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In recent years, deep learning in healthcare applications has attracted considerable attention from research community. They are deployed on powerful cloud infrastructures to process big health data. However, privacy issue arises when sensitive data are offloaded to the remote cloud. In this paper, we focus on pervasive health monitoring applications that allow anywhere and anytime monitoring of patients, such as heart diseases diagnosis, sleep apnea detection, and more recently, early detection of Covid-19. As pervasive health monitoring applications generally operate on constrained client-side environment, it is important to take into consideration these constraints when designing privacy-preserving solutions. This paper aims therefore to review the adequacy of existing privacy-preserving solutions for deep learning in pervasive health monitoring environment. To this end, we identify the privacy-preserving learning scenarios and their corresponding tasks and requirements. Furthermore, we define the evaluation criteria of the reviewed solutions, we discuss them, and highlight open issues for future research.

Introduction

Deep learning (DL) for healthcare is nowadays one of the most attractive research topics, which covers different applications related to electronic health records, wearable computing, and genomics analysis [START_REF] Yao | Applying deep learning to individual and community health monitoring data: A survey[END_REF]. Pervasive health monitoring (PHM) is one of the most interesting healthcare applications, which allow anywhere and anytime monitoring of patients. With the increasing technological advancements in sensing platforms and rapid development of machine and deep learning, more interesting PHM applications are deployed. In fact, by combining wearables and sensing platforms with the power of deep learning, PHM applications are able to target various health concerns and diseases like pneumonia, sleep apnea, heart health assessment, or even the nowadays worldwide pandemic Covid-19 [START_REF]AI Aids DOD in Early Detection of COVID-19[END_REF][START_REF] Fedorin | Respiratory events screening using consumer smartwatches[END_REF][START_REF] Jindal | Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise[END_REF][START_REF] Zhao | Towards deep learning-based detection scheme with raw ECG signal for wearable telehealth systems[END_REF][START_REF] Hassantabar | CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks[END_REF][START_REF] Otoom | An IoT-based framework for early identification and monitoring of COVID-19 cases[END_REF][START_REF] Imran | AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app[END_REF]. The Defense Threat Reduction Agency and Defense Innovation Unit of US Department of Defense, for instance, is working since a few years on RATE (Rapid Analysis of Threat Exposure) technology [START_REF]AI Aids DOD in Early Detection of COVID-19[END_REF]. It consists of non-invasive wearable devices that measure key biomarkers, and process them on the cloud with the help of artificial intelligence and machine learning for early detection of infections. RATE technology was tested on different infections such as pneumonia, SARS, and more recently Covid-19.

As in many domains, deep learning capabilities in the healthcare domain are often improved by leveraging powerful cloud infrastructures [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF], especially in case of PHM applications. In fact, PHM operates between the client the remote cloud server. It generally relies on constrained client devices like sensors and mobile devices, as well as on different communication networks between the client and the cloud, some of which may be unreliable or costly. Such a technological configuration potentially represents a constrained client-side environment. Wearables and mobile devices are resource-constrained, from the hardware point of view, and because of the daily usage of multiple apps that could quickly deplete the mobile device's battery. Such potential high load on the mobile device should not disrupt their daily usage by the user, nor the functionality of the PHM application.

However, leveraging the clouds comes at the expense of privacy when sensitive data is offloaded to train deep learning models or requesting inferences [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF]. In the context of PHM, designing privacy-preserving solutions is impacted by the constrained client-side environment, including devices requirements, communication network impediments, as well as effectiveness requirements of the PHM application.

• Related work

Much efforts were devoted to design efficient solutions for privacy-preserving deep learning. Zhang et al. [START_REF] Zhang | A Survey on Collaborative Deep Learning and Privacy Preserving[END_REF] reviewed some solutions, particularly those related to collaborative learning, and considered the two key phases of deep learning, i.e., training and inference. Chang and Li [START_REF] Chang | Privacy in Neural Network Learning: Threats and Countermeasures[END_REF] focused on privacy issues during training and inference phases, including attacks on trained models, along with their corresponding threats and countermeasures. More recently, Riazi et al. [START_REF] Riazi | Deep Learning on Private Data[END_REF] reviewed privacy-preserving solutions for deep learning focusing on cryptographic methodologies. The review presented solutions description and performance comparisons, along with main attacks on deep neural networks (DNNs). Boulemtafes et al. [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF] also presented a recent review of existing privacy-preserving solutions for deep learning along with their evaluation results, and highlighted open research along with suggested recommendations. However, the above-mentioned surveys only addressed the privacy issue in a general context, which do not consider specific target environment constraints.

Zheng et al. [START_REF] Zheng | Challenges of privacypreserving machine learning in iot[END_REF] focused on the IoT context, and presented a taxonomy of different privacy-preserving machine learning approaches for training and inference phases, then discussed the limitations of applying them on IoT end-devices. In the same work, the authors introduced a privacy-preserving inference solution based on obfuscation. The authors further detailed this solution in [START_REF] Xu | Lightweight and Unobtrusive Data Obfuscation at IoT Edge for Remote Inference[END_REF]. However, the review does not give a detailed description of existing solutions, but only presents a brief summary of limitations and drawbacks of classes of privacy-preserving solutions. Moreover, the limitations are not evaluated based on a set of criteria. The review also does not differentiate between training local and remote models.

Differently from related work, and particularly from [START_REF] Zheng | Challenges of privacypreserving machine learning in iot[END_REF], this study :

• Focuses on :

• Privacy-preserving deep learning, including inference and training of both local and remote models,

• PHM applications, i.e., it considers PHM architecture and constraints,

• Particularly constrained client-side environment at IoT and edge computing level.

• Identifies the privacy-requiring scenarios and constraints of the target context, and defines solutions requirements.

•

Reviews the adequacy of each solution with the target context, using the set of defined evaluation criteria. Reviewed solutions include the approach proposed in [START_REF] Zheng | Challenges of privacypreserving machine learning in iot[END_REF][START_REF] Xu | Lightweight and Unobtrusive Data Obfuscation at IoT Edge for Remote Inference[END_REF].

• Discusses privacy-preserving approaches for deep learning with respect to key technological concepts.

•

Outlines open research challenges.

To this end, privacy-requiring scenarios are defined, and a number of recent solutions for privacy-preserving deep learning are evaluated against criteria derived from environment constraints and requirements of target solution. More specifically, we make the following contributions :

(1) We present a generic architecture for deep learning-based PHM, i.e., the main components and their roles, as well as local and remote analysis scenarios.

(2) For each scenario, we identify the required corresponding tasks.

For example, in order to perform local analysis, the local model needs first to be trained either individually by a single client or collaboratively among different clients. Once trained, the model can be used for inference at the client level.

(3) For each task, we identify the privacy properties that need to be ensured.

(4) We present the target environment constraints, and identify its corresponding requirements.

(5) From the identified environment requirements, we define a set of criteria in order to evaluate the adequacy of reviewed solutions to the target environment.

(6) We classify the reviewed solutions according to key concepts, and evaluate them against defined criteria.

(7) We discuss the evaluation study, the drawbacks of solutions, and the impact of introducing privacy on deep learning-based PHM applications. [START_REF] Imran | AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app[END_REF] We outline for each key concept, a set of recommendations for future research directions to address the identified limitations.

The remainder of this paper is organized as follows : Section 2 defines generic PHM architecture including components and process flow. Section 3 identifies PHM scenarios requiring privacy preservation. Section 4 studies the environment constraints and requirements of solution, and defines a set of related evaluation criteria. Section 5 evaluates and discusses the solutions. Section 6 presents open challenges and outlines some potential future research directions. Finally, Section 7 concludes the paper.

A generic architecture for DL-based PHM

PHM is one of the main applications of pervasive healthcare, which provides preventive healthcare and deals with emergencies using ubiquitous computing technology. PHM allows anywhere and anytime monitoring, and generally relies on a three-tier architecture comprising (i) sensors or medical devices, (ii) a base station, and (iii) servers [START_REF] Varshney | Pervasive healthcare and wireless health monitoring[END_REF][START_REF] Huzooree | Pervasive mobile healthcare systems for chronic disease monitoring[END_REF][START_REF] Banerjee | Health-dev: Model based development pervasive health monitoring systems[END_REF][START_REF] Chowdhury | A framework for continuous authentication in ubiquitous environments[END_REF].

We describe below a generic architecture, and a process flow of a deep-learning-based PHM.

Components

As shown in Figure 1, the PHM architecture is composed of the three following main components :

• Sensors. They capture data such as pulse rate and body temperature, and perform preprocessing and basic processing. They include wearable and ambient sensors.

•

Base station. It gathers data from sensors, performs preprocessing and real-time analysis, displays results, issues alerts, and transmits data/results to the remote servers, and any relevant system's actor such as doctors or family. It could be a tablet or a raspberry, or a mobility support device like the user mobile phone.

• Remote servers. They perform deeper and more powerful analysis, and share the results with the base station and/or other system's actors. 

Process flow

•

At sensors level :

1. Data is captured, and preprocessed.

Basic processing can also be performed (such as test measurements against thresholds). 4. Data/results are transmitted to the remote servers, and any relevant system's actor such as doctors.

• At remote servers level : 5. A more deeper analysis is performed using deep learning (such as symptoms detection, potential early disease prediction, or health status prediction).

6. Results are shared with the user (base station) and/or other actors of the system.

PHM scenarios and privacy requirements

As described in the process flow, two main deep-learning-based scenarios can be distinguished in PHM applications :

(i) Local analysis, performed by the base station, in order to provide real-time and emergency results.

(ii) Remote analysis, performed by remote servers, in order to conduct more complex analysis.

Local DL-based analysis scenario

Before performing analysis, a local deep learning model needs first to be trained, which can be done : (i) Individually, i.e., by a single client and with the help of the remote servers, especially if the client is resource-constrained.

(ii) Collaboratively, where multiple participants jointly take part in the deep learning process. Collaborative learning can be achieved directly between the participants, or with the help of the remote servers for coordination and aggregation of updates.

Once trained, the model can be used locally by each client in order to get inferences. Therefore, only the training phase requires privacy-preservation.

• Privacy requirements During individual training, private training data of the client, and maybe the model need to be protected from the remote servers.

During collaborative training, private data of each participant need to be protected from the remote servers, as well as from the other participants. Also, the model might also need to be protected from the remote server. Once the trained model is distributed to the participants, original private training data of each participant should not be leaked by others..

Remote DL-based analysis scenario

Before deploying a model into production, i.e., on the remote server, it needs to be trained by the different participants in order to take advantage of the whole shared data.

Once trained, the model can be used remotely by clients in order to get inferences. Therefore, both training and inference phases require to preserve privacy.

• Privacy requirements During the training phase, private training data of the participants need to be protected from the remote server, while the model might also need to be protected from the participants.

When the trained model is used by clients to get inferences, the model might need to be protected from the clients, while their private data and maybe inferences should also be protected from the remote server hosting the model.

PHM constraints, Solution requirements and Evaluation criteria 4.1 PHM environment

In the PHM environment, we can find three constrained elements, namely, the client-side devices, the input data, and the communication network.

• Client-side devices. Sensors and mobile devices have limited resources, in terms of both power and computation. Sensors are generally considered as low-resourceful from a hardware perspective. On the other hand, mobile devices, particularly smartphones, are nowadays generally powerful, however, they run different daily applications and are often continuously powered on, which might constraint them in terms of energy. Also, any background task should be performed in transparency and not affect the performances of other applications.

• Input data. In a healthcare context, raw data can have different modalities like voice, images, texts, signals, and so on. It is therefore important to consider this heterogeneity and multi-modality of data when designing a privacy-preserving solution, especially if multiple sensitive information need to be protected. As shown in [START_REF] Raval | Olympus: Sensor Privacy through Utility Aware Obfuscation[END_REF], the obfuscation technique, which is used to protect input data, needs more investigation in case the sensitive data to be protected are collected from multiple sensors.

• Communication network. Different communication networks are used in the PHM environment such as cellular, wifi, bluetooth, ...etc. At the client-side, cellular networks are generally used in order to communicate with the cloud. Depending on the client's mobile internet plan, a large amount of data continuously exchanged, can be costly to the client. It can also lead to a quick consumption of the available data, which disconnects the client from the cloud. Moreover, as disconnections can occur in current networks [START_REF] Chen | Deep Learning on Computational-Resource-Limited Platforms: A Survey[END_REF], unreliability of the client-side connectivity needs to be considered.

Privacy-preserving solutions

By considering the needs of the healthcare domain, and PHM environment constraints, a number of requirements need to be considered for the design of privacy-preserving solutions for DL-based PHM.

• Effectiveness. Because people's health is crucial, the accuracy of results in health applications (such as the ability to detect the symptoms of a disease) is a very important criteria of effectiveness. For this reason, it is important to ensure that integrating privacy preserving into deep learning analysis of health data (including multi-modal data), still keeps high accuracy, i.e., similar or close to nonprivacy-preserving models.

• Efficiency. Due to the previously described PHM environment constraints, it is important to ensure low communication and computation overheads at the client-side, as well as the support of dropouts and disconnections of clients. Server-side overhead is not considered since servers are supposed to have all the required resources.

• Privacy. As described in the privacy-preserving deep learning scenarios, different information need to be protected in PHM applications. It is important to protect the users sensitive input data of training and inference from both the server (cloud) and other participants. Intermediate results produced during the execution of the model also need to be protected as they can leak some sensitive information. Depending on the target application and users privacy concerns, the resulting inferences might also need to be hidden from the cloud. Besides, the providers of deep learning models may also require that their models are kept private.

In addition to the main above requirements, the following features are needed :

• Support of any deep learning architecture, including :

• Any model, or at least popular ones used in healthcare like MLP, CNN, and LSTM.

• Any activation function.

• Any number of layers (depth of the model), particularly knowing that some existing privacypreserving solutions were shown to be weak under very deep models [START_REF] Gilad-Bachrach | Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF].

• Support of continuously trained models, i.e., models that are retrained periodically in order to enhance their performance.

Evaluation criteria

In Table 1, we define a set of criteria to be considered to evaluate the adequacy of solutions to PHM requirements, including the three main tasks : privacy-preserving training of local models, privacy-preserving training of remote models, and privacy-preserving remote inference. We carry out the evaluation by assuming an honest-but-curious (HbC) adversary model, where the parties, including the cloud and participants, are honest, i.e., they follow the protocol, but at the same time, they are curious, i.e., they can try to deduce private information within the limits of what the protocol allows [START_REF] Baryalai | Towards privacy-preserving classification in neural networks[END_REF]. A more honest adversary model can be considered as a limitation, while supporting more curious or less-honest parties can be considered as an advantage.

Existing privacy-preserving solutions vs PHM environment

In this section, we present a set of recent solutions covering the three above privacy-preserving tasks, including training a local model, training a remote model, and remote inference i.e., requesting inference through a remote model.

We evaluate then the solutions against the defined criteria for adequacy to PHM requirements (see Table 1). Unless mentioned, the reviewed solutions adopt the HbC adversary model.

Privacy-preserving training of a local model

Table 2 summarizes the main characteristics of the reviewed privacy-preserving solutions for training a local model, which are classified according to four main technologies, representing the key base concepts that are used by these solutions, namely, homomorphic encryption (HE), partial sharing (i.e., share only a fraction of locally learned parameters for global aggregation on the cloud), transformation of sensitive information, and shared model (i.e., a model is pre-trained by the cloud then is fine-tuned by the clients).

Table 2. Privacy-preserving solutions for training a local model

Key concept Ref Main characteristics

Homomorphic Encryption [START_REF] Zhang | Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning[END_REF] Fully BGV HE | Taylor theorem polynomial approximation [START_REF] Bu | Privacy Preserving Back-Propagation Based on BGV on Cloud[END_REF] Fully BGV HE | Maclaulin formula polynomial approximation Table 3 evaluates the solutions against the criteria defined in Section 4.3. Although these solutions are designed for training remote models, some of them can be however used to train a local model, but with some privacy gaps as shown in the Table 3. The table cells, which are highlighted in gray, show the main criteria that are not fully satisfied, along with their limitations that are underlined. Trade-off with privacy [START_REF] Fedorin | Respiratory events screening using consumer smartwatches[END_REF] Provided that a shared model can be trained at the cloud, and that clients have enough samples to personalize their local models (4) Due to Homomorphic encryption [START_REF] Zhao | Towards deep learning-based detection scheme with raw ECG signal for wearable telehealth systems[END_REF] Due to iterative interaction between client and server (6) Due to local training [START_REF] Otoom | An IoT-based framework for early identification and monitoring of COVID-19 cases[END_REF] Training round only needs local data to be transferred [START_REF] Imran | AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app[END_REF] However, user's local training is not considered in the global model until transferred [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF] Depends on the server round policy, i.e., wait for late users? Indefinitely, or for a certain period, ...etc. ( 

• Discussion

Homomorphic encryption (HE). HE-based solutions are characterized by high overhead at the clientside, especially those based on fully HE. Moreover, the solutions relying on local training at each round increase the overhead in terms of both computation and communication. Besides, HE-based solutions for collaborative learning can preserve accuracy, as well as individual learning, if polynomial approximation is not involved. Client dropout impact on the training round process is generally low, but may increase in case of solutions that require coordination or a threshold of participants to update the global model at each round. As for privacy, deep learning network structure needs to be shared with the cloud in individual learning solutions, however, training data are protected through encryption, and model parameters are ensured to be protected through encrypting shared weights. In collaborative learning solutions, training data and network structure do not need to be shared with the cloud. The model parameters are protected by encryption, and if more security is needed perturbation is added. However, perturbation leads to a trade-off between accuracy and privacy. In general, HE-based solutions do not make restrictions on deep model or activation function, except for solutions that require polynomial approximation. However, an adaptation of the model to the HE domain is needed as explained in [START_REF] Zhu | 2P-DNN: Privacy-Preserving Deep Neural Networks Based on Homomorphic Cryptosystem[END_REF].

Partial sharing (PS).

PS-based solutions are characterized by high client-side overhead due to local training. They also make a trade-off between accuracy and privacy, which is controlled by the fraction of parameters shared and the level of perturbation. Besides, the impact of a participant's dropout on the training round process is low, and no restrictions are made on the deep model and activation functions. As for privacy, training data and network structure do not need to be shared, while only a fraction of local parameters is revealed to the cloud. However, the computed global model gradients remain in clear, and thus are not protected.

Transformation. Transformation-based solutions can reach high accuracy but they are characterized by high overhead due to local training, and lead to a trade-off between accuracy and privacy due to transformations or perturbations that are applied on data or objective functions. In fact, applying more transformations allows for better data protection, but leads to less accuracy. Moreover, in such solutions, the model generally needs to be shared with the cloud. Noting that functional mechanism used in [START_REF] Zhao | Privacy-preserving collaborative deep learning with irregular participants[END_REF] might need some adaptations of the deep model, while the technique in [START_REF] Hartmann | Privacy-Preserving Distributed Learning with Secret Gradient Descent[END_REF] uses negative value vectors to make the noise cancelable, which makes the impact of a participant's dropout high, as it prevents global gradient from being revealed.

Shared model.

Although the solution based on shared model concept can reach high accuracy, it requires first training a shared model at the cloud, using a set of non-private training data (such as voluntarily shared data). Moreover, a client needs sufficient local samples in order to personalize its local model, which leads to a high overhead in terms of computation. Besides, the dropout of the client has no impact on the training process once the shared model is received, since it is fine-tuned locally and independently from the cloud. As for privacy, the training data are not shared, and reversing the shared model does not reveal any private information. However, structure of the shared model and its parameters are hosted and trained at the cloud, and only personalized trained parameters are protected.

Privacy-preserving training of a remote model

Table 4 summarizes the main characteristics of the reviewed privacy-preserving solutions for training a remote model, which are classified according to four main technologies, representing the key base concepts that are used by these solutions, namely, homomorphic encryption (HE), partial sharing, transformation of sensitive information, and model splitting between the client and the remote side. Table 5 evaluates the above solutions against the criteria defined in Section 4.3. Although these solutions are designed for training local models, some of them can be however used to train a remote model, but with some privacy gaps, as shown in Table 5. The table cells, which are highlighted in gray, show the main criteria that are not fully satisfied, along with their limitations that are underlined. 

• Discussion

Homomorphic encryption (HE). HE-based solutions are characterized by high overhead at the clientside, especially if fully HE is employed. Besides, they provide high accuracy when activation functions are computed without polynomial approximation. However, this requires the use of alternative techniques like outsourcing the computation to the client, which leads to more client-side overhead. Moreover, if the outsourcing method is used, the training round that is related to a dropped client is stopped until it reconnects. As for privacy, training data and intermediate results are protected through encryption, while the model is not shared with participants except for its activation functions, due to the outsourcing method. In general, HE-based solutions do not make restrictions on deep model or activation function. However, an adaptation of the model to the HE domain is needed as explained in [START_REF] Zhu | 2P-DNN: Privacy-Preserving Deep Neural Networks Based on Homomorphic Cryptosystem[END_REF].

Partial sharing (PS). PS-based solutions are characterized by high client-side overhead due to local

training. They also make a trade-off between accuracy and privacy, which is controlled by the fraction of shared parameters and the level of perturbation. Besides, the impact of a participant's dropout on the training round process is low, and no restrictions are made on the deep model and activation functions. As for privacy, only a fraction of local parameters is revealed to the cloud. However, the remote model needs to be shared with the participants.

Transformation. Solutions based on transformations can reach high accuracy. However, they make a tradeoff between privacy and accuracy due to the applied perturbations. Moreover, solutions that rely on local training are characterized by high overhead at the client-side, and require to share the remote model with participants. As for the impact of a participant dropout, the solution [START_REF] Hartmann | Privacy-Preserving Distributed Learning with Secret Gradient Descent[END_REF] requires the feedback of all the participants in order to reveal the global gradient, which blocks the training round process.

Model splitting.

The client-side overhead, under the model splitting concept, depends on the local model partition depth and complexity. In [START_REF] Yu | Distributed Layer-Partitioned Training for Privacy-Preserved Deep Learning[END_REF], only the first convolutional layer is migrated to the client, which ensures a low client-side overhead. The solution also ensures a low impact of a participant's dropout on the training process. However, to preserve privacy, perturbation is applied on the local output, which makes a trade-off between accuracy and privacy. Model privacy is ensured partially, and depends on the model partition depth migrated to the client-side. Model splitting solutions do not make restrictions on the deep model. However, the client-side output needs to be perturbed to preserve privacy, such as by using step-wise activation functions.

Privacy-preserving remote inference

Table 6 summarizes the main characteristics of the reviewed privacy-preserving solutions for remote inference, which are classified according to four main technologies, representing the key base concepts that are used by these solutions, namely, homomorphic encryption (HE), secure multi-party computation (SMC), transformation of sensitive data, and model splitting between the client and the remote side. 7 evaluates the solutions against the criteria defined in Section 4.3. The table cells, that are highlighted in gray, show the main criteria that are not fully satisfied, along with their limitations that are underlined. [START_REF] Hesamifard | CryptoDL: Deep Neural Networks over Encrypted Data[END_REF] CTN but potential loss(1) [START_REF] Li | Optimizing Privacy-Preserving Outsourced Convolutional Neural Network Predictions[END_REF] High [START_REF] Zhao | Towards deep learning-based detection scheme with raw ECG signal for wearable telehealth systems[END_REF] [START_REF] Hassantabar | CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks[END_REF][START_REF] Chang | Privacy in Neural Network Learning: Threats and Countermeasures[END_REF] None | High [START_REF] Hassantabar | CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks[END_REF][START_REF] Chang | Privacy in Neural Network Learning: Threats and Countermeasures[END_REF] [START_REF] Hesamifard | Privacy-preserving Machine Learning in Cloud[END_REF] encrypted encrypted not shared ADV : edge devices honest, but may collude with backend AFR : many-to-one activation functions -obfnets trained at backend (thus known) while concatenated to the inference model, and using original training data -number of obfnets can be huge for large number of users [START_REF] Osia | A hybrid deep learning architecture for privacy-preserving mobile analytics[END_REF] Acceptable (according to authors) but ( 4) DLP [START_REF] Xu | Lightweight and Unobtrusive Data Obfuscation at IoT Edge for Remote Inference[END_REF] 

Due to polynomial approximation of activation functions (2)

Tested using only non-heavyweight inference models [START_REF] Fedorin | Respiratory events screening using consumer smartwatches[END_REF] Different obfnets may achieve different accuracy results, the effectiveness can be non-stable as it may differ from user to user or from an obfnet to another for a same user (4)

Trade-off with privacy (5) Due to Homomorphic encryption [START_REF] Hassantabar | CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks[END_REF] Due to iterative interaction between client and server [START_REF] Otoom | An IoT-based framework for early identification and monitoring of COVID-19 cases[END_REF] After the local partition has been executed, and local output transferred [START_REF] Imran | AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app[END_REF] If the local output has not been transferred [START_REF] Boulemtafes | A review of privacy-preserving techniques for deep learning[END_REF] Trade-off with accuracy [START_REF] Zhang | A Survey on Collaborative Deep Learning and Privacy Preserving[END_REF] Trade-off between the privacy of the model an the privacy of data [START_REF] Chang | Privacy in Neural Network Learning: Threats and Countermeasures[END_REF] When addressing noise growth * Privacy guarantees and limitations relative to indirect leakage are distinguished between square brackets []

• Discussion

Homomorphic encryption (HE). HE-based solutions are characterized by high overhead at the clientside, especially if fully HE is employed. Moreover, solutions, which rely on the the client participation to address HE noise growth, further increase the client-side overhead. As for effectiveness, HE-based solutions can reach the same accuracy as non-private models when activation functions are computed without polynomial approximation. However, this requires the use of alternative techniques like outsourcing the computation to the client, which leads to more client-side overhead. Moreover, as these methods rely on the client participation, the impact of a client dropout on the inference process becomes high. As for privacy, input data are protected from the cloud through encryption, while the model is not shared with the clients, except for its activation functions, due to the outsourcing method. In general, HE-based solutions do not make restrictions on deep model or activation function. However, some solutions focused on the CNN model, while some others addressed specific activation functions for which they investigated polynomial approximations. Besides, an adaptation of the model to the HE domain is needed as explained in [START_REF] Zhu | 2P-DNN: Privacy-Preserving Deep Neural Networks Based on Homomorphic Cryptosystem[END_REF].

Secure Multiparty Computation (SMC)

. SMC-based solutions can ensure low impact of client dropout on the inference process, and preserve accuracy without incurring high overhead at the client-side. As for privacy, input data and inferences are protected from the servers, and the remote model is not shared with the clients. However, SMC-based solutions require the composition of adapted layers for the different phases of the neural network, while the model needs to be hosted partially or totally on both servers. Moreover, some solutions require using a trustworthy third party to initialize the random shares. In [START_REF] Ma | Non-interactive privacy-preserving neural network prediction[END_REF], HE is introduced at the client-side, to encrypt input data instead of splitting it into shares, which allows to eliminate the trust initializer. However, encryption increases the client-side overhead, and leads to the use of polynomial approximation of activation functions, which may incur accuracy loss.

Transformation. Transformation-based solutions ensure that once the client obfuscates its data and transmits it, its dropout will not impact the inference process. However, in [START_REF] Raval | Olympus: Sensor Privacy through Utility Aware Obfuscation[END_REF], up to 17% of accuracy loss was incurred, which shows that obfuscating input data may have a high impact on accuracy. Moreover, the overhead at the client-side might be high, as it depends on the obfuscator network and its output. As for privacy, inferences are not protected, and input data, although obfuscated, could allow leakage. In [START_REF] Raval | Olympus: Sensor Privacy through Utility Aware Obfuscation[END_REF] for example, close to 17% accuracy of inferring private information could be reached.

Model splitting.

Under the model splitting concept, the client-side overhead and sometimes data privacy, depend on the local model partition depth and complexity. In fact, in [START_REF] Yu | Distributed Layer-Partitioned Training for Privacy-Preserved Deep Learning[END_REF], only the first convolutional layer is migrated to the client, which ensures a low client-side overhead. However, in [START_REF] Osia | A hybrid deep learning architecture for privacy-preserving mobile analytics[END_REF], the client-side computation overhead was described as considerable [START_REF] Xu | Lightweight and Unobtrusive Data Obfuscation at IoT Edge for Remote Inference[END_REF], due to a more complex local partition, representing the feature extractor. In model splitting-based solutions, the dropout of a participant does not impact the inference process, once the local output is transmitted to the server-side. As for privacy preservation, techniques like perturbation of the local output [START_REF] Yu | Distributed Layer-Partitioned Training for Privacy-Preserved Deep Learning[END_REF] or adversarial training [START_REF] Osia | A hybrid deep learning architecture for privacy-preserving mobile analytics[END_REF] are used, which makes a trade-off between accuracy and privacy. Moreover, inferences protection is not considered.

Open research

Many efforts were deployed in order to design solutions for privacy-preserving deep learning. However, many of the existing solutions do not consider specific target environment constraints. As previously discussed, in the context of pervasive health monitoring, the different key concepts of privacy preservation require more investigation in order to address the identified limitations and cope with the client-constrained environment.

This section outlines, for each key concept, a set of recommendations for future research directions within each of the privacy-preserving deep-learning-based scenarios of PHM. 

Privacy-preserving training of a local model

•

The improvement of the trade-off between accuracy and privacy using more efficient perturbations that can combine high accuracy and strong sensitive data protection. In this direction, proposed perturbations need to be adaptive to the input data type of the target application, and consider potential heterogeneity of medical data. However, transformation-based solutions require to reveal the model to the cloud, which may represent a serious limitation in the local model training scenario if the privacy of the model is important. On another hand, the protection of aggregated model parameters from the cloud need to be investigated in partial sharing solutions.

Finally, as the shared model concept mainly relies on local fine tuning, further investigations are recommended in order to introduce more efficient methods in terms of the client-side overhead. Such methods need also to take into consideration the privacy of both local samples and the model. Moreover, due to the cloud-based training step, the structure of the deep model is shared between the client and cloud, which may constitute a serious issue if its privacy is considered as important.

Privacy-preserving training of a remote model

Two main open research paths need to be investigated in HE-based solutions for training a remote model under the PHM environment :

• The mitigation of the client-side overhead in terms of computation and communication incurred by the heavy cryptographic operations, without compromising the privacy of local data.

•

The introduction of approximation-free techniques for the computation of activation functions, and which do not rely on the client-side, and do not compromise the privacy of the local data and remote model.

Partial sharing and Transformation approaches require some improvements, particularly :

• The improvement of local training, or the introduction of alternatives methods, in order to mitigate the client-side overhead and provide a certain level of privacy to the remote model, without compromising the privacy of local data.

•

The improvement of the trade-off between accuracy and privacy using more efficient perturbations tat can combine high accuracy and strong sensitive data protection. In this direction, proposed perturbations need to be adaptive to the input data type of the target application, and consider potential heterogeneity of medical data.

As for the model splitting approach, a more efficient trade-off that could balance between the different requirements of the PHM environment need to be investigated. More specifically, such a trade-off needs to consider :

•

The client-side overhead, controlled by the local partition depth and the perturbation complexity.

•

The privacy of training data, controlled by the local partition depth, and the perturbation effectiveness.

•

The privacy of the deep model, controlled by the local partition depth.

•

The accuracy, controlled by the impact of the perturbation.

Privacy-preserving remote inference

Two main open research paths are recommended to address the limitations of Homomorphic Encryptionbased privacy-preserving solutions under the PHM environment :

•

The mitigation of the client-side overhead in terms of computation and communication incurred by the heavy cryptographic operations, without compromising the privacy of local data.

•

The introduction of approximation-free techniques for the computation of activation functions, as well as techniques for addressing homomorphic noise growth, which do not rely on the client-side. Moreover, introduced techniques should take into consideration the privacy of the remote model and local data, including preventing the intermediate results from leaking sensitive information.

As for Secure Multiparty Computation-based solutions, a set of identified limitations need to be addressed in order to cope with the target environment, mainly :

•

The model is either split or shared between the non-colluding servers, which compromises its privacy.

•

A number of modifications are necessary at the different stages of the neural network in order to adapt it to the SMC approach.

• Some solutions require a trust initializer in order to split the input data into shares. Others rely on HE encryption at the client-side, which increases the local overhead.

As for transformation-based solutions, future investigation directions include :

• The design of more efficient obfuscator networks, or transformation methods that can combine high accuracy, strong privacy, and low local overhead.

•

The design of methods that protect inferences from the cloud.

Finally, as for the model splitting-based solutions, two main open research paths can be recommended :

• Investigating a more efficient trade-off that could balance between the different requirements of the target environment, considering :

• The client-side overhead, controlled by the local partition depth and the local privacy-preserving method (method applied on local to prevent leakage) complexity.

• The privacy of the input data, controlled by the local partition depth, and the local privacypreserving method effectiveness.

• The privacy of the model, controlled by the local partition depth.

• The accuracy, controlled by the impact of the local privacy-preserving method.

• Designing solutions that protect inferences from the cloud.

Conclusion

This paper studies the adequacy of existing privacy-preserving deep learning solutions to pervasive heath monitoring (PHM) applications. To this end, privacy-requiring scenarios are defined, and a number of recent solutions for privacy-preserving deep learning are discussed according to criteria derived from constraints of the environment and requirements of the target solution.

The analysis of the PHM deep learning-based scenarios shows that the inference phase as well as the training phase, including training local and remote models, are all subject to privacy concerns. In order to design privacy-preserving solutions for PHM, the following specific constraints of the environment need to be taken into consideration : (a) the client-side devices in terms of limited resources, (b) input data in terms of heterogeneity, and (c) communication network in terms of unreliability and high cost.

Accordingly, in order to assess privacy-preserving deep learning solutions with the PHM environment, the following derived set of criteria are defined : (a) effectiveness, in terms of high accuracy, (b) efficiency, in terms of low computation and communication overhead at the client-side, as well as the impact of a client's dropout on the training round or inference process, and (c) privacy, in terms of the protection of input data, deep model, and inferences.

Existing solutions are subsequently classified according to key concepts, and evaluated against defined criteria. The evaluation study and the impact of introducing privacy to deep learning-based PHM applications are then discussed.

We summarize the main findings and conclusions of the present study, according to the privacy-requiring scenarios, as follows : alternatives or optimizations of local training need to be investigated. On the other hand, the tradeoff made between data privacy and accuracy in transformation as well as model splitting-based solutions depends on the target application requirements. In transformation-based solutions, more efficient perturbations considering the heterogeneity of medical data need to be investigated. Ultimately, future HE-based solutions might be most likely to suit the PHM environment, knowing moreover that current solutions can provide high accuracy and privacy without making a trade-off between them.

• Remote inference. HE-based solutions suffer from a high client-side overhead, which can be mitigated by the introduction of new techniques for the computation of activation functions, as well as new methods to discharge the client from the cryptographic load. As solutions can provide high accuracy and privacy without making a trade-off between them, future HE-based solutions might be most likely to suit the PHM environment. SMC-based solutions, on the other hand, present some limitations essentially regarding the privacy of the deep model, and the need of a trust initializer. Lastly, solutions based on transformation and model splitting concepts do not provide protection for the inferences. Moreover, they make a trade-off between different parameters, combining privacy, accuracy, and efficiency, and which may depend on the target application requirements.
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 1 Fig 1. DL-based PHM components and process flow
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 1 Figure 1 also shows the following generic process flow of information.
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 24 Data is transmitted to the base station.•At base station level :3. Data is preprocessed, locally analyzed for real-time/emergency inference results (such as fall detection, or dangerous sleep postures).

  * Overhead in terms of Communication and Computation at the client-side (OVC) [No]* Impact of client Dropout on a Training round (DIT), and on an Inference process (DII) Privacy [Protect]* Training Data (TD) from the participants and the cloud, as well as the Local Model (LM) from the cloud [Protect]* Training Data (TD) from the participants and the cloud, as well as the Remote Model (RM) from the participants [Protect]* Input Data (IN) and Inferences (IF) from the cloud, as well as the Remote Model (RM) from the client [ ]* : desired properties

[ 25 ]

 25 Partially additive LWE-based and Paillier HE | TLS/SSL secure channels [26] Partially lightweight El Gamal HE | Shamir's threshold secret sharing | Local differential privacy [27] Partially additive HE | Differential privacy Partial sharing [28] Partial sharing of parameters | Laplace differential privacy | Sparse vector technique [29] Partial sharing of parameters Transformation [30] Functional exponential mechanism | Polynomial approximation for objective function | Cryptography and hashing against eavesdrop attacks [31] Cancelable noise (differential privacy) | Anonymization network (such as Tor) from the weights and bias of the shared model | (Optional) Differential privacy for training the shared model

  Two main future investigation paths can be recommended in order to optimize Homomorphic Encryption-based solutions to the PHM environment in a training of a local model scenario : • The mitigation of the client-side overhead in terms of computation and communication incurred by the heavy cryptographic operations and local training. Investigated solutions should take into consideration accuracy preservation and privacy of both data and model. • The protection of the deep model structure in the individual training scenario. As for Partial sharing and Transformation approaches, two common open research paths might be followed : • The improvement of local training, or the introduction of alternatives methods, in order to mitigate the client-side overhead without compromising the privacy of local data and model.

••

  Local model training. HE-based solutions in individual learning do not protect the deep model structure, and incur high client-overhead due to the cryptographic operations. In collaborative learning, the adequacy of privacy-preserving solutions to the PHM environment is particularly restricted by local training and its impact on the client-side overhead, which is furthermore increased in HE-based solutions. Future alternatives or optimizations of local training and HE operations need to be investigated, taken into consideration the privacy of both local model and training data. Moreover, solutions based on transformation and partial-sharing concepts need to investigate more efficient perturbations mechanisms in order to improve the trade-off made between accuracy and privacy. Remote model training. Mitigating the client-side overhead in HE-based solutions require the introduction of new techniques for the computation of activation functions, as well as new methods to discharge the client from the cryptographic load. In transformation-based solutions, efficient

Table 1 .

 1 Evaluation criteria for PHM environment adequacy

Table 3 .

 3 Solutions for training a local model vs evaluation criteria

	Ref	Effectiveness	Efficiency	Privacy guarantees and limitations	Notes
			Accuracy	OVC	DIT	TD*	LM
	[23] ind	LOS(1)	High(4)(5)	None(7)	TD [and weights] encrypted	weights encrypted but (12)	AFR : APX
	[24] ind	LOS(1)	High(4)(5)	None(7)	TD [and weights] encrypted	weights encrypted but (12)	AFR : APX
	[25] col	SAN	High(4)(5)(6)	None(8)	TD not shared [and local shared gradients encrypted]	not shared	ADV : honest participants
	[26] col	CAN but (2)	High(4)(5)(6)	High	TD not shared [and shared gradients perturbed and encrypted, but (10)]	not shared	-
	[27] col	Quite high but (2)	High(4)(5)(6)	None(8)	TD not shared [and shared gradients perturbed and encrypted, but (10)]	not shared	ADV : tolerate collusion of server with multiple users
	[28] col	CAN but (2) and criticized in [25]	High(5)(6)	None(8)	TD not shared [and only fraction of local parameters shared perturbed, but (10)	not shared concern if server is not trusted but (11) < might be a privacy	ADV : trusted server
	[29] col	RR ~90% but (2)	High(5)(6)	Round-robin: High Asynchronous: None(8)	TD not shared [and only fraction of local parameters shared, but (10) ]	not shared, but (11)	-can be concerned by the privacy critics reported in [25, 34-36]
								ADV : honest server ,
	[30] col	MRE High but (2)	High(5)(6)	None(8)	TD not shared [and objective functions (thus gradients) perturbed, but (10)]	shared > might be a privacy concern if server is not honest	active & passive participants AFR/MOR : may require
								adaptations
								ADV : malicious server,
	[31] col	N/A	High(5)(6)	High	TD not shared [and local gradients perturbed with cancelable noise]	shared	honest participants >= 2 -anonymization network
								required
	[32] col	Up to High but (2)	High(5)(6)	[None(8) | High] (9)	TD not shared [and local parameters obtained from mixup input data, but (10)]	shared	-
	[33] ind	Up to High but (3)	High(6)	None	TD not shared + resistant to model inversion	(12)	-
	Accuracy					
	OVC						
	DIT						
	Notes						
	(1)	Due to polynomial approximation			
	(2)						

ind : Individual training; col : Collaborative training mainly on the basis of authors evaluations LOS : Loss; SAN : can reach Same As Non-private model; CAN : can reach Close to/Almost Non-private model RR : Reconstruction Rate; MRE : Mean Relative Error overhead is relative to the non-private model. [ col ] high, if the training round stops for all participants; none, if the training round is not affected. [ ind ] high, if the participant training process stops; none, if the process does not stop. ADV: Adversary model; AFR: Activation Function Restrictions; MOR: Model Restrictions; APX: Approximated

Table 4 .

 4 Privacy-preserving solutions for training a remote model

	Key concept	Ref	Main characteristics
	Homomorphic Encryption	[38]	Partially Paillier HE | Outsourcing non-linear encrypted computation to client
	Partial sharing	[28] [29]	Partial sharing of parameters | Laplace differential privacy | Sparse vector technique Partial sharing of parameters
		[39]	Repeated Gompertz (RG) for data perturbation | Row-orthogonal random projection (RP) matrix for projecting high-dimensional data to lower dimension
	Transformation	[30]	Functional exponential mechanism | Polynomial approximation for objective function | Cryptography and hashing against eavesdrop attacks
		[31]	Cancelable noise (differential privacy) | Anonymization network (such as Tor)
		[32]	Mixup data augmentation
	Model splitting	[40]	1 st convolutional layer on local | Step-wise activation functions | CNN

Table 5 .

 5 Solutions for training a remote model vs evaluation criteria CAN : can reach Close to/Almost Non-private model RR : Reconstruction Rate; MRE : Mean Relative Error overhead is relative to the non-private model. high, if the training round stops for all participants; low, if the training round stops for only the dropped participant; none, if the training round is not affected. After the local partition has been executed, and local output transferred (11) If local output has not been transferred * Privacy guarantees and limitations relative to indirect leakage are distinguished between square brackets []

		Effectiveness	Efficiency		Privacy guarantees and limitations	
	Ref	Accuracy	OVC	DIT	TD*	RM	Notes
	[38]	WLS(1)	High(3)(4)	Low	TD [and intermediate results] encrypted	Only activation functions shared	AFR/MOR : tested on DNN and CNN
	[28]	CAN	High(4)(5)	None(7)	TD not shared [and only fraction of	shared	ADV : trusted server

Table 6 .

 6 Privacy-preserving solutions for remote inference

	Key concept	Ref	Main characteristics
		Gilad-Bachrach et al. [41]	Leveled YASHE HE | Polynomial approximation of activation function
		Baryalai et al. [22]	Partially Paillier HE | Non-colluding dual clouds | Diffie-Hellman key exchange | Random salt | Classification
	Homomorphic Encryption	Chabanne et al. [42]	Fully BGV HE | Low degree polynomial approximation of activation function | Batch normalization | Classification | CNN with depth > 2
		Hesamifard et al. [43]	Leveled HE | Polynomial approximation : derivative of ReLU based approach and Sigmoid, Tanh, over a symmetric interval | CNN
		Zhu et al. [37]	Partially Paillier HE | Interactive protocol between client and server for ReLU computation
		Vizitiu et al. [44]	Fully MORE HE
		Huang et al. [45]	Additive secret-sharing | Secure computations | CNN feature extractor | Non-colluding dual edge servers
	SMC	Ma et al. [46]	Secret sharing | Partially El Gamal HE | Low-degree polynomial approximation of activation function | Non-colluding dual servers
		Li et al. [47]	Secret sharing | Triplet generation | Fully YASHE HE | Two non-colluding servers | Asynchronous computation | Garbled circuits | CNN
		Leroux et al. [48]	Generative Adversarial Networks | Neural-network-based obfuscation
	Transformation	Raval et al. [19]	Generative Adversarial Networks | Neural-network-based obfuscation
		Xu et al. [14]	Neural-network-based obfuscation
		Osia et al. [49]	Feature extractor on local | Siamese architecture | Dimensionality reduction : PCA and auto-encoder | Symmetric gaussian noise
	Model splitting	Chi et al. [50]	Bipartite model | Interactive adversarial deep networks
		Yu et al. [40]	1 st convolutional layer on local | Step-wise activation functions | CNN

Table

  

Table 7 .

 7 Remote inference solutions vs evaluation criteria

		Effectiveness	Efficiency		Privacy guarantees and limitations	
	Ref							Notes
		Accuracy	OVC	DII	IN*	IF	MO	
		Up to 99%, but						AFR : use the square function (the lowest-
	[41]	very low if non-	High(5)	None	encrypted	encrypted	not shared	degree non-linear polynomial
		linear layers > 2						function)
					IN encrypted, [but not	Encrypted,		AFR : softmax (last layer)
	[22]	N/A	High(5)	None	intermediate results	masked with	not shared	-non-colluding dual clouds required
					[47]]	random salt		-random salt mechanism not detailed
								AFR: APX-new learned ReLU approximation
	[42]	CTN	High(5)	None	encrypted	encrypted	not shared	MOR : focus on CNN -training is required after adding batch
								normalization layer

  CTN : Close To Non-private model; ITN : Identical To Non-private model overhead is relative to the non-private model. DOB : Depends on the obfuscator network and its output; DLP : Depends on the local partition high, if the inference process stops; none, if the process does not stop.

		estimated the computation overhead as considerable	None(7) | High(8)	IN not shared, [and fine-tuned features are output instead, but (9) although considered acceptable by authors]	not protected	feature extraction layers shared	MOR : focus on CNN, RNN is for eg. set as a future direction -Model needs to be fine-tuned using Siamese
	[50]	Up to high but (4)	DLP	None(7) | High(8)	IN not shared, [and reversibility of local output strengthened, but (9)]	not protected	local-side layers shared, and (10)	ADV : adversary can have access to the remote party, and intermediate states -Bipartite model needs to be trained concurrently with the defender
					IN not shared, [and			
	[40]	Up to good but (4)	Low	None(7) | High(8)	local output from step-wise activation	not protected	Only 1 st layer shared	ADV : supports malicious attacks AFR : Output needs to be perturbed
					function, but (9) ]			
	Accuracy	mainly on the basis of authors evaluations				
		WLS : Without Loss;						
	OVC							
	DII							
	Notes							

ADV: Adversary model; AFR: Activation Function Restrictions; MOR: Model Restrictions; APX: Approximated (1)