicles: Opportunities, barri-
ers and policy recommendations”. In: Transportation
Research Part A: Policy and Practice 77 (2015),
pp. 167–181.

[2] Scott Le Vine, Alireza Zolfaghari, and John Polak.
“Autonomous cars: The tension between occupant ex-
perience and intersection capacity”. In: Transportation
Research Part C: Emerging Technologies 52 (Mar.
2015), pp. 1–14.

[3] Hironori Suzuki and Yoshitaka Marumo. “A New
Approach to Green Light Optimal Speed Advisory (
GLOSA) Systems for High-Density Traffic Flow *”.
In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC) (2018), pp. 1–6.

[4] Robert Hult, Gabriel R. Campos, Paolo Falcone, and
Henk Wymeersch. “An approximate solution to the
optimal coordination problem for autonomous vehi-
cles at intersections”. In: Proceedings of the American
Control Conference. Vol. 2015-July. IEEE, July 2015,
pp. 763–768.

[5] Stefanie Manzinger and Matthias Althoff. “Tactical
Decision Making for Cooperative Vehicles Using
Reachable Sets”. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC)
(2018).

[6] Andreas A. Malikopoulos, Christos G. Cassandras,
and Yue J. Zhang. “A decentralized energy-optimal
control framework for connected automated vehicles
at signal-free intersections”. In: Automatica 93 (2018),
pp. 244–256. arXiv: 1602.03786.

[7] Jennie Lioris, Ramtin Pedarsani, Fatma Yildiz Tas-
cikaraoglu, and Pravin Varaiya. “Platoons of con-
nected vehicles can double throughput in urban roads”.
In: Transportation Research Part C: Emerging Tech-
nologies 77 (2017), pp. 292–305. arXiv: 1511 .
00775.

[8] Anand J Kulkarni and Kang Tai. “A Probability
Collectives Approach for Multi-Agent Distributed
and Cooperative Optimization with Tolerance for
Agent Failure”. In: Agent-Based Optimization. Ed.
by Ireneusz Czarnowski, Piotr J\kedrzejowicz, and
Janusz Kacprzyk. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 175–201.

[9] Michalis Smyrnakis and David S Leslie. “Sequentially
updated Probability Collectives”. In: Joint 48th IEEE
Conference on Decision and Control and 28th Chinese
Control Conference (2009), pp. 5774–5779.

[10] Anand J. Kulkarni and K. Tai. “Probability Collec-
tives: A multi-agent approach for solving combinato-
rial optimization problems”. In: Applied Soft Comput-
ing Journal 10.3 (June 2010), pp. 759–771.

[11] Chien-feng Huang, Los Alamos, Aero Astro, David H
Wolpert, Moffett Field, and Charlie E M Strauss. “A
Comparative Study of Probability Collectives Based
Multi-agent Systems and Genetic Algorithms”. In:
(2005), pp. 751–752.

[12] David Šišlák, Pemysl Volf, Michal Pěchouček, and
Niranjan Suri. “Automated conflict resolution utilizing
probability collectives optimizer”. In: IEEE Transac-
tions on Systems, Man and Cybernetics Part C: Appli-
cations and Reviews 41.3 (May 2011), pp. 365–375.

