Mourad Benmalek
email: m_benmalek@esi.dz

Mohamed Ali Benrekia

Yacine Challal

Security of Federated Learning: Attacks, Defensive Mechanisms, and Challenges

Keywords: Artificial Intelligence, Federated Learning, Machine Learning, Privacy, Security

Recently, a new Artificial Intelligence (AI) paradigm, known as Federated Learning (FL), has been introduced. It is a decentralized approach to apply Machine Learning (ML) ondevice without risking the disclosure and tracing of sensitive and private information. Instead of training the global model on a centralized server (by aggregating the clients' private data), FL trains a global shared model by only aggregating clients' locally-computed updates (the clients' private data remains distributed across the clients' devices). However, as secure as the FL seems, it by itself does not give the levels of privacy and security required by today's distributed systems. This paper seeks to provide a holistic view of FL's security concerns. We outline the most important attacks and vulnerabilities that are highly relevant to FL systems. Then, we present the recent proposed defensive mechanisms. Finally, we highlight the outstanding challenges, and we discuss the possible future research directions.

INTRODUCTION

In recent years, improvements in the implementation of Machine Learning (ML) models, have significantly increased the adoption of this technology in a wide range real-world systems that revolutionize almost all industries [START_REF] Bkassiny | A Survey on Machine-Learning Techniques in Cognitive Radios[END_REF]- [START_REF] Hossain | Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review[END_REF]. Despite ML's enormous success, many domains can only desire to benefit from it, but are unable to do so due to two significant obstacles: (1) concerns about clients' data privacy, as well as the laws and regulations that govern them, and (2) inability to develop a ML model because of insufficient data or high training overheads.

In order to overcome these obstacles, Federated Learning (FL) [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] emerges as an effective technique to exploit distributed data and computing resources, in order to collaboratively train ML models, while adhering to laws and regulations, and protecting users' data security and privacy. As consequent, ML algorithms have become further integrated in the devices of end users. This new paradigm in ML, famous as "privacy-by-design", allows a number of clients' devices to train a ML model collaboratively. A key feature would be that the clients' private data remain stored on the client's device. By conducting model training at the clients' devices, aggregate analytics could be accomplished without having to collect the clients' data themselves [START_REF] Aledhari | Federated learning: A survey on enabling technologies, protocols, and applications[END_REF].

However, as secure as the FL seems, it by itself does not give the levels of privacy and security demanded by today's distributed systems requirements [START_REF] Bouacida | Vulnerabilities in Federated Learning[END_REF]. Beyond fundamental and FL-specific restrictions, the security of FL systems themselves are essential for developing networks where users can collaborate, learn, and most importantly trust. FL systems are vulnerable to a slew of new attacks and threats that target each stage of training and deployment process. Attackers can exploit flaws in FL systems in a variety of ways. For example, an attacker may maliciously corrupt training data or local model updates on clients' devices before sending them to the central server. He may also intercept the model updates exchanged between the central server and the clients' devices and replace them with malicious model updates. In order to overcome these security threats, many researchers have proposed mechanisms that defend against FL attacks and vulnerabilities.

Contributions

In this paper, we seek to provide a holistic view of FL's security concerns. The main contributions of this paper are presented as follows:

 We outline the most important vulnerabilities and attacks in FL environments, such as poisoning attacks, inference attacks, communication attacks, and freeriding attacks.  We present the recent proposed security mechanisms that defend against the security attacks and threats in FL systems.  We highlight the outstanding challenges, and we address the future research opportunities to improve the security of FL systems.

Paper organization

This paper is organized as follows. The basics of FL are introduced in Section 2. The major attacks and threats that are relevant to FL settings are presented in Section 3. The recent proposed security defensive mechanisms that defend against the security attacks and threats are summarized in Section 4. Section 5 identifies the research challenges and discusses the future directions towards a robust and secure FL. Finally, Section 6 gives conclusion remarks.

BASICS OF FEDERATED LEARNING

FL [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]- [START_REF] Yang | Federated Learning[END_REF] is a ML-based framework in which numerous clients cooperate to solve a ML problem, under the supervision and the coordination of a central server usually referred to as FL server. In other words, "it is a distributed ML strategy that generates a global model by learning from multiple decentralized edge clients. FL enables on-device training, keeping the client's local data private, and further, updating the global model based on the local model updates" [START_REF] Imteaj | A Survey on Federated Learning for Resource-Constrained IoT Devices[END_REF].

From a privacy perspective, FL complies with the "privacyby-design" guidelines made by the European Union Agency for Network and Information Security (ENISA) [START_REF] Danezis | Privacy and data protection by design-from policy to engineering[END_REF] since the clients' private data are held locally and are not transferred to the FL server (the client's device uses meaningful data to update the local models, and model updates are aggregates of the client's private data). This has made FL a more privacyfriendly technique, attracting many communities to use it instead of the standard ML technique based on centralized data collection and centralized model training.

In order to understand the different FL security aspects presented in later sections, we give in this section a nonexhaustive overview of different concepts, techniques, and approaches used to implement this AI paradigm in practice.

Federated learning implementation

FL can be viewed as an iterative learning process in which the global model is improved with each round. FL process flow follows three steps [START_REF] Zhang | A survey on federated learning[END_REF]: 1, FL is in a continuous iterative learning process that repeats the above steps (steps 2 and 3) to maintain the global model updated across all the participants.



Network topology in federated learning

Based on network topology, the FL can be categorized into two classes: (1) Centralized FL, and (2) Fully decentralized FL [START_REF] Mothukuri | A survey on security and privacy of federated learning[END_REF].

Centralized federated learning

As shown in Figure 1, even though FL is typically considered as a decentralized approach, a centralized server is required to collect clients' model updates and aggregate them to the global model. Unlike in traditional ML systems where the global model is trained on a centralized server by aggregating the clients' private data, the centralized server in FL trains the global model by only aggregating clients' updates. The Gboard keyboard application (developed by Google) is an example of centralized FL systems.

Fully decentralized federated learning

As shown in Figure 2, no central server is required in fully decentralized FL systems. In this type of FL systems, participants improve their models by sharing information with their neighbors using Peer-2-Peer (P2P) communications.

Vertical Federated Learning

VFL is frequently used when two datasets need to share identical sample IDs, but different feature spaces. An example for VFL approach would be a scenario from business domain, where a client A (Amazon) has information about customers' book purchases on Amazon, and client B (Goodreads) has information about customers' book reviews. Using these two sets of datasets from different feature spaces, one may better serve the customers by using book reviews information to provide better book recommendation to the customers browsing Amazon's books.

Horizontal Federated Learning

In this class, there is some overlap between the features of data dispersed over multiple participants, while the data are fairly distinct in sample space. Clients in this type of FL share similar features in terms of domain, usage style of derived statistical information, or any other FL outcome. An example for HFL approach would be a scenario from medical domain, where multiple hospitals are collaborating to train a ML model (using medical images) for detecting cancer cells. Due to the laws and constraints of private medical data, medical images cannot be shared as is. However, with FL, information on such sensitive data may be safely transmitted through a secure aggregated update from each hospital.

Federated Transfer Learning

FTL is typically used when FL participants have little overlap in both sample and feature spaces. FTL enables to move the knowledge of one domain (the source domain) to another domain (the target domain) to achieve better learning results. An example for FTL approach would be a scenario of training a book recommendation model from the user's past browsing behavior.

Aggregation algorithms in federated learning

The aggregation algorithm can be defined as the logic that combines the locally-computed updates from all the clients participating in the training phase [START_REF] Nilsson | A performance evaluation of federated learning algorithms[END_REF]. These algorithms play a cornerstone role in any FL system. For that, several aggregation algorithms have been proposed in the literature. We present in the following some of the most used aggregation algorithms:

FedAvg

The Federated Averaging algorithm (FedAvg) is regarded as the de facto optimization algorithm in the federated setting. This aggregation algorithm, implemented by Google [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF], runs Stochastic Gradient Descent (SGD) in parallel on K devices, where K is a small fraction of the total clients' devices in the FL network. After that, the clients' devices communicate their model updates to a FL server, where the global model is built using averaging logic to compute the weighted sum of all the received updates. Although FedAvg has shown empirical success in heterogeneous settings, it does not entirely address the underlying challenges associated with heterogeneity [START_REF] Li | Federated optimization in heterogeneous networks[END_REF].

FedProx

To address the challenges of heterogeneity in FL environments, Li et al. [START_REF] Li | Federated optimization in heterogeneous networks[END_REF] proposed FedProx. As stated by the authors, "FedProx algorithm can be viewed as a generalization and re-parametrization of FedAvg". They proposed to add a proximal term to the local subproblem that helps to effectively limit the impact of variable local updates, and thus improve the stability of the method. Moreover, they proved that FedProx achieves better convergence and stability compared to FedAvg in heterogeneous FL environments.

SMC-Avg

A secure aggregation algorithm, called Secure Multi-Party Computation Averaging (SMC-Avg) was proposed in [START_REF] Bonawitz | Practical secure aggregation for federated learning on user-held data[END_REF], [START_REF] Bonawitz | Practical secure aggregation for privacypreserving machine learning[END_REF]. SMC-Avg algorithm is based on the concept of the Secure Multi-party Computation (SMC), which aggregates private values of clients' models without revealing information about their private values. SMC-Avg algorithm is suitable to deal with the problems of the mobile device-based FL networks.

SECURITY ATTACKS IN FEDERATED LEARNING

While FL comes with privacy guarantees regarding the protection of private data in ML settings, exchanging the model updates, as well as the large number of training iterations and communications expose the FL system to curious and malicious attackers [START_REF] Bagdasaryan | How to backdoor federated learning[END_REF]- [START_REF] Weng | Privacy leakage of real-world vertical federated learning[END_REF]. Several attacks are already identified against FL systems. In this section, we present the most important attacks and vulnerabilities in FL environments. We categorize attacks against FL systems into four groups: poisoning attacks, inference attacks, communication attacks, and free-riding attacks. Table 1 summarizes the properties of attacks on FL settings.

Poisoning attacks

Typically, these attacks are undertaken by the insiders on FL systems [START_REF] Mothukuri | A survey on security and privacy of federated learning[END_REF], [START_REF] Muñoz-González | Towards poisoning of deep learning algorithms with back-gradient optimization[END_REF]. They try to prevent a model from being learned at all, or to bias the model to produce inferences that are suitable to the attacker. Regarding the attacker's capabilities, we classify poisoning attacks into two types: data poisoning attacks and model poisoning attacks [START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF].

Data poisoning attacks

They are attacks that compromise the clients' training data to distort the output of the global model at inference time. As shown in Figure 4, an adversary participant may adversarially manipulate existing inputs or add poison instances to corrupt the global model's output [START_REF] Tolpegin | Data poisoning attacks against federated learning systems[END_REF]. As shown in Figure 5, we recognize two classes of attacks in this category: Clean-label attacks. In this category of attacks, the adversary assumes that data are certified as belonging to the correct class, so, he cannot change the label of any input data, and he must craft the poisoned training data to appear as correctly labeled as the non-corrupted data. Authors in [START_REF] Tolpegin | Data poisoning attacks against federated learning systems[END_REF] achieved 100% attack success rate on the dog-vs-fish classification task using the feature collision technique, where the attacker exploits the high complexity and nonlinearity of the function f that propagates an input X through the neural network to the last layer, it is possible to find an example (a dog's picture) that "collides" with the target (fish class) in feature space, while simultaneously being close to the base instance b (dog class) in input space. Dirty-label attacks. In this category of attacks, the adversary participant can add, remove, or change any data samples he intends to misclassify with the desired target label into the training set. A very known example of dirty-label poisoning attack is label-flipping [START_REF] Biggio | Poisoning attacks against support vector machines[END_REF], [START_REF] Fung | The limitations of federated learning in sybil settings[END_REF] which has been demonstrated to be effective in traditional ML settings and become a feasible strategy to implement in FL settings.

Model poisoning attacks

They are attacks where malicious clients directly change the learning rule and affect gradients that they share with the FL server during the training process [START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF]. We can recognize several techniques in this category: Gradient manipulation attacks. In this type of attacks, adversaries perform adversarial manipulations of the training process by manipulating local model gradients to compromise the global model performance and reduce the overall accuracy [START_REF] Shejwalkar | Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[END_REF]. This technique can be used for example to modify an image classifier so that it assigns an attacker-chosen label to images with certain features or force a word predictor to complete certain sentences with an attacker-chosen word [START_REF] Bagdasaryan | How to backdoor federated learning[END_REF].

Training rule manipulation attacks. In this type of attacks, if the attackers have access to the model, they may be able to manipulate its output such that it has the same distribution as correct model updates, making the attack undetectable [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]. For example, the authors in [START_REF] Bhagoji | Analyzing federated learning through an adversarial lens[END_REF] added a penalty term to the objective function in order to reduce the distance between the wrong and the correct weight update distributions. This modification helped to successfully achieve a non-detectable targeted model poisoning attack.

Backdoor attacks. These attacks can be viewed as a type of model poisoning attacks. A malicious participant trains its local model with poisoned data and uploads the locallycomputed updates to the FL server, embedding a backdoor to the global model after unwitting aggregative optimization [START_REF] Yin | Backdoor Attacks on Federated Learning with Lottery Ticket Hypothesis[END_REF]. The authors in [START_REF] Bagdasaryan | How to backdoor federated learning[END_REF], [START_REF] Sun | Can you really backdoor federated learning?[END_REF] experiment on how backdoor attacks are implemented.

Inference attacks

These attacks are adversarial algorithms that are capable of extracting meaningful insights about the training data via analysis of locally-computed updates [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF], [START_REF] Lee | On defensive neural networks against inference attack in federated learning[END_REF]. Inference attacks fall into four categories:

Membership inference attacks

Under this category, attackers aim to identify whether a specific sample belongs to a given class represented by the model and/or whether a specific sample was used to train the model [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF]. For instance, an adversary can determine whether a given patient profile was used to train a classifier associated with a disease.

Properties inference attacks

Under this category, attackers attempt to induce properties of other clients' private data that are independent of the features which characterize the FL model classes [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF]. For instance, a property inference attack would be for facial recognition models, if a class corresponds to a certain individual, the adversary task would be determining whether the individual wears glasses or not [START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF].

Training inputs and labels inference attacks

These attacks are much destructive than previous ones since they can not only determine the label of the FL model classes but also the client's training inputs. In [START_REF] Zhu | Deep Leakage from Gradients, Conference on Neural Information Processing Systems[END_REF] and [START_REF] Zhao | iDLG: Improved Deep Leakage from Gradients[END_REF], the authors showed that the proposed optimization algorithm can obtain both the training inputs and the labels in just a few rounds.

GANs-based inference attacks

Under this category, powerful attacks can be performed through Generative Adversarial Networks (GANs). GANs have been recently proposed in [START_REF] Hitaj | Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning[END_REF] and are still being intensively developed. The architecture of GANs is composed of two models: Discriminator D and Generator G. The GANbased attacks exploit the real-time nature of the FL process which allows the attacker to train a GAN generating synthetic samples that are statistically representative of the training data. It should be noted that GANs generate these samples without having the right to access clients' private data. The GAN is first initialized with random noise, and at each round, it is trained to mimic the inputs in the training set of the discriminative network. Figure 6 shows an example of GANsbased inference attack.

Communication attacks

As mentioned above, FL is based on an iterative learning process in which the global model is improved with each round. In order to update the shared global model and maintain it updated across all the participants, a large number of communication messages should be exchanged between the FL server and all the participants over a given network (typically, a FL process achieves stability and convergence after a large number of communication iterations). Thus, a non-secure communication channel is considered an open vulnerability. Moreover, the communication bottlenecks can drastically destabilize the FL system [START_REF] Mothukuri | A survey on security and privacy of federated learning[END_REF], [START_REF] Konecný | Federated learning: Strategies for improving communication efficiency[END_REF], [START_REF] Smith | Don't decay the learning rate, increase the batch size[END_REF]. In this type of attacks, the Man-in-the-Middle (MITM) intercepts the model updates exchanged between the participants and the FL server and replaces them with malicious updates [START_REF] Wang | Man-in-the-Middle Attacks Against Machine Learning Classifiers Via Malicious Generative Models[END_REF]. Typically, a MITM attack is carried out through interfering with real networks or by creating fake networks that the MITM controls. After that, the compromised communication is frequently stripped of any encryption in order to steal, modify or redirect the model updates [START_REF] Datta | Vulnerabilities of Smart Homes[END_REF]. This attack is difficult to detect because the attacker may be silently observing or re-encrypting the hijacked communication to its designed destination once saved or modified.

Communications bottlenecks

As shown in Figure 7, communication bottlenecks can drastically destabilize the FL system because they increase the number of participants who drop out. Further, discarding clients depending on their connection state causes eventual biases in the global shared model and affects the aggregation of individual updates. Furthermore, techniques that seek to decrease the communication overhead [START_REF] Chen | Communication-Efficient Federated Deep Learning with Layerwise Asynchronous Model Update and Temporally Weighted Aggregation[END_REF]- [START_REF] Nishio | Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[END_REF], such as compression, can be exploited in a destructive way to inject noise in individual updates and deteriorate their quality.

Free-riding attacks

Free-rider attacks consist in crafting fake local updates with the purpose of acquiring the global shared model without really participating to the FL process [START_REF] Lin | Free-riders in federated learning: Attacks and defenses[END_REF], [START_REF] Fraboni | Free-rider attacks on model aggregation in federated learning[END_REF]. Free-rider is generally referred to an individual who benefits from services, public goods, or resources, of a communal nature, but do not pay for them [START_REF] Baumol | Welfare Economics and the Theory of the State[END_REF]. In free-riding attacks, there could be two main motives to submit fake updates: (1) a client may want to save local CPU cycles or other computing resources, also, (2) a client may not have the required data, or is concerned about data privacy violations, so that local data are not available for model training [START_REF] Fraboni | Free-rider attacks on model aggregation in federated learning[END_REF]. As shown in Figure 8, the strategy of a free-rider, to obtain the final aggregated model, consists in participating in FL cycle by mimicking local updating through the sharing of opportune crafted parameters.

DEFENSES IN FEDERATED LEARNING

Recent studies into FL security have tried to stress-test existing techniques for preventing private information extraction and model corruption. In this section, we present a review of the recent proposed mechanisms that defend against the security attacks and threats raised in Section 3. Figure 9 and Table 2 summarize the prominent types of defensive mechanisms in FL.

Differential Privacy

The basic goal of Differential Privacy (DP) is to ensure that, with high probability, no single record in a given client's dataset can be meaningfully discriminated from the other records [START_REF] Dwork | Differential privacy: A survey of results. The International conference on theory and applications of models of computation[END_REF]- [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF]. The basic idea behind this technique is to introduce noise to the client's sensitive attributes before sharing individual updates with the FL server [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF]. As a consequence, each client's privacy is protected. Meanwhile, the statistical data quality loss caused by the introduced noise of each client is rather minor compared with the greater data privacy protection. In FL environment, DP distorts client updates so that the existence or absence of any given record in a client's private data has no major impact on the update shared by the client.

Based on DP, McMahan et al. [START_REF] Mcmahan | Learning differentially private recurrent language models[END_REF] proposed DP-FedAvg, a noised version of FedAvg (presented earlier in Section 2.4.1) that satisfies user-level differential privacy. The main goal of DP-FedAvg is to provide a strong guarantee that the trained model protects the privacy of clients' data without affecting model quality. Later, Augenstein et al. [START_REF] Augenstein | Generative models for effective ML on private, decentralized Datasets[END_REF] proposed DP-FedAvg-GAN with the purpose to protect the clients' training data against GANs-based attacks.

In [START_REF] Ma | Data poisoning against differentially-private learners: Attacks and defenses[END_REF]- [START_REF] Geyer | Differentially private federated learning: A client level perspective[END_REF], the authors showed that DP can be used as defense against data poisoning attacks. Further, Bagdasaryan et al. [START_REF] Bagdasaryan | How to backdoor federated learning[END_REF] demonstrated that DP applied to clients' models can successfully defend against backdoor attacks, but the required noise levels significantly baffle the model's learning ability (i.e., the more we apply noise the higher we protect data but the utility decreases drastically). Furthermore, Lecuyer et al. [START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF] studied the possibility of using DP as a defense mechanism against inference attacks.

Secure Multi-party Computation

This technique (SMC) was originally proposed with the purpose of creating methods for distrustful parties to jointly compute a function over their inputs while keeping them private [START_REF] Canetti | Adaptively secure multi-party computation[END_REF]. In FL environment, SMC, which is based on cryptographic methods, is used to protect the privacy of client data.

In this direction, Google proposed a secure aggregation algorithm [START_REF] Bonawitz | Practical secure aggregation for privacypreserving machine learning[END_REF] that securely aggregates the clients' updates by using SMC to compute the weighted averages of received updates. Upon receiving a sufficient number of clients' updates, the FL server can decrypt the average update. This is possible because client updates are transferred via additive secret sharing. As a consequence, the clients' private data are protected.

In the same direction, Xu et al. [START_REF] Xu | VerifyNet: Secure and Verifiable Federated Learning[END_REF] proposed a privacypreserving approach, called VerifyNet, that aim to realize secure gradient aggregation and verification. This approach employs a double-masking method (based on Shamir's secret sharing and homomorphic hash function) making it difficult for malicious adversaries to infer training data. Moreover, VerifyNet guarantees that the clients may verify the FL server's results, ensuring the FL server's reliability.

Although SMC-based methods [START_REF] Bonawitz | Practical secure aggregation for privacypreserving machine learning[END_REF]- [START_REF] Hao | Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence[END_REF] provide a secure aggregation of the protected clients' updates, they induce significant extra communication overhead among clients which may be unaffordable for some devices and networks. Moreover, they make countermeasures to security attacks (such as model poisoning attacks) ineffective, and attacks become difficult to detect by the FL server.

Anomaly detection

This category of defenses (also called outlier detection) uses analytical and statistical methods to identify events that do not conform to an expected pattern or activity. In order to identify misbehaving clients in FL settings, anomaly detection mechanisms could be used. For that, the FL server analyzes individual updates and their impact on the global shared model to discover attacks such as poisoning attacks. However, these mechanisms are most likely to fail when it comes to targeted backdoor attacks. Chen et al. [START_REF] Chen | Distributed statistical machine learning in adversarial settings: Byzantine gradient descent[END_REF] proposed an anomaly detection-based technique, in which the FL server can reconstruct the clients' updated models and compare the model performance metrics against a validation dataset with respect to the model obtained by aggregating all updates except that of the client. After that, any client updates that decrease model performance, according to some criteria or threshold, are marked as outliers.

Cao et al. [START_REF] Cao | Understanding distributed poisoning attack in federated learning[END_REF] proposed another defense technique called Sniper. The proposed approach can recognize honest clients and decrease the success rate of poisoning attacks to 2% even when multiple attackers are colluded. In Sniper, the FL server identifies legitimate clients by solving a maximum clique problem in a graph constructed with clients' shared updates as vertices and if the Euclidean distance between two vertices is small enough, then there exists an edge between them. The FL server then finds the maximum clique in the graph, and aggregates vertices (local models) in the clique to get the global FL model.

In another work, Fung et al. [START_REF] Fung | The limitations of federated learning in sybil settings[END_REF] presented FoolsGold, a novel defensive mechanism to cope with poisoning attacks. In their work, the authors defined poisoning sybils as malicious clients creating multiple fake identities to mount more powerful poisoning attacks on FL and transfer fake updates to the FL server. After that, they presented their defensive technique that leverages client similarity to identify poisoning sybils based on the diversity of client updates, because in the distributed learning process, each client's private data has a unique distribution, while sybils aim to the same objective and will share updates that appear more similar to each other than non-malicious clients. On the contrary to other defensive techniques, this mechanism does not require any changes of the protocol executed on client-side. In addition, it doesn't need prior knowledge of the number of malicious clients.

Many other research works have been developed in this category [START_REF] Fung | The limitations of federated learning in sybil settings[END_REF], [START_REF] Tran | Spectral signatures in backdoor attacks[END_REF]. In these studies, the proposed approaches aim to detect a deviation in individual updates from each client, as well as the verification of honesty of training inputs.

Robust aggregation

As mentioned above, robust aggregation algorithms play a cornerstone role in any FL system, and several algorithms [START_REF] Pillutla | Robust aggregation for federated learning[END_REF]- [START_REF] Ang | Robust federated learning with noisy communication[END_REF] have been proposed in the literature. Theses algorithms are used to detect and discard faulty model updates during the training process. Moreover, robust aggregation algorithms should be able to sustain clients' dropout and communications instabilities. They can also address the challenges of heterogeneity in FL environments [START_REF] Li | Federated optimization in heterogeneous networks[END_REF].

In addition to algorithms presented in Section 2.4, Lu and Fan [START_REF] Lu | An Efficient and Robust Aggregation Algorithm for Learning Federated CNN[END_REF] proposed an aggregation algorithm that uses Gaussian distribution to measure clients' potential contributions. Further, they proposed layer-wise optimizing steps, so the aggregation works well on different functional units in the neural network. Furthermore, they showed that the proposed algorithm achieves better convergence and stability compared to the well-known aggregation algorithm FedAvg [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]. Moreover, this algorithm outperforms FedAvg in terms of robustness against attacks.

Federated distillation

Federated Distillation [START_REF] Seo | Federated knowledge distillation[END_REF]- [START_REF] Li | FedMD: Heterogenous federated learning via model distillation[END_REF] (also called Federated Knowledge Distillation) is regarded as an alternative of the model compression method. As mentioned above, a large number of communication messages should be exchanged between all the clients and the FL server to update the global shared model and maintain it updated across all the clients. However, these exchanged messages can drastically destabilize the FL system. For that, federated distillation is a compelling FL solution in which a fully trained model transfers knowledge to a small model step by step on what needs to be done. The idea of sharing knowledge only instead of model parameters can be used to improve the security and privacy of the clients' private data. Moreover, this concept helps to save communication and reduce computation overheads.

In this direction, Li and Wang [START_REF] Li | FedMD: Heterogenous federated learning via model distillation[END_REF] proposed an algorithm of federated distillation called FedMD. In this algorithm, the authors seek to transfer knowledge from a fully trained model to a smaller model. Typically, the knowledge is a pre-trained model's logit, transferred to a small model for compression. The knowledge can also be a collection of other small models' logits, in that the collection of forecasts is often more accurate than individual predictions.

CHALLENGES AND FUTURE OPPORTUNITIES

To complete our overview, we discuss the outstanding challenges, and we address the future research opportunities to improve the robustness of FL environments, summarized in the following recommendations:

Ensuring and building trust

When private data is stored on clients' devices, FL servers have little scope for manual verification. Thus, the question that might arise is: how can the FL server trust reports, such as model updates, from clients? Cryptographic primitives may offer promise for secure calculations using private data. For example, Zero-Knowledge Proofs may be used to ensure that participants are transferring individual updates with prespecified properties to defend against backdoor attacks and model corruption attacks, while avoiding the disclosure of clients' private data. However, it is important to understand better how to effectively implement and apply these cryptographic primitives and protocols, especially in largescale FL systems.

Ensuring traceability

Ensuring traceability of the global model throughout the lifecycle of the FL process is another major challenge in FL settings. For example, if a model parameter is modified or updated during the training process, it is important to have backward tracking ability to determine which client's update caused that change. In this direction, we believe that blockchain can provide attractive solutions for FL due to its unique features, such as traceability, immutability, and decentralization [START_REF] Babu | The purview of blockchain appositeness in computing paradigms: A survey[END_REF]. By using blockchain, any update events and client actions are transparently tracked by all network entities. Moreover, a model parameter modification or update can be easily traced through blockchain transaction logs [START_REF] Nguyen | Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges[END_REF].

Ensuring a trade-off between security/privacy and performance/accuracy

As presented in this paper, many defensive approaches for FL security have been designed, each of which is proposed to address different security/privacy and performance/accuracy objectives. However, each one of them has its own pros and cons. Thus, the question that might arise is: how to ensure a better trade-off between security/privacy and performance/accuracy? On the one hand, designing efficient FL approaches should not undermine the robustness of the proposed mechanisms. If the approach is not secure against the different attacks, an attacker can affect the FL process. For example, if the encryption level in SMC-based mechanisms or the quantity of noise in DP-based mechanisms is not enough, the clients that participate to the FL process still suffer from the risk of privacy leakage. On the other hand, if the encryption level is too high or too much noise added to the exchanged updates, the FL model severally suffers from low accuracy.

Deploying decentralized federated learning

In the traditional FL systems, a third party (which is the FL server) is required for system initialization, supervision, and global model aggregation. However, a setting where no central server is required in the system is a potential framework for collaboration among applications that do not trust any third party. For example, we can consider a strategy where each client that participates to the FL system could be elected as a server using a round robin method. It would be interesting to explore if existing attacks and vulnerabilities on the traditional FL still apply in this decentralized scenario, as well as new attack surfaces that may be opened. Therefore, the defensive mechanisms of decentralized FL should also be investigated.

CONCLUSION

As FL is becoming widely used in many practical applications that aim to preserve users' privacy, protecting the security of this new paradigm becomes an urgent need. In this paper, we have presented a survey on security concerns in FL settings. Specifically, we have revisited existing security attacks and threats towards FL, such as poisoning attacks, inference attacks, communication attacks, and free-riding attacks. Furthermore, we have presented the current defensive techniques based on differential privacy, secure multi-party computation, anomaly detection, robust aggregation, and federated distillation. We showed that there is not yet a defensive mechanism that fulfills all the security/privacy and performance/accuracy objectives and that there is still much work to be done. After that, we have presented four interesting research topics in this field. We hope that such survey can serve as a valuable reference for researchers in both FL and security fields.

 Model initialization: each client's device receives the initial ML model from the FL server.  Local model training: each client's device trains its own model with the client's local training data.  Aggregation of local models: the FL server collects updated model weights, and then it aggregates them to the global model, which is subsequently updated to replace each client's local model. As shown in Figure

Figure 1 .

 1 Figure 1. A schematic diagram of FL process flow 2.3 Data partition in federated learning As shown in Figure 3, the distribution of data among clients classifies FL into three classes : (1) Vertical Federated Learning (VFL), (2) Horizontal Federated Learning (HFL), and (3) Federated Transfer Learning (FTL). The three classes are defined as follows [10]:

Figure 2 .

 2 Figure 2. Fully decentralized FL

Figure 3 .

 3 Figure 3. Data partition in FL

Figure 4 .

 4 Figure 4. An example of data poisoning attack in FL systems

Figure 5 .Figure 6 .

 56 Figure 5. A taxonomy of attacks on FL systems

Figure 7 .

 7 Figure 7. Communications bottlenecks in FL systems

Figure 8 .

 8 Figure 8. An example of free-riding attack in FL systems

Figure 9 .

 9 Figure 9. An overview of defensive mechanisms in FL systems

Table 1 .

 1 Summary of attacks on FL systems Analyze the clients' updates in the goal of illegitimately gain knowledge about FL process and use this knowledge to extract meaningful insights about the training data

					Source of attacks	
	Attacks	Key idea	Compromised Clients Server	Communication	Distributed nature of FL
	Poisoning attacks	Manipulate client's data or local model to bias the global model performance/accuracy	✓	✓	-	-
	Inference attacks					

Table 2 .

 2 Summary of defensive mechanisms in FL systems

	Defensive mechanisms	Key idea