
HAL Id: hal-03620400
https://hal.science/hal-03620400v1

Submitted on 25 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security of Federated Learning: Attacks, Defensive
Mechanisms, and Challenges

Mourad Benmalek, Mohamed Ali Benrekia, Yacine Challal

To cite this version:
Mourad Benmalek, Mohamed Ali Benrekia, Yacine Challal. Security of Federated Learning: Attacks,
Defensive Mechanisms, and Challenges. Revue des Sciences et Technologies de l’Information - Série
RIA : Revue d’Intelligence Artificielle, 2022, 36 (1), pp.49-59. �10.18280/ria.360106�. �hal-03620400�

https://hal.science/hal-03620400v1
https://hal.archives-ouvertes.fr


 

  
Security of Federated Learning: Attacks, Defensive Mechanisms, and Challenges  
 
Mourad Benmalek*, Mohamed Ali Benrekia, Yacine Challal 
 

 

Laboratoire des Méthodes de Conception des Systèmes. Ecole nationale Supérieure d’Informatique, BP 68M, 16309, Oued-
Smar, Algiers, Algeria 
 
Corresponding Author Email: m_benmalek@esi.dz 
 
https://doi.org/10.18280/ria.xxxxxx 

  
ABSTRACT 
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Accepted:  

 Recently, a new Artificial Intelligence (AI) paradigm, known as Federated Learning (FL), 
has been introduced. It is a decentralized approach to apply Machine Learning (ML) on-
device without risking the disclosure and tracing of sensitive and private information. 
Instead of training the global model on a centralized server (by aggregating the clients’ 
private data), FL trains a global shared model by only aggregating clients’ locally-computed 
updates (the clients’ private data remains distributed across the clients’ devices). However, 
as secure as the FL seems, it by itself does not give the levels of privacy and security 
required by today’s distributed systems. This paper seeks to provide a holistic view of FL’s 
security concerns. We outline the most important attacks and vulnerabilities that are highly 
relevant to FL systems. Then, we present the recent proposed defensive mechanisms. 
Finally, we highlight the outstanding challenges, and we discuss the possible future research 
directions. 
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1. INTRODUCTION 
 

In recent years, improvements in the implementation of 
Machine Learning (ML) models, have significantly increased 
the adoption of this technology in a wide range real-world 
systems that revolutionize almost all industries [1]-[6]. 
Despite ML's enormous success, many domains can only 
desire to benefit from it, but are unable to do so due to two 
significant obstacles: (1) concerns about clients’ data privacy, 
as well as the laws and regulations that govern them, and (2) 
inability to develop a ML model because of insufficient data 
or high training overheads. 

In order to overcome these obstacles, Federated Learning 
(FL) [7] emerges as an effective technique to exploit 
distributed data and computing resources, in order to 
collaboratively train ML models, while adhering to laws and 
regulations, and protecting users’ data security and privacy. As 
consequent, ML algorithms have become further integrated in 
the devices of end users. This new paradigm in ML, famous as 
“privacy-by-design”, allows a number of clients’ devices to 
train a ML model collaboratively. A key feature would be that 
the clients’ private data remain stored on the client’s device. 
By conducting model training at the clients’ devices, aggregate 
analytics could be accomplished without having to collect the 
clients’ data themselves [8]. 

However, as secure as the FL seems, it by itself does not 
give the levels of privacy and security demanded by today’s 
distributed systems requirements [9]. Beyond fundamental 
and FL-specific restrictions, the security of FL systems 
themselves are essential for developing networks where users 
can collaborate, learn, and most importantly trust. FL systems 
are vulnerable to a slew of new attacks and threats that target 
each stage of training and deployment process. Attackers can 
exploit flaws in FL systems in a variety of ways. For example, 
an attacker may maliciously corrupt training data or local 

model updates on clients’ devices before sending them to the 
central server. He may also intercept the model updates 
exchanged between the central server and the clients’ devices 
and replace them with malicious model updates. In order to 
overcome these security threats, many researchers have 
proposed mechanisms that defend against FL attacks and 
vulnerabilities. 

 
1.1 Contributions 

 
In this paper, we seek to provide a holistic view of FL’s 

security concerns. The main contributions of this paper are 
presented as follows: 

 We outline the most important vulnerabilities and 
attacks in FL environments, such as poisoning attacks, 
inference attacks, communication attacks, and free-
riding attacks. 

 We present the recent proposed security mechanisms 
that defend against the security attacks and threats in 
FL systems. 

 We highlight the outstanding challenges, and we 
address the future research opportunities to improve the 
security of FL systems. 

 
1.2 Paper organization 

 
This paper is organized as follows. The basics of FL are 

introduced in Section 2. The major attacks and threats that are 
relevant to FL settings are presented in Section 3. The recent 
proposed security defensive mechanisms that defend against 
the security attacks and threats are summarized in Section 4. 
Section 5 identifies the research challenges and discusses the 
future directions towards a robust and secure FL. Finally, 
Section 6 gives conclusion remarks. 
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2. BASICS OF FEDERATED LEARNING 
 
FL [7]-[13] is a ML-based framework in which numerous 

clients cooperate to solve a ML problem, under the supervision 
and the coordination of a central server usually referred to as 
FL server. In other words, “it is a distributed ML strategy that 
generates a global model by learning from multiple 
decentralized edge clients. FL enables on-device training, 
keeping the client’s local data private, and further, updating 
the global model based on the local model updates” [14]. 

From a privacy perspective, FL complies with the “privacy-
by-design” guidelines made by the European Union Agency 
for Network and Information Security (ENISA) [15] since the 
clients’ private data are held locally and are not transferred to 
the FL server (the client’s device uses meaningful data to 
update the local models, and model updates are aggregates of 
the client’s private data). This has made FL a more privacy-
friendly technique, attracting many communities to use it 
instead of the standard ML technique based on centralized data 
collection and centralized model training. 

In order to understand the different FL security aspects 
presented in later sections, we give in this section a non-
exhaustive overview of different concepts, techniques, and 
approaches used to implement this AI paradigm in practice. 

 
2.1 Federated learning implementation 

 
FL can be viewed as an iterative learning process in which 

the global model is improved with each round. FL process 
flow follows three steps [16]: 

 Model initialization: each client’s device receives the 
initial ML model from the FL server. 

 Local model training: each client’s device trains its 
own model with the client’s local training data. 

 Aggregation of local models: the FL server collects 
updated model weights, and then it aggregates them to 
the global model, which is subsequently updated to 
replace each client’s local model. 

As shown in Figure 1, FL is in a continuous iterative 
learning process that repeats the above steps (steps 2 and 3) to 
maintain the global model updated across all the participants. 

 
2.2 Network topology in federated learning 
 

Based on network topology, the  FL can be categorized into 
two classes: (1) Centralized FL, and (2) Fully decentralized FL 
[17]. 

 
2.2.1 Centralized federated learning 

As shown in Figure 1, even though FL is typically 
considered as a decentralized approach, a centralized server is 
required to collect clients’ model updates and aggregate them 
to the global model. Unlike in traditional ML systems where 
the global model is trained on a centralized server by 
aggregating the clients’ private data, the centralized server in 
FL trains the global model by only aggregating clients’ 
updates. The Gboard keyboard application (developed by 
Google) is an example of centralized FL systems. 

 
2.2.2 Fully decentralized federated learning 

As shown in Figure 2, no central server is required in fully 
decentralized FL systems. In this type of FL systems, 
participants improve their models by sharing information with 
their neighbors using Peer-2-Peer (P2P) communications. 

 
 

Figure 1. A schematic diagram of FL process flow 
 
2.3 Data partition in federated learning 
 

As shown in Figure 3, the distribution of data among clients 
classifies FL into three classes : (1) Vertical Federated 
Learning (VFL), (2) Horizontal Federated Learning (HFL), 
and (3) Federated Transfer Learning (FTL). The three classes 
are defined as follows [10]: 

 
2.3.1 Vertical Federated Learning 

VFL is frequently used when two datasets need to share 
identical sample IDs, but different feature spaces. An example 
for VFL approach would be a scenario from business domain, 
where a client A (Amazon) has information about customers’ 
book purchases on Amazon, and client B (Goodreads) has 
information about customers’ book reviews. Using these two 
sets of datasets from different feature spaces, one may better 
serve the customers by using book reviews information to 
provide better book recommendation to the customers 
browsing Amazon’s books. 
 
2.3.2 Horizontal Federated Learning 

In this class, there is some overlap between the features of 
data dispersed over multiple participants, while the data are 
fairly distinct in sample space. Clients in this type of FL share 
similar features in terms of domain, usage style of derived 
statistical information, or any other FL outcome. An example 
for HFL approach would be a scenario from medical domain, 
where multiple hospitals are collaborating to train a ML model 
(using medical images) for detecting cancer cells. Due to the 
laws and constraints of private medical data, medical images 
cannot be shared as is. However, with FL, information on such 
sensitive data may be safely transmitted through a secure 
aggregated update from each hospital. 
 
2.3.3 Federated Transfer Learning 

FTL is typically used when FL participants have little 
overlap in both sample and feature spaces. FTL enables to 
move the knowledge of one domain (the source domain) to 
another domain (the target domain) to achieve better learning 
results. An example for FTL approach would be a scenario of 
training a book recommendation model from the user’s past 
browsing behavior. 



 

 
 

Figure 2. Fully decentralized FL 
 
2.4 Aggregation algorithms in federated learning 
 

The aggregation algorithm can be defined as the logic that 
combines the locally-computed updates from all the clients 
participating in the training phase [18]. These algorithms play 
a cornerstone role in any FL system. For that, several 
aggregation algorithms have been proposed in the literature. 
We present in the following some of the most used aggregation 
algorithms: 

 
2.4.1 FedAvg 

The Federated Averaging algorithm (FedAvg) is regarded 
as the de facto optimization algorithm in the federated setting. 
This aggregation algorithm, implemented by Google [7], runs 
Stochastic Gradient Descent (SGD) in parallel on K devices, 
where K is a small fraction of the total clients’ devices in the 
FL network. After that, the clients’ devices communicate their 
model updates to a FL server, where the global model is built 
using averaging logic to compute the weighted sum of all the 
received updates. Although FedAvg has shown empirical 
success in heterogeneous settings, it does not entirely address 
the underlying challenges associated with heterogeneity [19]. 

 
2.4.2 FedProx 

To address the challenges of heterogeneity in FL 
environments, Li et al. [19] proposed FedProx. As stated by 
the authors, “FedProx algorithm can be viewed as a 
generalization and re-parametrization of FedAvg”. They 
proposed to add a proximal term to the local subproblem that 
helps to effectively limit the impact of variable local updates, 
and thus improve the stability of the method. Moreover, they 
proved that FedProx achieves better convergence and stability 
compared to FedAvg in heterogeneous FL environments. 

 
2.4.3 SMC-Avg 

A secure aggregation algorithm, called Secure Multi-Party 
Computation Averaging (SMC-Avg) was proposed in [20], 
[21]. SMC-Avg algorithm is based on the concept of the Secure 
Multi-party Computation (SMC), which aggregates private 
values of clients’ models without revealing information about 
their private values. SMC-Avg algorithm is suitable to deal 
with the problems of the mobile device-based FL networks. 

 
 

Figure 3. Data partition in FL 
 
 
3. SECURITY ATTACKS IN FEDERATED LEARNING 

 
While FL comes with privacy guarantees regarding the 

protection of private data in ML settings, exchanging the 
model updates, as well as the large number of training 
iterations and communications expose the FL system to 
curious and malicious attackers [22]-[24]. Several attacks are 
already identified against FL systems. In this section, we 
present the most important attacks and vulnerabilities in FL 
environments. We categorize attacks against FL systems into 
four groups: poisoning attacks, inference attacks, 
communication attacks, and free-riding attacks. Table 1 
summarizes the properties of attacks on FL settings. 

 
3.1 Poisoning attacks 

 
Typically, these attacks are undertaken by the insiders on 

FL systems [17], [25]. They try to prevent a model from being 
learned at all, or to bias the model to produce inferences that 
are suitable to the attacker. Regarding the attacker’s 
capabilities, we classify poisoning attacks into two types: data 
poisoning attacks and model poisoning attacks [26]. 

 
3.1.1 Data poisoning attacks 

They are attacks that compromise the clients’ training data 
to distort the output of the global model at inference time. As 
shown in Figure 4, an adversary participant may adversarially 
manipulate existing inputs or add poison instances to corrupt 
the global model’s output [27]. As shown in Figure 5, we 
recognize two classes of attacks in this category: 

 
Clean-label attacks. In this category of attacks, the 

adversary assumes that data are certified as belonging to the 
correct class, so, he cannot change the label of any input data, 
and he must craft the poisoned training data to appear as 
correctly labeled as the non-corrupted data. Authors in [27] 
achieved 100% attack success rate on the dog-vs-fish 
classification task using the feature collision technique, where 
the attacker exploits the high complexity and nonlinearity of 
the function f that propagates an input X through the neural 
network to the last layer, it is possible to find an example (a 
dog’s picture) that “collides” with the target (fish class) in 
feature space, while simultaneously being close to the base 
instance b (dog class) in input space. 



 

 
 

Figure 4. An example of data poisoning attack in FL systems 
 
Dirty-label attacks. In this category of attacks, the adversary 
participant can add, remove, or change any data samples he 
intends to misclassify with the desired target label into the 
training set. A very known example of dirty-label poisoning 
attack is label-flipping [28], [29] which has been demonstrated 
to be effective in traditional ML settings and become a feasible 
strategy to implement in FL settings. 
 
3.1.1 Model poisoning attacks 

They are attacks where malicious clients directly change the 
learning rule and affect gradients that they share with the FL 
server during the training process [26]. We can recognize 
several techniques in this category: 

 
Gradient manipulation attacks. In this type of attacks, 

adversaries perform adversarial manipulations of the training 
process by manipulating local model gradients to compromise 
the global model performance and reduce the overall accuracy 
[26]. This technique can be used for example to modify an 
image classifier so that it assigns an attacker-chosen label to 
images with certain features or force a word predictor to 
complete certain sentences with an attacker-chosen word [22]. 

 
Training rule manipulation attacks. In this type of attacks, if 

the attackers have access to the model, they may be able to 
manipulate its output such that it has the same distribution as 
correct model updates, making the attack undetectable [30]. 
For example, the authors in [31] added a penalty term to the 
objective function in order to reduce the distance between the 
wrong and the correct weight update distributions. This 
modification helped to successfully achieve a non-detectable 
targeted model poisoning attack. 

 
Backdoor attacks. These attacks can be viewed as a type of 

model poisoning attacks. A malicious participant trains its 
local model with poisoned data and uploads the locally-
computed updates to the FL server, embedding a backdoor to 
the global model after unwitting aggregative optimization 

[32]. The authors in [22], [33] experiment on how backdoor 
attacks are implemented. 

 
3.2 Inference attacks 

 
These attacks are adversarial algorithms that are capable of 

extracting meaningful insights about the training data via 
analysis of locally-computed updates [30], [34]. Inference 
attacks fall into four categories: 

 
3.2.1 Membership inference attacks 

Under this category, attackers aim to identify whether a 
specific sample belongs to a given class represented by the 
model and/or whether a specific sample was used to train the 
model [35]. For instance, an adversary can determine whether 
a given patient profile was used to train a classifier associated 
with a disease. 

 
3.2.2 Properties inference attacks 
Under this category, attackers attempt to induce properties 

of other clients’ private data that are independent of the 
features which characterize the FL model classes [35]. For 
instance, a property inference attack would be for facial 
recognition models, if a class corresponds to a certain 
individual, the adversary task would be determining whether 
the individual wears glasses or not [36]. 

 
3.2.3 Training inputs and labels inference attacks 

These attacks are much destructive than previous ones since 
they can not only determine the label of the FL model classes 
but also the client’s training inputs. In [37] and [38], the 
authors showed that the proposed optimization algorithm can 
obtain both the training inputs and the labels in just a few 
rounds. 

 
3.2.4 GANs-based inference attacks 

Under this category, powerful attacks can be performed 
through Generative Adversarial Networks (GANs). GANs 
have been recently proposed in [39] and are still being 
intensively developed. The architecture of GANs is composed 
of two models: Discriminator D and Generator G. The GAN-
based attacks exploit the real-time nature of the FL process 
which allows the attacker to train a GAN generating synthetic 
samples that are statistically representative of the training data. 
It should be noted that GANs generate these samples without 
having the right to access clients’ private data. The GAN is 
first initialized with random noise, and at each round, it is 
trained to mimic the inputs in the training set of the 
discriminative network. Figure 6 shows an example of GANs-
based inference attack. 

 
3.3 Communication attacks 

 
As mentioned above, FL is based on an iterative learning 

process in which the global model is improved with each 
round. In order to update the shared global model and maintain 
it updated across all the participants, a large number of 
communication messages should be exchanged between the 
FL server and all the participants over a given network 
(typically, a FL process achieves stability and convergence 
after a large number of communication iterations). Thus, a 
non-secure communication channel is considered an open 
vulnerability. Moreover, the communication bottlenecks can 
drastically destabilize the FL system [17], [40], [41].



 
 

Figure 5. A taxonomy of attacks on FL systems 
 

 
 

Figure 6. An example of GANs-based inference attack in FL systems 
 

3.3.1 Man-In-The-Middle attacks 
In this type of attacks, the Man-in-the-Middle (MITM) 

intercepts the model updates exchanged between the 
participants and the FL server and replaces them with 
malicious updates [42]. Typically, a MITM attack is carried out 
through interfering with real networks or by creating fake 
networks that the MITM controls. After that, the compromised 
communication is frequently stripped of any encryption in 
order to steal, modify or redirect the model updates [43]. This 
attack is difficult to detect because the attacker may be silently 
observing or re-encrypting the hijacked communication to its 
designed destination once saved or modified. 

 
3.3.2 Communications bottlenecks 

As shown in Figure 7, communication bottlenecks can 
drastically destabilize the FL system because they increase the 
number of participants who drop out. Further, discarding 
clients depending on their connection state causes eventual 
biases in the global shared model and affects the aggregation 
of individual updates. Furthermore, techniques that seek to 

decrease the communication overhead [44]-[46], such as 
compression, can be exploited in a destructive way to inject 
noise in individual updates and deteriorate their quality. 

 
3.4 Free-riding attacks 

 
Free-rider attacks consist in crafting fake local updates with 

the purpose of acquiring the global shared model without 
really participating to the FL process [47], [48]. Free-rider is 
generally referred to an individual who benefits from services, 
public goods, or resources, of a communal nature, but do not 
pay for them [49]. In free-riding attacks, there could be two 
main motives to submit fake updates: (1) a client may want to 
save local CPU cycles or other computing resources, also, (2) 
a client may not have the required data, or is concerned about 
data privacy violations, so that local data are not available for 
model training [48]. As shown in Figure 8, the strategy of a 
free-rider, to obtain the final aggregated model, consists in 
participating in FL cycle by mimicking local updating through 
the sharing of opportune crafted parameters. 



 

 
 

Figure 7. Communications bottlenecks in FL systems 
 
 
4. DEFENSES IN FEDERATED LEARNING 

 
Recent studies into FL security have tried to stress-test 

existing techniques for preventing private information 
extraction and model corruption. In this section, we present a 
review of the recent proposed mechanisms that defend against 
the security attacks and threats raised in Section 3. Figure 9 
and Table 2 summarize the prominent types of defensive 
mechanisms in FL. 
 
4.1 Differential Privacy 

 
The basic goal of Differential Privacy (DP) is to ensure that, 

with high probability, no single record in a given client’s 
dataset can be meaningfully discriminated from the other 
records [50]-[52]. The basic idea behind this technique is to 
introduce noise to the client’s sensitive attributes before 
sharing individual updates with the FL server [52]. As a 
consequence, each client’s privacy is protected. Meanwhile, 
the statistical data quality loss caused by the introduced noise 
of each client is rather minor compared with the greater data 
privacy protection. In FL environment, DP distorts client 
updates so that the existence or absence of any given record in 
a client’s private data has no major impact on the update 
shared by the client. 

Based on DP, McMahan et al. [53] proposed DP-FedAvg, a 
noised version of FedAvg (presented earlier in Section 2.4.1) 
that satisfies user-level differential privacy. The main goal of 
DP-FedAvg is to provide a strong guarantee that the trained 
model protects the privacy of clients’ data without affecting 
model quality. Later, Augenstein et al. [54] proposed DP-
FedAvg-GAN with the purpose to protect the clients’ training 
data against GANs-based attacks. 

In [55]-[57], the authors showed that DP can be used as 
defense against data poisoning attacks. Further, Bagdasaryan 
et al. [22] demonstrated that DP applied to clients’ models can 
successfully defend against backdoor attacks, but the required 
noise levels significantly baffle the model’s learning ability 
(i.e., the more we apply noise the higher we protect data but 
the utility decreases drastically). Furthermore, Lecuyer et al. 
[58] studied the possibility of using DP as a defense 
mechanism against inference attacks. 

  
 

Figure 8. An example of free-riding attack in FL systems 
 
4.2 Secure Multi-party Computation 

 
This technique (SMC) was originally proposed with the 

purpose of creating methods for distrustful parties to jointly 
compute a function over their inputs while keeping them 
private [59]. In FL environment, SMC, which is based on 
cryptographic methods, is used to protect the privacy of client 
data. 

In this direction, Google proposed a secure aggregation 
algorithm [60] that securely aggregates the clients’ updates by 
using SMC to compute the weighted averages of received 
updates. Upon receiving a sufficient number of clients’ 
updates, the FL server can decrypt the average update. This is 
possible because client updates are transferred via additive 
secret sharing. As a consequence, the clients’ private data are 
protected. 

In the same direction, Xu et al. [61] proposed a privacy- 
preserving approach, called VerifyNet, that aim to realize 
secure gradient aggregation and verification. This approach 
employs a double-masking method (based on Shamir’s secret 
sharing and homomorphic hash function) making it difficult 
for malicious adversaries to infer training data. Moreover, 
VerifyNet guarantees that the clients may verify the FL 
server’s results, ensuring the FL server’s reliability. 

Although SMC-based methods [60]-[64] provide a secure 
aggregation of the protected clients’ updates, they induce 
significant extra communication overhead among clients 
which may be unaffordable for some devices and networks. 
Moreover, they make countermeasures to security attacks 
(such as model poisoning attacks) ineffective, and attacks 
become difficult to detect by the FL server. 

 
4.3 Anomaly detection 

 
This category of defenses (also called outlier detection) uses 

analytical and statistical methods to identify events that do not 
conform to an expected pattern or activity. In order to identify 
misbehaving clients in FL settings, anomaly detection 
mechanisms could be used. For that, the FL server analyzes 
individual updates and their impact on the global shared model 
to discover attacks such as poisoning attacks. However,  these 
mechanisms are most likely to fail when it comes to targeted 
backdoor attacks. 



Table 1. Summary of attacks on FL systems 
 

Attacks Key idea 
Source of attacks 

Compromised 
Communication 

Distributed 
nature of FL Clients Server 

Poisoning attacks 
Manipulate client’s data or local model to bias the global 
model performance/accuracy ✓ ✓ - - 

Inference attacks 

Analyze the clients’ updates in the goal of illegitimately 
gain knowledge about FL process and use this 
knowledge to extract meaningful insights about the 
training data  

✓ ✓ ✓ - 

Communication 
attacks 

Intercept the clients’ updates, then replace them with 
faulty or malicious updates. Moreover, communication 
bottlenecks can drastically destabilize the FL system 

- - ✓ ✓ 

Free-riding attacks 
Craft fake local updates with the purpose of acquiring 
the global shared model without really participating to 
the FL process 

✓ - - - 

 

 
 

Figure 9. An overview of defensive mechanisms in FL systems 
 

Chen et al. [65] proposed an anomaly detection-based 
technique, in which the FL server can reconstruct the clients’ 
updated models and compare the model performance metrics 
against a validation dataset with respect to the model obtained 
by aggregating all updates except that of the client. After that, 
any client updates that decrease model performance, according 
to some criteria or threshold, are marked as outliers. 

Cao et al. [66] proposed another defense technique called 
Sniper. The proposed approach can recognize honest clients 
and decrease the success rate of poisoning attacks to 2% even 
when multiple attackers are colluded. In Sniper, the FL server 
identifies legitimate clients by solving a maximum clique 
problem in a graph constructed with clients’ shared updates as 
vertices and if the Euclidean distance between two vertices is 
small enough, then there exists an edge between them. The FL 
server then finds the maximum clique in the graph, and 
aggregates vertices (local models) in the clique to get the 
global FL model. 

In another work, Fung et al. [67] presented FoolsGold, a 
novel defensive mechanism to cope with poisoning attacks. In 
their work, the authors defined poisoning sybils as malicious 
clients creating multiple fake identities to mount more 
powerful poisoning attacks on FL and transfer fake updates to 
the FL server. After that, they presented their defensive 
technique that leverages client similarity to identify poisoning 
sybils based on the diversity of client updates, because in the 
distributed learning process, each client’s private data has a 
unique distribution, while sybils aim to the same objective and 
will share updates that appear more similar to each other than 

non-malicious clients. On the contrary to other defensive 
techniques, this mechanism does not require any changes of 
the protocol executed on client-side. In addition, it doesn’t 
need prior knowledge of the number of malicious clients. 

Many other research works have been developed in this 
category [29], [68]. In these studies, the proposed approaches 
aim to detect a deviation in individual updates from each 
client, as well as the verification of honesty of training inputs. 

 
4.4 Robust aggregation 

 
As mentioned above, robust aggregation algorithms play a 

cornerstone role in any FL system, and several algorithms 
[69]-[72] have been proposed in the literature. Theses 
algorithms are used to detect and discard faulty model updates 
during the training process. Moreover, robust aggregation 
algorithms should be able to sustain clients’ dropout and 
communications instabilities. They can also address the 
challenges of heterogeneity in FL environments [19]. 

In addition to algorithms presented in Section 2.4, Lu and 
Fan [71] proposed an aggregation algorithm that uses 
Gaussian distribution to measure clients’ potential 
contributions. Further, they proposed layer-wise optimizing 
steps, so the aggregation works well on different functional 
units in the neural network. Furthermore, they showed that the 
proposed algorithm achieves better convergence and stability 
compared to the well-known aggregation algorithm FedAvg 
[7]. Moreover, this algorithm outperforms FedAvg in terms of 
robustness against attacks. 



Table 2. Summary of defensive mechanisms in FL systems 
 

Defensive mechanisms Key idea Attacks 

Differential Privacy 
Introduce noise to the client’s sensitive data before sharing  
individual updates with the FL server 

 Data poisoning attacks 
 Backdoor attacks 
 Inference attacks 

Secure Multi-party Computation Encrypt clients’ uploaded parameters 
 Inference attacks 
 MITM attacks 

Anomaly detection Analyze clients’ updates to identify misbehaving clients 
 Free-riding attacks 
 Model poisoning attacks 
 Data poisoning attacks 

Robust aggregation Detect malicious individual updates during training process 
 Inference attacks 
 Model poisoning attacks 
 Data poisoning attacks 

Federated distillation Transfer knowledge from a fully trained model to another model 

 Communications bottlenecks 
 MITM attacks 
 Inference attacks 
 GANs-based attacks 

 
4.5 Federated distillation 

 
Federated Distillation [73]-[76] (also called Federated 

Knowledge Distillation) is regarded as an alternative of the 
model compression method. As mentioned above, a large 
number of communication messages should be exchanged 
between all the clients and the FL server to update the global 
shared model and maintain it updated across all the clients. 
However, these exchanged messages can drastically 
destabilize the FL system. For that, federated distillation is a 
compelling FL solution in which a fully trained model 
transfers knowledge to a small model step by step on what 
needs to be done. The idea of sharing knowledge only instead 
of model parameters can be used to improve the security and 
privacy of the clients’ private data. Moreover, this concept 
helps to save communication and reduce computation 
overheads. 

In this direction, Li and Wang [76] proposed an algorithm 
of federated distillation called FedMD. In this algorithm, the 
authors seek to transfer knowledge from a fully trained model 
to a smaller model. Typically, the knowledge is a pre-trained 
model’s logit, transferred to a small model for compression. 
The knowledge can also be a collection of other small models’ 
logits, in that the collection of forecasts is often more accurate 
than individual predictions. 

 
 

5. CHALLENGES AND FUTURE OPPORTUNITIES 
 
To complete our overview, we discuss the outstanding 

challenges, and we address the future research opportunities to 
improve the robustness of FL environments, summarized in 
the following recommendations: 

 
 

5.1 Ensuring and building trust 
 
When private data is stored on clients’ devices, FL servers 

have little scope for manual verification. Thus, the question 
that might arise is: how can the FL server trust reports, such 
as model updates, from clients? Cryptographic primitives may 
offer promise for secure calculations using private data. For 
example, Zero-Knowledge Proofs may be used to ensure that 
participants are transferring individual updates with pre-
specified properties to defend against backdoor attacks and 
model corruption attacks, while avoiding the disclosure of 

clients’ private data. However, it is important to understand 
better how to effectively implement and apply these 
cryptographic primitives and protocols, especially in large-
scale FL systems. 

 
5.2 Ensuring traceability 

 
Ensuring traceability of the global model throughout the 

lifecycle of the FL process is another major challenge in FL 
settings. For example, if a model parameter is modified or 
updated during the training process, it is important to have 
backward tracking ability to determine which client’s update 
caused that change. In this direction, we believe that 
blockchain can provide attractive solutions for FL due to its 
unique features, such as traceability, immutability, and 
decentralization [77]. By using blockchain, any update events 
and client actions are transparently tracked by all network 
entities. Moreover, a model parameter modification or update 
can be easily traced through blockchain transaction logs [78]. 

 
5.3 Ensuring a trade-off between security/privacy and 
performance/accuracy 

 
As presented in this paper, many defensive approaches for 

FL security have been designed, each of which is proposed to 
address different security/privacy and performance/accuracy 
objectives. However, each one of them has its own pros and 
cons. Thus, the question that might arise is: how to ensure a 
better trade-off between security/privacy and 
performance/accuracy? On the one hand, designing efficient 
FL approaches should not undermine the robustness of the 
proposed mechanisms. If the approach is not secure against the 
different attacks, an attacker can affect the FL process. For 
example, if the encryption level in SMC-based mechanisms or 
the quantity of noise in DP-based mechanisms is not enough, 
the clients that participate to the FL process still suffer from 
the risk of privacy leakage. On the other hand, if the encryption 
level is too high or too much noise added to the exchanged 
updates, the FL model severally suffers from low accuracy. 

 
5.4 Deploying decentralized federated learning 

 
In the traditional FL systems, a third party (which is the FL 

server) is required for system initialization, supervision, and 
global model aggregation. However, a setting where no central 
server is required in the system is a potential framework for 



 

collaboration among applications that do not trust any third 
party. For example, we can consider a strategy where each 
client that participates to the FL system could be elected as a 
server using a round robin method. It would be interesting to 
explore if existing attacks and vulnerabilities on the traditional 
FL still apply in this decentralized scenario, as well as new 
attack surfaces that may be opened. Therefore, the defensive 
mechanisms of decentralized FL should also be investigated. 

 
 

6. CONCLUSION 
 
As FL is becoming widely used in many practical 

applications that aim to preserve users’ privacy, protecting the 
security of this new paradigm becomes an urgent need. In this 
paper, we have presented a survey on security concerns in FL 
settings. Specifically, we have revisited existing security 
attacks and threats towards FL, such as poisoning attacks, 
inference attacks, communication attacks, and free-riding 
attacks. Furthermore, we have presented the current defensive 
techniques based on differential privacy, secure multi-party 
computation, anomaly detection, robust aggregation, and 
federated distillation. We showed that there is not yet a 
defensive mechanism that fulfills all the security/privacy and 
performance/accuracy objectives and that there is still much 
work to be done. After that, we have presented four interesting 
research topics in this field. We hope that such survey can 
serve as a valuable reference for researchers in both FL and 
security fields. 
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