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ON A COMPONENT MODE SYNTHESIS METHOD AND ITS APPLICATION TO INCOMPATIBLE SUBSTRUCTURES

Component Mode Synthesis (CMS) methods are substructuring techniques frequently em ployed in structural dynamics. A given structure is subdivided into components or substructures which are analyzed independently for natural frequencies and for mode shapes. The substructure mode shapes are then assembled to give frequencies and mode shapes of the original structure. In this paper, we construct a substructure interface impedance operator and present a spectral analysis that demonstrates that the method of Craig and Bampton (CB) is the most 'natural' CMS method. Next, we consider the CB method for assembling heterogeneous substructures and recast it into a hybrid variational formulation. We develop fi nite element procedures for 'gluing' non-conforming and incompatible fi nite element substructure models, and discuss their computational aspects. The result is a Hybrid Craig-Bampton (HCB) method that is a fi nite element refi nement of the 'intermediate structure' concept introduced by Hale and Meirovitch, and which can be used as an interface reduction method. It is illustrated with the eigen analysis of heterogeneous and homogeneous fi nite element models of a High Speed Civil Transport (HSCT) aircraft.

t. INTRODUCTION

With the advent of current supercomputers, finite element static analyses of structural problems with 100,000 degrees of freedom (d.o.f.) or more have become almost routine. However, problems with only 50,000 d.o.f. can still challenge the finite element dynamic analyses of structural problems, especially when natural frequencies and mode shapes must be computed. The major difficulty is the expense of computing the eigenpairs of the pencil (K, M), where K and M denote the stiffness and mass matrices of the structure, respectively. Component Mode Synthesis (CMS) is a dynamic substructuring method intro duced by Hurty in 1965 [l], which can be used (a) to reduce the number of d.o.f. in a given fi nite element model in order to reduce the computational cost of a dynamic analysis, or (b) to predict the dynamic behavior of a structural system using results obtained on separate substructures. Since 1965, numerous CMS methods have been proposed. These generally employ coordinate transformations where the gener alized coordinates are defined by a set of sub structure free vibration modes, and may be classified as fixed-interface methods (Hurty (1], Craig and Bampton [START_REF] Craig | Coupling of substructures for dynamic analyses[END_REF], Craig and Hale [START_REF] Craig | Block-Krylov component synthesis method for structural mode reduction[END_REF]), free-interface methods (Rubin [4], MacNeal [5], Klosterman [START_REF] Klosterman | On the experimental determination and use of modal representations of dynamic character istics[END_REF]), or hybrid methods (Craig and Chang [START_REF] Craig | On the use of attachment modes in substructure coupling for dynamic analysis[END_REF], Coppolino [8]), depending on whether the modes used are determined with substructure interfaces fully restrained, free of restraint, or partially restrained. Detailed descrip tions of existing CMS methods with their objectives, benefits and major issues can be found, among others, in the review papers by Benfield et al. [START_REF] Benfield | Modal Synthesis Methods. Symposium on Substructure Testing and Synthesis[END_REF], Hintz [START_REF] Hintz | Analytical methods in component modal synthesis[END_REF], and Craig [II], in the textbooks of Craig [START_REF] Craig | Structural Dynamics-An Introduction to Computer Methods[END_REF], Meirovitch [START_REF] Meirovitch | Computational Methods in Structural Dynamics[END_REF], and Cook et al. [START_REF] Cook | Concepts and Applications of Finite Element Analysis[END_REF], and in the recent monograph by Craig [START_REF] Craig | Component modeling techniques[END_REF]. This paper focuses on the most popular CMS method, namely, the Craig and Rampton (CB) method. Its three main objectives are:

(I) To present a mathematical justification of the CB method which complements its well-known physi cal interpretation and its success in practice. For this purpose, we construct in Section 2 an interface impedance operator whose spectral analysis clearly demonstrates that the set of fixed interface substruc ture free vibration modes augmented with the con straint or junction modes is the 'natural' choice for generalized coordinates. The spectral analysis of the interface operator also leads to the derivation of a new modal participation factor which is economical and simple to implement.

(2) To fully develop a Hybrid version of the Craig and Rampton method (HCB) that is based on a variational formulation (Section 3.1) and which can be used to assemble analysis results obtained on separate incompatible finite element substructure 1 models. In practice, the substructures are often de signed by different teams of engineers, and their respective finite element models often require differ ent mesh resolutions. In such cases, the fi nite element substructure models are typically non-conforming and/or incompatible. The hybrid methodology presented here is a fi nite element refinement of the 'intermediate structure' concept introduced by Hale and Meirovitch [START_REF] Hale | A general substructure synthesis method for the dynamic simulation of com plex structures[END_REF] (see also Meirovitch and Hale [START_REF] Meirovitch | A general dynamic synthesis for structures with discrete substructures[END_REF][START_REF] Meirovitch | On the substructure synthesis method[END_REF]). Its basic ingredients are finite element 'gluing' procedures for assembling heterogeneous substructure models (Sections 3.2 and 3.3). The com putational issues associated with these procedures are fully analyzed (Section 4). We also show that the HCB method inherently reduces the number of inter face coordinates (Section 5), and therefore is a vari ational alternative to the three methods described by Craig and Chang for reducing junction coordi nates [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF].

(3) To illustrate the efficiency and practicality of the HCB method with the dynamic analysis of realistic three-dimensional structures such as the High Speed Civil Transport (HSCT) aircraft (Section 6).

AN INTERFACE IMPEDANCE OPERATOR AND ITS SPECTRAL DECOMPOSITION

Let { _@(s l}: :::: f• denote a collection of N, substruc tures whose assembly defi ne a global structure .@. Within each substructure, a distinction is made be tween (a) the interface boundary degrees of freedom (d.o.f.) u�l which are common to several substruc tures, and (b) the internal d.o.f. u!'l which exclusively belong to.@<'>. We define the impedance of the global structure as:

Z(w) = K -w1 M (1)
where w is a natural frequency of .@. If every sub structure g&< s l is only subjected to interface boundary forces F�l, the substructure dynamic equations of equilibrium can be written in the frequency domain as: where (2) For a free vibration problem, the internal d.o.f. can be eliminated as:

(3) which leads to the following reduced system:

In eqn (4) above, Z��(w) represents the impedance of the interface boundary of substructure .@ (s) . Since Zfjl(w) is a real symmetric matrix, its inverse Zfjl -'(w) can be evaluated using a spectral decompo sition as:

n = nl"'l cf> (s) cf> (s)T z < s J -1 ( ) = " n n u (1) L.... (s)2 2 n=l Wn -(J) (5) 
where cf>�», w�l, and nf'l are respectively the eigenvec tors, eigenvalues, and the size of Zfjl ( w) = Kfjl -w 2 M fjl. Therefore, {cf>�l}: :::: 7f'' and {w�l}:::::f''

are the fixed-interface substructure free-vibration mode shapes and frequencies. The spectral decompo sition of Kfjl-1 is obtained by setting w = 0 in (5) so that one has:

Subtracting ( 6) from [START_REF]A hybrid method of component mode synthesis[END_REF] and using the orthonormal properties of the substructure modes gives after some algebraic manipulations:

and

n = nl'l cf> (s) cf> (s)T z< si -1 ( )-K <si -1 + 2 '°' " " ii (1) -ii (1) L.... (s)2 ( (s)2 2 ) n= 1 (J)n Wn -(J)
Zfjl -1(w) = Kfjl-i + w 2 Kfjl-1 M fjl Kfjl -i Finally, expanding eqn (4) as: and substituting every occurence of Zfjl-1(w) in ( 8) by either one of its two equivalent expressions given in [START_REF] Craig | On the use of attachment modes in substructure coupling for dynamic analysis[END_REF] leads to the following expression of the reduced substructure impedance: (ll) [START_REF] Craig | Structural Dynamics-An Introduction to Computer Methods[END_REF] eqn [START_REF] Hintz | Analytical methods in component modal synthesis[END_REF] above can be re-written in matrix form as:

-
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Clearly, cz,� s > is the set of constrained or junction mode, and z�t(w) is the impedance matrix obtained from the well-known Guyan's reduction [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF]. On the other hand, eqn (ll) shows that z� t (w) is generated by the sequence of rank one matrix products { 4' �lcz,�JT}�::::t> and therefore contains the normal modes.

The above derivation clearly demonstrates that the dynamic behavior of the substructure �< s > can be exactly described with the combination of the junc tion modes and the fixed-interface free-vibration sub structure modes. Therefore, eqns (l)--( 12) constitute a mathematical justification of the Craig and Bampton method.

Remark

If the internal and interface boundary d.o.f. are interpreted respectively as 'slave' and 'master' d.o.f. eqn [START_REF] Benfield | Modal Synthesis Methods. Symposium on Substructure Testing and Synthesis[END_REF] recovers the well-known result that for the lower frequencies (w4Z�t(w) � z�t(w )), the impedance of the reduced substructure is well ap proximated by Guyan's reduction. For the higher frequencies, the fixed-interface normal modes must be represented in the generalized coordinates.

Equation (l l) can be re-arranged as:

n=n(J) z�t(w) = -I ' n= I (14) 
which can also be written as:

n =n(-�) z�t(w) = -I ' n=l (15)
Clearly, the contribution of a normal mode to the reduced substructure impedance is dictated by the Several modal participation factors have been suggested in the past (see, for example, Craig and Chang [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF]), but this topic is continuously revisited (see, for example, Spanos and Tsuha [START_REF] Spanos | Selection of component modes for flexible multibody simulation[END_REF]). The above MPF, 17�> , possesses two attractive features: (a) it explicitly relates the contribution of a given normal mode to the substructure reduced impedance-and therefore to the substructure dynamic behavior, and (b) it is economical and simple to implement as it requires only one matrix-vector product. It may appear at first sight that in order to be able to use the above MPF, 17� s >, one should first compute several substructure modes then retain only those with the highest 17�>. However, if one uses a state-of-the-art eigenvalue solver such as the Lanczos algorithm as implemented by Parlett and Nour-Omid [START_REF] Parlett | The use of a refined error bound when updating eigenvalues of tridiagonals[END_REF], one is able to exploit 17�> during the process of computing the eigenvalues and therefore one would directly compute those eigenvectors with the highest modal participation factors. may be designed using incompatible finite element models. In order to address this class of problems, we develop in this section a hybrid variant of the Craig and Bampton method (HCB) which can be used to 'glue' heterogeneous substructures with non conforming interfaces. The basic idea is to couple the incompatible sub structures with Lagrange multipliers. This has already been discussed by Craig and Chang [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF][START_REF] Craig | A review of substructure coupling methods for dynamic analysis[END_REF], and by Flashner [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF] for the case of compatible models. In [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF][START_REF] Craig | A review of substructure coupling methods for dynamic analysis[END_REF][START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF] an algebraic approach appli cable to conforming interfaces is adopted and the Lagrange multipliers are introduced in the formu lation of the problem only to be subsequently re moved with a matrix transformation that reduces the order of the system. In this paper, the Lagrange multipliers are permanent variables of a mixed for mulation. They are introduced in order to enforce an approximate geometric compatibility between the substructures as in the work of Hale and Meirovitch [START_REF] Hale | A general substructure synthesis method for the dynamic simulation of com plex structures[END_REF][START_REF] Meirovitch | A general dynamic synthesis for structures with discrete substructures[END_REF][START_REF] Meirovitch | On the substructure synthesis method[END_REF]. The main contributions of this work are: (a) the development of automatic finite element procedures for 'gluing' non-conforming and/or incompatible interfaces, (b) the discussion of relevant computational issues, and (c) the demon stration of the resulting HCB method with realistic structural examples. 

.1. A hybrid formulation

JO( s)

and augmenting it with the inter-substructure conti nuity constraints:

u ( s l =u< qJ s =N5 , q =N s a < s) = u < q ) on u {n < s > ng < ql }. s = 1 . q = I (18)
In eqns ( 17) and ( 18) above, the superscripts (s) and ( q) refer to � < s > and �<q>, respectively, the double dot indicates a second derivative with respect to time, a < s J and £ ( s) are the stress and strain tensors, p < s > is the mass density, u is the displacement field, f is the forcing field which is assumed to act only at the interface boundary d.o.f., and ). ( s , q ) is a Lagrange multiplier function which represents the interface tractions that maintain equilibrium between g < s l and a neighboring g < q> . Since ( 17) is a weak form of the equations of dynamic equilibrium of the substruc tures, we replace the strong inter-substructure continuity equations ( 18) by the following weaker form:

This corresponds to a hybrid formulation where inter-substructure constraints are removed via La grange multipliers (see, for example, Zienkiewicz and Taylor (25]). The specification of ( 17) and ( 18) for static problems corresponds to a saddle-point vari ational principle whose mathematical and compu tational properties are analyzed in Farhat and Roux [START_REF] Farhat | A method of fi nite element tearing and interconnecting and its parallel solution algorithm[END_REF].

Using a standard Galerkin procedure where the displacement and acceleration fields and the La grange multiplier function are approximated by suit able shape functions as: u<s) =Nu<'>; a < s > =Nii('); ;. <s ,q) = Al_ (S) [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF] eqns ( 17) and ( 19) are transformed into the following algebraic system: [START_REF] Spanos | Selection of component modes for flexible multibody simulation[END_REF] (17) where f < s > is a vector which stores all of the discrete Lagrange multipliers associated with the Galerkin approximation of A. ( s , q>, ns) is the union of all the interfaces between !?}('l and its neighboring substruc tures, and G�l is a vector which stores all of the 'gluing' forces between !?}('l and its neighboring sub structures. Note that if the discretization of the substructure interfaces are conforming, and if purely discrete rather than Galerkin Lagrange multipliers are introduced at every interface boundary d.o.f., the constraint matrix B < sl becomes the signed identity matrix and the second of eqns ( 21) becomes the inter-substructure point-wise continuity equation.

Projecting the substructure equations of dynamic equilibrium ( 21) onto the Ritz basis given by: [START_REF] Parlett | The use of a refined error bound when updating eigenvalues of tridiagonals[END_REF] where p < sl is the vector of normal modes intensities, leads to the following reduced and constrained sys tem: . F (24) and where w is the frequency of the global structure as predicted by the HCB method. The apparent size of the above hybrid system ( 24) is equal to the sum of the number of interface modes, the number of modes retained in every substructure, and the number of Lagrange multipliers that are needed to enforce compatibility between the heterogeneous substruc tures. However, the effective size of ( 24) is much smaller as demonstrated below. Let Z < ;l(w) and Z < ;l' (w) be defined as follows:

0 J [u < •l] n < s ) 2 p � l s =Ns L B < sl u�l = O ( 
Z < ;6"(w) = Z \;'�(w ) -ro4M b i[n < s > ' -w2 n -1 � r. ( 25 
)
Using the above notation, the coupled eigenvalue problem ( 24) can be un-coupled as:

which clearly demonstrates that the effective size of the reduced hybrid system is indeed given by the much smaller size of the operator

[l:�:;f•B < s>z�l'-'(w)B < s> T]-that is, the total number of Lagrange multipliers that are introduced at the substructure interfaces. Further computational aspects related to this operator are discussed in Section 4.

Next, we focus on the approximation of the La grange multiplier function A. < s . q ) via the shape func tions A. First, we consider the case of smooth interfaces where a few Lagrange multipliers are suffi cient to enforce the compatibility between neighbor ing substructures. Then, we address the case of rough interfaces where a larger number of Lagrange multi pliers are needed to glue the substructures. In both cases, we present derivations for problems where the substructures are two-or three-dimensional, but their interfaces are curvilinear.

Low order smooth interfaces

Let e denote the curvilinear abscissae along a smooth interface ns.q) = n<s>nn<q) between substruc tures !?}<s> and !?}<q>, and n��• •' and n �!.., denote the number of degrees of freedom lying on ns , q>nn<s) and ry•q>nn<q>, respectively (Fig. 2). In the case of non conforming interface discretizations, n�! .• , and n � q !.., are not usually equal, and the finite element nodes at one side of the interface do not in general overlap with those at the other side of the interface.

We approximate each interface traction with a directional degree of freedom d(x, y and z displace ments/rotations) with a polynomial of degree p as follows:

k -p A.�• q> = I A.�e k d = 1, . .. , a k -0 ( 27 
)
where a denotes the maximum number of degrees of freedom per node. Each of the J x (p + 1) constants

A.� , k = 0, ... ,p, d = 1, ... , Jis an entry ofi .. <s> which appears in [START_REF] Craig | A review of substructure coupling methods for dynamic analysis[END_REF], and can be interpreted as a discrete interface traction between n<s) and n<q>, acting at a location that does not need to be specified by the analyst, and that does not necessarily coincide with a nodal point on ns.q> . where Ia is the J x J identity matrix. As an example, for elements that have two and only two nodes lying on ry•q>nn<s> , and for linear shape functions N., the submatrices L e >��•q>, n = l, 2, k �p, are given by: where e I and e 2 are the Curvilinear abscissae of the first and second interface nodes of element e. The complete element-level constraint submatrices gener ated by an interface element with I nodes lying on ns , q) are given by:

[(e ) B\s , q) ] (e ) B ( s , q) = : 

<•>Bj'•q>
B ( s) = L B<s.k) where n<s>nn< k) # <P k B (q) = L B ( q ,k) where n<q>nn< k) # <P (33)
k and can be shown to be sparse matrices.

So far, we have assumed for simplicity that the polynomial approximations of the interface tractions A.�•q> associated with different directional degrees of freedom d have the same degree p. A mathematical discussion on the selection of the polynomial degree p can be found in Dorr [START_REF] Dorr | On the discretization of interdomain coupling in elliptic boundary-value problems[END_REF] who has used a similar 'gluing' procedure for solving the Laplacian problem via domain decomposition. However, a variational interpretation of the constraint equation [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF] indi cates that p depends on the smoothness of the global mode shapes in the neighborhood of the interface ns , q>. Therefore, p depends on the mode shape to be captured, and, for a given mode shape, on the smoothness of every one of its J field components. In particular, higher order modes may require higher order polynomial approximations of A.�•q>. To this effect, we point out an interesting feature of the procedure outlined above for building the constraint matrices associated with the hybrid formulation of the dynamic equations of equilibrium. Equations [START_REF] Farhat | Using a reduced number of Lagrange multipliers for assembling parallel incomplete fi eld fi nite element approximations[END_REF] show that increasing the degree p of the polynomial approximations of the interface tractions involves only adding a few columns to the existing element level matrices (e)B�•q> and ( e)B�q.s>. Hence, (e)B�•q> and ( e l B�q . s l should be viewed as dynamic matrices which can be efficiently updated, as needed, during the solution of the RHEVP [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF]. However, it should be noted that p must always satisfy the condition:

minimum(n��-•l• n�!.. ) ) P < ---�a�--- (34)
which avoids the stiffening of the finest of the two meshes separated by the interface ns.q).

If the desired global mode shapes rapidly vary along the interface ry•q>, a high order polynomial approximation of the interface tractions is necessary because a relatively large number of discrete La grange multipliers are needed to glue the neighboring substructures. However, beyond a certain value of p, the matrices o<s> and B(q l typically become ill-con ditioned, which degrades the performance and accu racy of the numerical solution of the RHEVP [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF]. Next, we present an alternative approximation of the interface tractions A.�•q> that is suitable for the case when a rather large number of discrete Lagrange multipliers are needed to interconnect the hetero geneous subsystems.

High order rough interfaces

Here we present a piece-wise polynomial approxi mation of the interface tractions that can accomodate as many discrete Lagrange multipliers as needed to interconnect neighboring substructures, while keep ing the degree of the polynomial approximation unchanged.

First, we estimate a priori the number J x N)., k = 1, ... , N)., d =I, ... , Jwhich form 1<s>. Next, we partition the interface ry.q> into a series of intervals (Fig. 3):

(35) (37)

The first set of equations in (37) imply that A.�q > (ek+.) = A.�t> + i > (ek + 1 ), which shows that A. (s,q> is continuously approximated on ry.q>. The second set of equations in (37) involve the unknown derivatives of the discrete Lagrange multipliers, which have not yet been introduced. We replace these derivatives by their following approximations:

where Aek and A2 ek are defined as:

(38) (39) 
Note that (38) requires two additional points, e _, and eN;., Which We Choose as: q> is ap proximated with polynomials, the case where A.� • ql is approximated with piece-wise polynomials requires the analyst to specify the location of the correspond ing physical interface tractions. Therefore from a practical viewpoint, the first approach seems more attractive. However, specifying where an interface traction is needed can be advantageous. For example, if the stress field along I'1 can be qualitatively predicted prior to the analysis, the partition J� • q> can be refined in the areas of oscillation or high concentration, and coarsened otherwise. This would improve the efficiency of the approximation. An adaptive algorithm for locating the intervals J� • q> is given in Farhat and Geradin [START_REF] Farhat | Using a reduced number of Lagrange multipliers for assembling parallel incomplete fi eld fi nite element approximations[END_REF] where the general problem of assembling incomplete finite element ap proximations with Lagrange multipliers is treated. 

S= I

Next, we consider the solution of the algebraic system:

(47

)
where uhk+' is the unknown, and ah • is supposed to be known. Such a system arises at every step k of the Subspace Iteration and Lanczos algorithms (Par lett [29]) when applied to the solution of the RHEVP [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF]. Expanding the last block of the above equations using the expressions given in (24) leads to:

s =Ns L Bl'> u�Jk+' = 0 (48) S= l which, according to (46), guarantees that -h • + 1TK-h -h •+ I 0 Th ,. h h Vh . . u u > .
ereiore, even t oug A--1s mdefinite, any eigenvalue solver such as the Subspace Iteration or Lanczos algorithms can be still applied to the solution of the RHEVP [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF], provided that the starting vectors satisfy the compatibility condition (48).

The solution of the system of linear equations (47)

deserves special attention, as it is the most computa tionally intensive part of any eigenvalue solver. In particular, it would be nice to derive a computational algorithm for solving (47) that requires only substruc ture-by-substructure computations. The hybrid sys tem (47) can be separated into a trivial problem:

(49)

and a more challenging one:

s =N. f L B < s > u�> ' +' = 0. ( 50 
)
s= I

At this point, we recall that:

(51) K<i;'f = K�t' if £&<' l is not a floating substructure K<i;' f = K<i:t if £&< s ) is a floating substructure.

The size of the above Lagrangian system is equal to the sum of the total number of Lagrange multi pliers, J x N,, that are introduced to enforce the compatibility between neighboring substructures, and the number of floating substructures, Nr. As noted in Section 3.1, this system is much smaller than the reduced system associated with the interface modes and normal modes intensities. This is why, system (54) above is called here the super-reduced system.

For problems with smooth substructure interfaces, J x N, can be kept small enough so that F, may be explicitly assembled and eqns (56) may be solved with a direct method. For large-scale problems and rough substructure interfaces where N, can be large, the combined direct/iterative domain decomposition method developed by Farhat and Roux [START_REF] Farhat | A method of fi nite element tearing and interconnecting and its parallel solution algorithm[END_REF] is rec ommended for solving the Lagrangian system• (56).

After l k + 1 and cx k + 1 are computed, the remaining components of uh•+i are obtained via simple substi tutions.

S. APPLICATION TO PROBLEMS WITH CONFORMING DISCRETE INTERFACES

l. Modeling and computational savings

The HCB method presented in Section 3 is primar ily motivated by the need for assembling substruc tures with non-conforming discrete interfaces. However, this hybrid method is equally applicable to problems with conforming discrete interfaces and offers attractive computational features over the basic CB method.

Usually, a modal analysis of a proposed structural design is either preceded or followed by a static analysis of that same design. Since mesh generation is by far the most time consuming phase of any finite element simulation (man hours), the same mesh is often used in both analyses. However, experience shows that a finite element mesh tailored for a static analysis is usually much too refined for a modal analysis. In this sense, the weak form of the inter-sub structure continuity conditions ( 19) is desirable even in the case of conforming interfaces. Indeed, the weak form of continuity ( 19) is computationally attractive, as demonstrated below.

For simplicity, consider the case of two substruc tures £&<1) and £&<2l whose finite element discretiza tions perfectly match along a unique interface I'1• The interface equation of the reduced eigenvalue problem resulting from the CB method can be written as: where u b = ul, 1 l = u� l . The interface equations of the reduced hybrid eigenvalue problem resulting from the HCB method can be written as:

Kl, � -Kl,\l Kh1l-1 K�t At each iteration of a given eigenvalue solver, the system of linear equations resulting from (55) can be represented by the operator:

s =N. f A ce -"" K (s) -K (•) K(s)-I K(s) T (57) -f}f~ bb bi ii bi s = l
where the superscript CB stands for the basic CB method, and the system of linear equations resulting from (56) can be represented by the operator:

s =N. f AH CB = L B< s) [K��-K��K!f ) -IK�t]-1BW (58) S= 1
where the superscript HCB stands for the hybrid formulation of the Craig and Hampton method. If discrete Lagrange multipliers are introduced at every 0 0 p < 2)

).

u� l

l p (l) u�> (56) p (2) 
).

the inverse of a component of A ce . For large-scale interface systems, a semi-iterative solver such as a Conjugate Gradient (CG) is usually used to solve the corresponding system of equations. Farhat and Roux [START_REF] Farhat | A method of fi nite element tearing and interconnecting and its parallel solution algorithm[END_REF] and Roux [START_REF] Roux | Dual and spectral properties of Schur and saddle point domain decomposition methods[END_REF] have discussed physical and mathematical arguments that establish that CG has a better rate of convergence when operating on a dual operator such as A H ce rather than operating on a primal operator such as A c8 . On the other hand, if polynomial or piece-wise low order polynomial La grange multipliers are introduced on I'1, B<1> and B < 2 > become genuine finite element matrices that have the effect of super-reducing the size of the interface system. For example, if I'1 contains 100 d.o.f. and only 10 Lagrange .multiplier coefficients are needed to glue the two substructures, A ce is 100 x 100, but A" c a is only 10 x 10. The computational advantages of the hybrid formulation are therefore obvious.

Smoothing the mode shapes

Let (v�, <ii �) denote the n th eigenpair of the reduced hybrid eigenvalue problem [START_REF] Flashner | An orthogonal decomposition approach to modal synthesis[END_REF]. If the substructure continuity equations are enforced in a weak form as in [START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF], the interface boundary displacement com ponents of the generalized coordinates vector In eqn (59) above, IJI is obtained by assembling the substructure transformation matrices [START_REF] Parlett | The use of a refined error bound when updating eigenvalues of tridiagonals[END_REF]. If the sub structure models have conforming discrete interfaces, it is desirable to compute structural mode shapes that are uniquely defined on every interface nodal point. This can be achieved via the following averaging procedure:

where J!'' is the unsigned counterpart of n< s J_ The matrix product I�:;: f• jj<s> gs)T is a diagonal matrix which computes for each interface degree of freedom the number of subdomains that are connected to it. Therefore, this product should neither be explicitly evaluated, nor inverted.

It should be noted that if the interface boundary components of v�, n = 1, 2, ... , are averaged, the global mode shapes� •• n = 1, 2, ... , may lose their stiffness and mass orthogonality properties. There fore, it is preferable to accept a small discontinuity in the structural mode shapes at the interface bound aries and rather apply the above averaging procedure to the displacement, velocity and acceleration fields when these are evaluated using the computed mode shapes.

NUMERICAL EXAMPLES

Here, we apply the HCB method to the solution of two example problems: (a) an academic eigenvalue problem which illustrates the behavior and basic properties of the proposed hybrid component mode synthesis method, and (b) a modal analysis of a High Speed Civil Transport (HSCT) aircraft which high lights the potential of our method and its important role in re-analysis and re-design cycles.

A two-substructure plate problem is depicted in Fig. 4. Triangular shell elements with 6 d.o.f. per node are used for the spatial discretization. One substructure is clamped at one end. The other one is floating and therefore leads to a singular system of equilibrium. First, we assume that two geometrically non-conforming substructure meshes are given (Fig. 5), and that the first 10 free vibration modes are desired. Three sets of natural frequencies corre sponding to zero (P0), first (P1 ), and second (P 2 ) 
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order polynomial approximations of the interface tractions l (Lagrange multipliers) are computed. For each case, 10 substructure normal modes are re tained.

In order to check the accuracy of the HCB method, a third 'global' mesh with the same resolution as each of the two substructure models is constructed for the above plate problem, and the first 10 modes are computed via the Subspace Iteration algorithm ap plied to the global problem. The latter solution is here referred to as the 'exact' solution.

All computed results are summarized in Fig. 6. Clearly, if only the first two or three modes are sought after, the P0 and P1 approximations deliver quite accurate results. However, as one would have ex pected, these low order approximations of the inter face tractions do not capture accurately the higher order modes of the structure. On the other hand, the P2 approximation is shown to deliver 10 global modes which are in excellent agreement with the 'exact' solution.

Next, we assume that two geometrically conform ing substructure models are given (Fig. 7). The results reported in Fig. 7 show that the HCB method is equally beneficial to problems with compatible sub structures, since it predicts accurate frequencies at a fraction of the cost of the CB algorithm. Specifically for this analysis, the P2 approximation generates an interface problem of size equal to 18, whereas the CB method would formulate an interface problem of size equal to 66, since there are 11 nodes on the discrete interface between the two substructures. The com puted frequencies are shown to be lower bounds of the actual frequencies as it is proved in [START_REF] Hale | A general substructure synthesis method for the dynamic simulation of com plex structures[END_REF] for this class of problems.

Next, we consider the dynamic analysis of a High Speed Civil Transport (HSCT) vehicle. A structural design and a finite element model for static analysis are initially provided to us. The model includes three (physical) substructures with conforming interfaces and which corresponds to the stiffeners, the skin, and the fuselage of the aircraft. The assembled finite element model is too refined for a modal analysis: it contains 3532 nodes, 8592 triangular shell elements, and 21192 d.o.f. (Fig. 8). Following the arguments presented in Section 5.1, we still propose to use this finite element model for modal analysis but we first partition the global mesh into 4, 8, 16, and 32 submeshes in order to exploit the computational savings offered by the HCB method (Fig. 9). All mesh partitions are obtained with the domain decomposer of Farhat [START_REF] Farhat | A simple and efficient automatic FEM domain decomposer[END_REF].

The results from a static analysis of the above structure under an aerodynamic load have suggested to us that the wing-fuselage junction is poorly con ceived. The lowest natural frequency of the initial structural model was computed and found to be equal to 0.1 Hz, which clearly indicates that the initial design is too flexible. In order to stiffen the vehicle, we have added a carry-through substructure between the wings and the fuselage (Fig. 10). Here, we propose to validate this design modification and illustrate the features of the HCB method with the evaluation of the first six nonzero modes using two different ap proaches. In the first one, the mesh of the carry through substructure is designed to be incompatible and non-conforming at its boundaries with the other parts of the aircraft in order to simulate what really happens when different substructures are designed by different engineers. For this case, the modes of the assembled structure are computed via the HCB method and using a mixture of polynomial and piece-wise cubic spline approximations of the La grange multipliers. Within each substructure, the seven normal modes with the highest participation factor ri�s) are retained. In order to check the accuracy of the 'gluing' procedure, a second mesh that is compatible and conforming at its interfaces with the remainder of the structure is designed for the carry through substructure and the global modes are com puted via the Subspace Iteration algorithm. The obtained natural frequencies are reported in Table 1 for both methods.

Clearly, the 'gluing' procedure is shown to repro duce accurate results. The computational features of the HCB method are highlighted in Table 2 which reports the CPU timings of this dynamic substructur ing method as a percentage of the CPU timings of the Subspace Iteration algorithm. In general as the num ber of substructures increases, the cost for solving the local eigenvalue problem decreases. Unfortunately, this computational gain that is induced by substruc- turing is often offset by the increasing number of interface d.o.f. However, because the HCB method is a genuine interface reduction method, it can be feasible for an increasing number of substructures as reported in Table 2.

Finally, we note that because the finite element mesh corresponding to the original design was given to us, and not constructed by us, we have spent much more effort in designing a geometrically conforming mesh for the carry-through substructure, than we did for constructing the geometrically non-conforming one. In this sense, the HCB method can play an important role in the re-design and re-analysis of structures.

CLOSURE

The Craig and Hampton (CB) method is revisited. First, a mathematical justification of this method is derived via the spectral analysis of an interface impedance operator. It is shown that the set of fixed interface substructure free vibration modes aug mented with the constraint or junction modes is a 'natural' choice for generalized coordinates. The spectral analysis of the interface impedance operator also leads to the derivation of a new modal partici pation factor which is economical and simple to implement. Next, the CB method is recast into a hybrid variational formulation in order to analyze heterogeneous substructures. Finite element pro cedures for 'gluing' non-conforming and incompat ible finite element substructure models are developed, and their computational aspects are discussed. The result is a Hybrid Craig-Hampton (HCB) method that is a finite element refi nement of the 'intermediate structure' concept introduced by Hale and Meirovitch and which can be used as an interface reduction method. The performance of the HCB method is highlighted with the eigen analysis of a High Speed Civil Transport aircraft. 
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 3 COMPONENT MODE SYNTHESIS VIA LAGRANGE MULTIPLIERS When the substructures { � (s >}�:::: f• are obtained through a partitioning of the fi nite element mesh of the global structure, their finite element models are automatically conforming. However, the beauty of a CMS method resides in the fact that it can be used to analyze a set of substructures that have been designed by different teams of engineers, and to predict the behavior of the corresponding global structure by 'gluing' together the individual substruc ture analyses. In such cases, the submeshes associated with the substructures usually have non-conforming discrete interfaces (Fig. l), mainly because: (a) the corresponding substructures may have different resol ution requirements, (b) the submeshes are often de signed by different analysts, and (c) these submeshes
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 I Fig. I. Substructure models with geometrically non-con forming discrete interfaces.

  Let g < s > , r['>, and n • q> denote, respectively, the volume of the elastodynamic body represented by the substructure �<s>, the portion of its boundary where surface tractions (<s> are prescribed, and the interface boundary between g < s > and a neighboring g < q> . The equations that govern the dynamic un damped response of the global structure can be derived by writing a substructure based virtual work principle:
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 0 [START_REF] Craig | A review of substructure coupling methods for dynamic analysis[END_REF] s = Iwhere n < sl ' is a diagonal matrix storing the squares of the substructure frequencies w�l ' , and M < ;l, M < ;? and K �l are the usual quantities obtained with the Craig and Bampton CMS method. Next, considering the free vibration problem and seeking a harmonic sol ution for every field including the Lagrange multi pliers, leads after some algebraic manipulations to the following reduced hybrid eigenvalue problem (Kl,�•) 0 B ( N , ) T 0 0 Q N . , ) 2
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  and the total contributions of the interface ry.q> to the substructure constraint matrices B<s> and B<q> are obtained via the usual finite element assembly process:B ( s ,q) = L (e ) B ( s , q) e e (I')'• • 'nO«)} B ( q ,s) = L (e )B ( q ,s). ee (I'\'• •) n(l(q)} (32)Finally, if !?}<s> and/or �( qJ have more than one interface with the global structure�. B<s> and B<q> are simply constructed as:
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  and (38) into (37) gives c�k as functions of the unknown discrete Lagrange multi pliers: (41) where </>2k• </>3k• </>4k, '121n '13k• '14k• '2*' '3k• '4k• and V4k are constants that depend only the curvilinear abscissae ekl' ek' ek + l and ek + 2. The B < s > and B < q> constraint operators associated with the piece-wise cubic approximation presented here, are sparse matrices which can be assembled as described in Section 3 . 2. The only difference from the global polynomial case is the building block < •> B� • q> which should be here replaced by its counterpart: Here, the subscript k refers to the interval J� • q> where one edge of the interface element e falls, and � •> f!J� • q> is a K x K submatrix which can be written as: (43) The constants 13l •� i. 13l •> , 13� •� 1, and 13l •� 2 are func tions only of the partitioning of ry . q> and can be computed via the following identification: i A,< s , q> N 'I' -13 < •> 1k-1 M fUk-lAd (rj"•'nrn»ne} + l3l 0> A.�+ 13l:'� 1 A.�+ 1 +13� •� 2A� + 2 • (44) 3.3.1. Remark. Unlike the case where A.� •
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 4 COMPUTATIONAL ISSUES Now we turn to the numerical solution of the RHEVP (24). Clearly, !(I' is symmetric indefinite and Mil is symmetric semi-definite. Because of the indefin ite nature of !(I', the generalized symmetric eigenvalue problem /(huh= c.0 2 ,.Qhah requires special care. For any given uh' we have: s =NJ s =Ns uh T J(l' ah = L u�) T K bbu�> + L p (s ) T s=l s=l S=Ns x n < sl' p < sl + 2 1.7 L B ( s ) u�). (45) S=I Since K< ;l and Q ( s) 2 are symmetric positive definite, it follows that for any nonzero uh: if L B < '> u�> = 0-+ilhT J(l'ah > O.

  is the reduced stiffness matrix of the substructure � < s > with unconstraint interface boundary d.o.f.-that is, the reduced stiffness matrix of a possibly floating substructure. Consequently, K<i;'� may be singular, and the general solution of the first of equations (50) should be computed as: where K<b' t is a generalized inverse of Kl:�, Rt> stores the basis of the null space of K�� (the reduced rigid body modes), and cx<s)k+' specifies a linear combination of these. The fact that rigid modes do not produce any internal energy can be expressed as: Substituting (52) into (50) for each of the N1 floating substructures leads after some algebraic manipula tions to the following super-reduced Lagrangian sys tem: where s =Ns F, = I s< s )K<i:�• sw S= 1 s=Ns d= I s< s )K<i:U� ) k S= I
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 7 Fig. 7. HCB results for a conforming interface.
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 8 Fig. 8. Stiffeners, skin, and fuselage.
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 9 Fig. 9. Mesh partitioning (16 substructures).
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 10 Fig.10. Carry-through substrucure.

Table I .

 I Eigen analysisRe-designed HSCT structural model HCB Subspace Iteration (16 substructures) Error (%)

	Mode 1	0.572 Hz	0.572Hz	0.0%
	Mode 2	0.690 Hz	0.690 Hz	0.0%
	Mode 3	0.720 Hz	0.720 Hz	0.0%
	Mode 4	1.091 Hz	1.082 Hz	0.8%
	Mode 5	1.450 Hz	1.441 Hz	0.6%
	Mode 6	1.635 Hz	1.612 Hz	1.4%

Table 2 .

 2 Computational costs

	Re-designed HSCT structural model
		CPU (HCB)
	Number of substructures	CPU (Subspace Iteration)
	4	66.6%
	8	35.7%
	16	18.5%
	32	10.8%
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