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Abstract

Modelling the mean and variability in a population of images, a task referred to as atlas
estimation, remains very challenging, especially in a clinical setting where deformations
between images can occur at multiple scales. In this paper, we introduce a coarse-to-fine
strategy for atlas estimation in the Large Deformation Diffeomorphic Metric Mapping frame-
work, based on a finite parametrization of the subjects’ velocity field. Using the Haar
Wavelet Transform, a multiscale representation of the initial velocity fields is computed
in order to optimize the template-to-subject deformations in a coarse-to-fine fashion. This
reparametrization preserves the reproducing kernel Hilbert space structure of the velocity
fields, enabling the algorithm to perform efficiently gradient descent. Numerical experiments
on three different datasets, including a dataset of abnormal fetal brain images, show that
compared to the original algorithm, the coarse-to-fine strategy reaches higher performance
and yields template images that preserve important details while avoiding unrealistic features.

Keywords: Deformable template model, atlas estimation, diffeomorphic deformations, Haar Wavelet,
coarse-to-fine algorithm

1 Introduction

Although the quantitative analysis of anatom-
ical images is an old problem (Thompson,
1992), to this day it is still a challenging
one, especially given that datasets of clinical
images are often small in number and large in
dimensionality. Estimating the transformation
that warps a shape onto another provides an
efficient way of quantifying shape differences,
which is the cornerstone idea of Computa-
tional Anatomy (Grenander and Miller, 1998).
When one works with collections of images that

are instances of the same anatomical object,
the question arises as to how faithfully model
the mean and variability over these structures.
Atlas estimation is a method to achieve such
modeling: an estimate of the average shape is
given in the form of a template image, which
represents the invariants across the popula-
tion, i.e. shared anatomical features, and the
variability is given by deformations from the
template space to each subject’s space, which
express how these common features vary within
the population (Grenander and Miller, 1998).
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Atlas estimation has many applications in
the field of medical image analysis. The tem-
plate image can be used as reference to describe
typical anatomical structures or serve as a
tool to automatically segment new subjects.
Variations around the template may be used
to characterize pathological deviations from
normality (Gaudfernau et al, 2021) or to iso-
late subgroups in the population (Debavelaere
et al, 2020). Atlases can also be defined in a
spatio-temporal fashion to characterize normal
or pathological changes, such as brain growth
across gestation (Gholipour et al, 2017) or
hippocampus reduction in Alzheimer’s disease
(Debavelaere et al, 2020).

As in registration problems, the choice
of the deformation function describing the
template-to-subject transformations is of pri-
mary importance (Oliveira and Tavares, 2014).
To account for the intra- and inter-subject
anatomical variability in clinical images, non-
linear deformations are mandatory. Among
these, diffeomorphisms are a good choice of
transformation as they are high-dimensional,
smooth and invertible functions with smooth
inverse that preserve the topology of anatomi-
cal images.

The Large Deformation Diffeomorphic
Metric Mapping (LDDMM) setting (Trouvé,
1998; Miller et al, 2002; Christensen et al,
1996) is a mathematical framework in which
objects are deformed through diffeomorphic
transformations of the whole ambient space.
The group of possible transformations forms
a Riemannian manifold of infinite dimension
and parametrize a flexible representation of
deformations. Such models have a very high
number of degrees of freedom and parameters,
hence the need to narrow the search space to
a small subgroup of deformations. This is typ-
ically done by optimizing a cost function that
comprises a distance between the deformed
template and each subject, plus an energy term
acting as spatial regularizer (Durrleman et al,
2012). The latter constrains diffeomorphisms
to be geodesics on the Riemanian Manifold, i.e.
the shortest paths between the identity map
and the diffeomorphism of interest according
to a regularizing metric.

In the LDDMM framework, diffeomor-
phisms are constructed by integrating time-
dependent velocity fields. Conveniently, the
resulting flow of diffeomorphisms is fully deter-
mined by the initial state of the system, which
the model seeks to optimize. The question of

how to parametrize this deformation field has
been subject to significant research. Notably,
Durrleman et al (2012) proposed a finite
and sparse parametrization of velocity fields
based on the convolution of momentum vectors
attached to control points. Velocity fields are
usually regularized by a Gaussian kernel, which
defines a Reproducing Kernel Hilbert Space
(RKHS) and induces a right-invariant metric
on the space of diffeomorphisms (Durrleman
et al, 2012).

The choice of this regularizer is critical as it
restricts the range of transformations defined
by the model (Sommer et al, 2012). Specifically,
it constrains the deformations occurring on the
images to a single scale. A large kernel width is
likely to produce smooth but inaccurate defor-
mations while a fine kernel will generate more
accurate but noisy deformations. As clinical
images often present high variability at sev-
eral scales, one might be tempted to increase
the number of parameters in the model by
using many control points and a small kernel.
However, fine kernels make large displacements
more expensive than small ones, and such over-
parametrization will likely trap the optimiza-
tion procedure in a local minimum, achieving
a reasonable numerical solution that is qual-
itatively bad, especially in terms of template
realism. To overcome such problem, hierar-
chical algorithms have been widely used in
the field of image registration (Oliveira and
Tavares, 2014; Modersitzki, 2008): they first
solve the registration problem at coarse scales,
and then refine the transformation at finer and
finer scales by transferring the solution from
one level to the next. These strategies can avoid
more efficiently trapping the algorithm in local
minima related to irregular transformations.
Except for Tan and Qiu (2016), they have yet
to be applied in the LDDMM framework.

In this paper, we propose a coarse-to-fine
atlas estimation procedure based on a wavelet
representation of the initial velocity fields. This
strategy has the advantage of rendering the
algorithm less dependent on the initialization
while favoring more multiscale, hence natural
deformations. We consider the LDDMM set-
ting and we rely on the finite parametrization
of the velocity fields as a linear combination
of RKHS basis elements presented in Durrle-
man et al (2012). Importantly, our strategy
enables us to preserve this structural assump-
tion and the efficient numerical scheme that
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follows. We will show that our algorithm pro-
motes more natural template images as well as
higher stability regarding the initialization.

This paper is organized as follows. We first
explore works related to coarse-to-fine registra-
tion and atlas estimation in Section 2, then we
recall the LDDMM setting in the case of the
finite parametrization of the velocity fields in
Section 3 and introduce our coarse-to-fine atlas
estimation method in Section 4; then, we con-
duct experiments in Section 5 and discuss our
results in Section 6.

2 Related work

Even though multiscale image registration has
been studied repeatedly in the literature, it
has rarely been extended to population anal-
ysis. As registration is a special case of atlas
estimation with a fixed template image, in the
following we will review both registration and
atlas estimation methods that have a multi-
scale property.
Multiscale strategies differ in the way they
handle the different scales of the optimization:
some methods favor a coarse-to-fine fashion
while others handle coarse and fine scales
simultaneously. We will first review coarse-to-
fine strategies with a focus on those relying
on a wavelet-based decomposition. Then, we
will survey the multiscale strategies that have
been introduced in the LDDMM framework.

Wavelet-based multiscale registra-
tion. Coarse-to-fine or hierarchical optimiza-
tion strategies seek to solve the registration
problem at progressively increasing resolu-
tions, with the objective of decreasing the
computational cost and finding a more accu-
rate solution (Modersitzki, 2008). The search
area is first restricted to coarse functions and
the results are progressively refined, with the
parameters estimated at the previous coarser
level propagated to the next finer level. Such
strategies can be coarse-to-fine with regard to
the deformation field (Debroux et al, 2021;
Downie et al, 1996; Wu et al, 2000; Gefen et al,
2004; Sun et al, 2014), and/or with regard to
the registered images (Debroux et al, 2021;
Paquin et al, 2006, 2007, 2008; Athavale et al,
2015; Olivo et al, 1995; Tadmor and Nezzar,
2004). We will not dwell on the latter case,
which is out of the scope of this paper.

The Wavelet Transform provides a mul-
tiresolution decomposition of signals into a

basis of functions with specific frequency, loca-
tion and orientation (Mallat, 1989). Applying
this hierarchical decomposition to deforma-
tions provides a convenient basis for hierarchi-
cal strategies. Amit (1994) first showed that
modelling deformations using a wavelet basis
provides better spatial regularization com-
pared to using a Fourier basis. Wavelet-based
decomposition algorithms were extended to a
variety of wavelet types, such as Haar (Downie
et al, 1996), Cai Wang (Wu et al, 2000; Sun
et al, 2014) and (BV,L2) (Debroux et al,
2021), and to a variety of deformations, such as
motion vectors (Wu et al, 2000), B-splines (Sun
et al, 2014) and elastic deformations (Debroux
et al, 2021). Of note, the Wavelet Transform
has also been used in deformation analysis with
various aims such as data visualization and
compression, again encompassing various types
of wavelet bases such as the Cauchy-Navier
wavelet (Mk et al, 2003), the non-linear Mor-
phlet wavelet (Kaplan and Donoho, 2021) and
the spline wavelet (Lam et al, 2017).

Multiscale registration in the
LDDMM framework In the LDDMM
framework, the choice of the spatial regularizer
restricts the range of possible deformations to
those occurring at a single scale, which often
proves unrealistic (Risser et al, 2011). Thus,
a variety of papers have focused on increas-
ing the flexibility of the deformation model.
These strategies can be broadly classified into
two categories: the first one simultaneously
estimates coexisting flows of different scales
(Risser et al, 2011; Bruveris et al, 2011; Som-
mer et al, 2012; Gris et al, 2016; Tan and Qiu,
2016), and the second one composes multiple
scale flows which are estimated sequentially
(Modin et al, 2018; Miller et al, 2020).

Risser et al (2011); Bruveris et al (2011)
first introduced a multi-kernel extension of the
LDDMM framework in which the deformation
flow is defined by a weighted sum of Gaussian
kernels whose widths are specified by the user.
Weights are tuned in a semi-automatic manner
during a pre-registration step. A spatially-
varying version of this multi-kernel framework,
the kernel bundle, used sparsity priors to allow
the weights of the kernel mixture to vary across
spatial locations (Sommer et al, 2012). In this
framework, the RKHS structure of the velocity
fields is lost, and a new definition of the norm
was introduced to ensure efficient computation
of the flow. Even though this algorithm proved
efficient on the registration of landmark points,
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the increase in computational cost restricts its
application to registration problems involving
few parameters. The kernel bundle framework
was also combined with a coarse-to-fine strat-
egy in an algorithm for cortical surface reg-
istration (Tan and Qiu, 2016): the resolution
of the surfaces is progressively increased along
with that of the deformation field. This strat-
egy has yet to be applied to the registration of
images. Multi-kernel approaches were further
combined with deep learning optimization in
order to learn a local regularizer from the data
(Niethammer et al, 2019; Shen et al, 2019).
However, these methods increase significantly
the complexity of the mathematical model, and
several optimization procedures are required
to tune the networks parameters, the kernel
pre-weights and the deformation parameters.

As in the kernel bundle framework, the tun-
ing of additional parameters is heavy on the
computational cost, which dampens the appli-
cation of such algorithms to high-dimensional
images such as volumetric Magnetic Resonance
Images (MRIs). Of note, a related approach,
based on modular deformations, enables the
user to impose spatially-varying constraints on
the deformation field (Gris et al, 2016). Large
diffeomorphic deformations are built by super-
imposing deformations modules, which encode
local geometrical transformations, making it
possible to construct diffeomorphisms from
multiple scale flows. As in the kernel bun-
dle framework, the space of vector fields is
equipped with an adapted norm. The need for
prior knowledge about the deformation mod-
ules limits the practical application of the
algorithm.

A second and less explored axis of research
constructed a hierarchical representation of
deformations, based on non-coexisting vector
flows of increasing resolution, which are esti-
mated independently and then composed. In a
theoretical paper, Modin et al (2018) extended
(BV,L2) wavelets to express diffeomorphisms
as a composition of deformations of increas-
ingly fine scales, which can be seen as a series
of LDDMM steps. Despite the potential of this
approach, it was not experimented numeri-
cally. A similar approach (Miller et al, 2020)
constructed diffeomorphisms by composing
a series of multiscale vector fields, which
enable to progressively refine the deformation.
Contrary to multi-kernel approaches, such
strategies perform optimization in successive
RKHS of decreasing smoothness, in the spirit

of coarse-to-fine strategies.

As we shall see in the following, our coarse-
to-fine approach is more closely related to the
one that composes multiple scale flows, in the
sense that we perform optimization sequen-
tially in sub-spaces of increasing resolution.
However, our algorithm differs from the pre-
vious ones mainly by the fact that almost
no complexity is added to our mathematical
model: the velocity fields are still defined, at
core, by a single-scale RKHS, which simpli-
fies the implementation of our algorithm while
preserving the efficient optimization scheme of
Durrleman et al (2012).

3 Model of diffeomorphic
deformations

3.1 Large Deformation
Diffeomorphic Metric
Mapping

In the following, we consider a set of N images
(Ii)1≤i≤N of dimension d. We assume that each
image Ii is a smooth deformation of a template
I0 plus an additive random white noise εi:

Ii = I0 ◦ Φ−1
i + εi, ∀i ∈ [1, n] (1)

where Φi is the ith template-to-subject defor-
mation, and I0 ◦ Φ−1

i denotes the action of
the diffeomorphic deformation on the template.
In the atlas estimation problem, one seeks to
estimate the template intensities I0 and the
N template-to-subject deformations. Note that
registration is a specific case of atlas estimation
where the template image is fixed and N = 1.

We choose to work in the LDDMM setting
(Trouvé, 1998; Miller et al, 2002), in which
objects are deformed via deformations of the
whole ambient space. This framework general-
izes the linearized deformation setting in order
to define diffeomorphic deformations that are
invertible and smooth. Diffeomorphisms are
constructed by integrating linearized defor-
mations over time, which are considered as
infinitesimal steps, according to the differential
flow equation:

dx(t)

dt
= vt(x(t))

x(0) = x0 .
(2)
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This equation describes the motion of a par-
ticle x along the curve x(t) in the domain of
interest D. The vector field (v(t))t plays the
role of an instantaneous velocity field. This
model builds a flow of diffeomorphisms Φt :
x0 −→ x(t) ∀t ∈ [0, 1]. The diffeomorphism of
interest Φ1 is defined as the end point of the
path x(t), i.e.:

∀x0 ∈ D, Φ1(x0) = x(1) .

Note that ∀t Φt is indeed a diffeomorphism pro-
vided that the velocity field is regular enough.

To estimate the template intensities I0 and
the N template-to-subject deformations, we
seek to minimize a cost function E composed
of a trade-off between a data fidelity term
quantifying how well the deformations of the
template fit the observed images and a regu-
larity term penalizing the kinetic energy of the
deformation:

E =

N∑
i=1

(
‖Ii − I0 ◦ Φ−1

1,i ‖2

σ2
+

∫ 1

t=0

‖vt,i‖2V

)
,

(3)
where σ controls the trade-off between the two
terms. The first term is the sum of squared dif-
ferences between the deformed template and
each image. The second term imposes that
the solutions are geodesic for the ‖.‖V norm.
Finally, the regularity in the RKHS is large
enough for the diffeomorphisms to be well
defined.

3.2 Discrete parametrization of
diffeomorphisms

While the group of diffeomorphisms is of infi-
nite dimension in theory, transformations can
be restricted to a subgroup of deformations
through a discrete parametrization of the sub-
jects’ velocity field (Durrleman et al, 2012). We
restrict ourselves to vector fields that belong
to a RKHS V , namely the set of square inte-
grable functions convolved with a regularizing
kernel. More precisely, we assume that any vt,i
can be decomposed as a finite linear combina-
tion of the RKHS basis vector fields using a
set of momentum vectors (αk,i)k attached to
kg control points (ck,i)k:

vt,i(x) =

kg∑
k=1

Kg(x, ck,i(t))αk,i(t) , (4)

where Kg is usually a Gaussian kernel whose
width is denoted σg.

We now assume that the initial velocity
field v0,i writes as the interpolation of momen-
tum vector αk,i(0) located at control points
ck,i(0):

v0,i(x) =

kg∑
k=1

Kg(x, ck,i(0))αk,i(0).

In Miller et al (2006), it is proved that the
vector fields that are geodesics with respect to

the norm
∫ 1

0
‖vt,i‖2V dt keep the same structure

along time and write according to Equation
(4).

Furthermore, the evolution of the control
point positions (ck,i(t))k and momentum vec-
tors (αk,i(t))k is described by the Hamilto-
nian system equations (Miller et al, 2006).
Finally, one verifies that the kinetic energy
along geodesic paths is preserved over time, i.e.
∀t ∈ [0, 1], ‖vt,i‖V = ‖v0,i‖V . This implies that
when vt,i is a geodesic, it is fully parametrized
by the initial velocity field v0,i. Hence, esti-
mation of the diffeomorphism Φ1,i boils down
to a geodesic shooting problem. The system
is deterministic, and we only need to optimize
the initial conditions α0,i = (αk,i(0))k and
c0,i = (ck,i(0))k for each subject i along with
the template image I0.

3.3 Optimization

In this work, the position of the control points
(c0,i)i is fixed. With the parametrization intro-
duced in the previous section, the cost function
E of Equation (3) is a function of I0 and (α0,i)i:

E(I0, (α0,i)1≤i≤N ) =

N∑
i=1

(
‖Ii − I0 ◦ Φ−1

1,i ‖2

2σ2
+ ‖v0,i‖2V

)

Even if we are not in a convex setting,
optimization is performed through gradient
descent. Thus, we need to compute the gra-
dient with respect to all the parameters. This
is not a trivial task, but an efficient numer-
ical scheme has been proposed in Durrleman
et al (2012). It relies heavily on the fact that
the vector fields that are solutions of the prob-
lem always remain finite sums of kernels of the
RKHS and that the norm of the vector fields
is the one of the RKHS. This strong struc-
tural assumption allows resolving efficiently
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the Hamiltonian equations of the flow, deform
the template image with the flow and thus
compute the gradient with respect to the tem-
plate. Finally, using a backward integration
along time, the gradient with respect to the
momentum vectors can be computed.

This algorithm is publicly available as part
of the open-source software Deformetrica1.

3.4 Initialization, number of
points and scale

The previous optimization problem is not con-
vex, hence the gradient descent algorithm con-
verges towards a solution that depends on the
initialization. Furthermore, in Durrleman et al
(2012), it is observed that the algorithm may
not converge to a good solution when the num-
ber of control points and thus of parameters is
too large. It should also be stressed that there
is a dependency between the scale of the kernel
and the number of parameters, as a constant
vector field has to be well approximated by
the finite sum: this imposes that the scale σg
should be related to the distance between the
points. Few control points imply a large σg,
and therefore very regular vector fields, while
many control points imply for a smaller σg and
therefore more irregular vector fields.

In the original approach of Durrleman et al
(2012), both the number and position of the
control points are numerically optimized by
applying a L1 sparsity prior to the momenta
in order to inactivate points in zones with
low variability and concentrate the remaining
points in challenging areas. Unfortunately, the
scale of the kernel remains the same and in
practice, the vector fields can only be set to
zero in empty areas. Further, the number and
position of the control points can be optimized
only if one uses a relatively low number of
points, making the algorithm unable to cope
with information-rich images.

One idea would be to change locally the
scale of the kernel so that we can estimate
non evenly smooth vector fields. Even if such
parametrization can be written, one looses the
RKHS structure and thereby the ease of com-
putation. Note that Sommer et al (2012) has
proposed a numerical scheme to cope with this
setting where there is only a finite number of
possible scales and for a very specific, and not
natural, definition of the norm of the vector

1https://www.deformetrica.org/

fields. Alternatively, in line with (Miller et al,
2020), we could solve the problem in several
RKHS of increasingly fine kernel widths, but
then again this would render the optimization
scheme of (Durrleman et al, 2012) inapplicable.

In this paper, we wish to address these
two related issues: the dependency of the algo-
rithm on the initialization, which restrains the
number of parameters that can be properly
optimized, and the impossibility to estimate
vector fields that have locally varying regu-
larity. In the next section, we will describe
a reparametrization of the vector fields which
enables us to impose smoothness constraints
on the deformations and progressively relax
them in a coarse-to-fine fashion. In this way,
the algorithm can cope with non evenly smooth
transformations while using a small σg and
remaining in the original RKHS setting.

4 Multiscale atlas
estimation

Here, we introduce a new method for coarse-
to-fine atlas estimation in which we use a
multiscale representation of the initial velocity
fields based on the Haar Wavelet Transform.

4.1 Reparametrization of the
initial velocity field based on
the Haar Wavelet Transform

Since our algorithm relies on the multiscale
structure of the Wavelet Transform, we intro-
duce the definition and properties of the con-
tinuous Haar Wavelet representation. We recall
how this construction can be extended to a
representation of discrete signals defined on a
grid and we demonstrate how this can be used
to obtain a Haar representation of the initial
velocity fields.

4.1.1 Continuous Haar Wavelet
Transform

Here, we describe the decomposition of a real
signal f defined on the d dimensional space Rd
into a Haar Wavelet basis (Mallat, 1989, 2008).
The wavelet representation decomposes f into
a linear combination of basis functions which
have different resolution, location and orienta-
tion. This representation relies on a collection
of embedded spaces Vs that contain functions
said of scale s. In the case of the Haar Wavelet,
Vs is the space of piecewise constant functions
on a regular grid of size 2s. Any function f can

https://www.deformetrica.org/
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be approximated in this space by computing
a local average: the mean value in each sub-
square of the grid. If we define the piecewise
constant function

ψL(x) =

{
1 for 0 ≤ x < 1

0 otherwise
,

and the d dimensional scaling function φ by

φ(x) =

d∏
i=1

ψL(xi)

with x ∈ Rd, approximating f at scale
s amounts to projecting f onto the space
spanned by the orthonormal family{

φs,k(x) = 2−sd/2φ(2−sx− k)
}
k∈Z

where φs,k is the scaling function rescaled by 2s

and then translated by k2s. The factor 2−sd/2

is a normalization factor that ensures that the
φs,k have unit energy.

When transitioning from the approxima-
tion at scale s to the approximation at the
coarser scale s + 1, some details of f are lost.
These details belong to the orthogonal comple-
ment Ws+1 of the space Vs+1 in Vs. A basis
of this space can be obtained by defining the
piecewise constant function

ψH(x) =


1 for 0 ≤ x < 0.5

−1 for 0.5 ≤ x < 1

0 otherwise

and the d dimensional oriented wavelet func-
tions

ψo(x) =

d∏
i=1

ψoi(xi)

where x ∈ Rd, o ∈ {H,L}d and ∃ i, oi = H.
Indeed, one can verify that an orthonormal
basis of Ws is given by{
ψos,k(x) = 2−sd/2ψo(2−sx− k)

}
k∈Z, ∃i oi=H

.

where ψos,k is the wavelet function of orien-
tation o rescaled by 2s and then translated
by k2s. Note that functions ψL and ψH act
respectively as low and high pass filters. Their
combination yields oriented high pass filters,
e.g., for d = 2, there exist three wavelet func-
tions ψHL, ψLH and ψHH , that express details

of the signal along vertical, horizontal and
diagonal orientations (respectively).

We can thus decompose any function f in
Vs in the two following ways:

f =
∑
k

as,kφs,k

=
∑
k

as+1,kφs+1,k +
∑
o,k

dos+1,kψ
o
s+1,k

As
∑

k as+1,kφs+1,k belongs by construction to
the space Vs+1, we can further decompose it
into a projection onto Vs+2 and a projection
ontoWs+2. Repeating this scheme up to scale S
leads to the following multiscale decomposition
of f :

f =
∑
k

aS,kφS,k +

S∑
s′=s+1

∑
o,k

dos′,kψ
o
s′,k.

The classical wavelet construction is concluded
by letting s go to −∞, enabling one to decom-
pose any function in such bases. Finally, we
observe in particular that any function φs′,k or
ψos′,k with s′ ≥ s is in Vs and therefore can be
decomposed as a linear combination of φs,k′ :

φs′,k =
∑
k′

γs′,k,s,k′φs,k′ (5)

ψos′,k =
∑
k′

γos′,k,s,k′φs,k′ (6)

where γs′,k,s,k′ and γos′,k,s,k′ are some fixed real
numbers.

More importantly, going from the decompo-
sition in Vs to the decomposition in the spaces
VS and (Ws′)s<s′≤S corresponds to a change
of basis and thus to a discrete operation going
from the coefficients (as,k)k to the coefficients
(aS,k)k and (dos′,k)s<s′≤S,k,o. This transforma-
tion is called the Forward Wavelet Transform
(FWT) and its inverse the Inverse Wavelet
Transform (IWT). Both can be computed
directly on the coefficients without relying on
the continuous basis functions.

4.1.2 Haar Wavelet Transform of
functions defined on grids

In our algorithm, rather that using the con-
tinuous Haar wavelet decomposition, we will
employ the related discrete Haar wavelet
decomposition on a d dimensional grid
[[0,K1]]× ...× [[0,Kd]].
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Fig. 1 Decomposition of a 4 by 5 grid according to two bases: classical decomposition into unit functions (top row)
and Haar Wavelet decomposition (four bottom rows). Both decompositions yield 20 coefficients. The letters a and
d refer to approximation and detail coefficients, respectively. Subscripts indicate the scale of the coefficient, the x-y
position of the related wavelet function, and its orientation (in case of detail coefficients). In the grids, empty white
cells denote null values

To any discrete function g on the grid, one
can associate the continuous function f of V0

defined by

f =
∑

k∈[[0,K1]]×...×[[0,Kd]]

g[k]φ0,k,

where the (g[k])k are interpreted as the approx-
imation coefficients (a0,k)k at scale 0 of func-
tion f . By construction, f is a piecewise con-
stant function on the related continuous grid.
Using the FWT algorithm up to scale S, this
function can be decomposed as follows:

f =
∑
k

aS,kφS,k +

S∑
s′=s+1

∑
o,k

dos′,kψ
o
s′,k.

One verifies that aS,k = 0 when ki < 0 or

ki2
S > Ki and ds′,k = 0 when ki < 0 or ki2

s′ >
Ki. Thus, these sums have only a finite num-
ber of coefficients. Further, when the Ki are
powers of 2, i.e. Ki = 2ζi , we impose that the
decomposition cannot exceed a maximum scale
Smax = mini(ζi), so that the scaling function
support remains within

∏
i[0,Ki]. Therefore,

when S ≤ Smax, the previous equation reduces
to:

f =
∑

0≤ki<2ζi−S

aS,kφS,k

+

S∑
s′=s+1

∑
o,0≤ki<2ζi−s

′

dos′,kψ
o
s′,k,

which corresponds exactly to an
orthonormal change of basis. From the
coefficients (g[k])k, one can compute
the coefficients (aS,k)0≤k<2Smax−S and
(dos′,k)s+1≤s′≤S,0<k<2Smax−s′ ,o with the FWT
algorithm and perform the inverse operation
with the IWT algorithm.

Note that the matrices MFWT and MIWT

associated to these transformations are related
to one another. We have obviously MFWT ∗
MIWT = Id and, as these are orthonor-
mal transforms, we also verify that MT

IWT =
MFWT . Furthermore, there exist fast imple-
mentations of these transforms that have a
linear complexity with respect to the number
of coefficients (Mallat, 2008).

In this work, we have implemented the
FWT using the fast lifting scheme described
in Mallat (1989) (Chapter 7.8). This scheme
is strictly equivalent to the previous descrip-
tion when the grid size is a power of 2, with
the difference that it handles non-dyadic grids
through improved computations at the bound-
aries and that FWT and IWT remain orthogo-
nal transforms. Management of the boundaries
is illustrated in Figure 1, where the functions
that describe approximations and details in the
right border of the grid have a smaller support.



Springer Nature 2021 LATEX template

Wavelet-Based Improved Atlas Estimation 9

4.1.3 Preservation of the RKHS
structure of the velocity fields

The previous subsection transposed the clas-
sical Haar description of continuous functions
to discrete functions defined on a grid g. To
implement a coarse-to-fine approach for atlas
estimation, we apply the discrete Haar decom-
position to grids of momentum vectors as
defined in the LDDMM framework.

We recall that in the algorithm of Durrle-
man et al (2012), the initial geodesic vector
field for a given subject i is defined as a finite
linear combination of identical Gaussian ker-
nels that are evaluated at an initial set of
points:

v0,i(x) =
∑
k

Kg(x, ck,i(0))αk,i(0)

where Kg is a Gaussian kernel of width σg
and αk,i(0) is a vector attached to ck,i(0). The
vector field keeps this structure along time:

vt,i(x) =
∑
k

Kg(x, ck,i(t))αk,i(t).

In our scheme, we set the initial points
(ck,i(0))k on a grid so that the first equation
becomes:

v0,i(x) =
∑

k∈[[0,K1]]×...×[[0,Kd]]

Kg(x, ck(0))αk,i(0)

where ck(0) = k.
As the deformation field is entirely char-

acterized by v0,i, we do not modify the
parametrization of vt,i. The initial vector field
defined at each point of the grid [[0,K1]]× ...×
[[0,Kd]] is associated to the piecewise constant
function

fi(x) =
∑

k∈[[0,K1]]×...×[[0,Kd]]

φ0,k(x)αk,i(0),

obtained by replacing Kg(x, ck(0)) by φ0,k,
which is an invertible transform. When apply-
ing the Haar transform independently to each
component of αk,i(0), we implicitly use the
decomposition

fi =
∑
k

aS,k,iφS,k +

S∑
s′=s+1

∑
o,k

dos′,k,iψ
o
s′,k

and thus equivalently

v0,i =
∑
k

aS,k,iφ̃S,k +

S∑
s′=s+1

∑
o,k

dos′,k,iψ̃
o
s′,k

where φ̃s,k (respectively ψ̃os,k) is a function
defined by replacing φ0,k′ by Kg(·, ck′(0)) in
the decomposition of φs,k (resp. of ψos,k) in
Equation 5 (resp. Equation 6).

Even if we define v0,i through the,
now vectorial, wavelet coefficients (aS,k,i)k
and (dos,k,i)1≤s≤S,o,k, the initial velocity
field remains a combination of the original
Kg(x, ck(0)) and thus we are still in the setting
of Durrleman et al (2012). Note that our Haar
parametrization is only properly defined for
t = 0 as the initial grid structure is deformed
under the action of the diffeomorphism φt,i
when the time evolves. Thus, in our optimiza-
tion, we will use the Haar parametrization to
update the initial velocity fields but perform
all the other computations using its classi-
cal representation as a linear combination of
RKHS kernels.

4.2 Coarse-to-fine atlas estimation

4.2.1 Reparametrization of the
initial velocity fields

The key difference between our scheme and the
one of Durrleman et al (2012) is the use of the
Haar parametrization in a fixed grid for the
initial velocity fields. Thus, we optimize a cost
function

E(I0, (β0,i)1≤i≤N ) =

N∑
i=1

(
‖Ii − I0 ◦ Φ−1

1,i ‖2

2σ2
+ ‖v0,i‖2V

)
,

where β0,i is a set of wavelet coefficients
(aS,k,i)k and (dos,k,i)s,k,o, related to the momen-
tum vectors α0,i by α0,i = IWT (β0,i) =
MIWTβ0,i. This implies a relationship between
the gradient ∇β0,iE of the cost function with
respect to the wavelet coefficients β0,i and the
gradient ∇α0,iE with respect to the momenta
α0,i:

∇β0,i
E = MT

IWT∇α0,i
E

= MFWT∇α0,iE = FWT (∇α0,iE)
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Fig. 2 Coarse-to-fine atlas estimation algorithm applied to handwritten digits with σg = 3 (corresponding to
100 control points). The estimated template image is displayed every 10 iterations until convergence. Blue arrows
indicate the estimated momentum vectors that wrap the template to the image of the first subject. Magnitude of
the vectors was multiplied by 1.5 for visualization purposes. Coarse-to-fine steps were performed at iterations 26,
56 and 64. Red lines delineate the support of the Haar wavelet functions at each scale Sj . Control points belonging
to the same area are updated with identical momenta values. At scale Sj = 1, the support of these functions is of
size 1x1 control points and the velocity fields are not constrained anymore. Note that as the grid of control points
is not a power of 2, the support of the wavelet functions located at the borders is reduced.

where we have used the fact that MT
IWT =

MFWT because we have an orthonormal trans-
form. The gradient∇β0,i

E can thereby be com-
puted for almost the same cost as the one of
this latter gradient. If we use the same gradient
descent algorithm as in the original algorithm
but in the wavelet domain, we obtain exactly
the same results as the original algorithm.

To obtain different and hopefully better
results, we enforce some constraints on the
wavelet coefficients of the initial velocity fields.
Namely, we use a coarse-to-fine initialization
strategy by optimizing first the initial veloc-
ity fields whose wavelets coefficients are null
at the finest scales and adding progressively
these fine scale coefficients. In the following, we
describe in detail our procedure which is sum-
marized in Algorithm 1 and illustrated on a
simple example in Figure 2.

4.2.2 Coarse-to-fine optimization

The coarse-to-fine optimization can be seen
as an initialization of each new scale with
the optimal template-to-subject deformations
of the previous coarser scale. Indeed, we have
observed that this seems to decrease the prob-
ability of trapping the optimization in a local

minimum linked to unrealistic deformations,
especially in cases where the images are com-
plex and the deformation grid is fine.

More precisely, at iteration j, we only opti-
mize the wavelet coefficients whose scales are
above or equal to a current decreasing scale Sj ,
and set the coefficients below this scale equal to
0. This can easily be done by applying FWT to
∇α0,i

E to derive the gradient with respect to
β0,i and then setting to 0 all the wavelet coef-
ficients whose scale is strictly smaller than Sj
(”Finer scale silencing step” in Algorithm 1).
We then update the coefficients β0,i with the
modified gradient, and recover the updated α0,i

using the IWT function (”Parameters update
step” of Algorithm 1). If we iterate without
modifying the current scale, we optimize the
cost function in a subspace of functions that
are simpler than in the original algorithm, the
wavelet transform scale limitation acting as a
regularizer.

As we want to optimize on the full set of
functions defined by the momentum vectors,
we progressively decrease the current scale Sj .
We propose to decrease the scale when we
are close to convergence at the current scale
(”Scale refinement step” of Algorithm 1) until
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Algorithm 1 Coarse-to-fine atlas estimation algorithm

1: Input
2: Set of images (Ii)1≤i≤N of dimension d, template image I0, geometric kernel width σg, trade-off

regularity/fidelity-to-data σ, initial step size h
3: Initialization
4: j ← 0
5: Regular grid of control points c0 with spacing σg
6: Template image intensities I0(j) = I0
7: Momentum vectors α0,i(j)← 0 for each subject i
8: Compute β0,i(j) = FWT (α0,i(j)) for each subject i
9: Current scale Sj = maximum scale of β0,0(j)

10: repeat
11: j ← j + 1
12: Compute the gradients ∇α0,i

E for all subjects i and the gradient ∇I0E
13: for each subject i do
14: ∇β0,i

E = FWT (∇α0,i
E) = (aiSmax,k)k ∪ (di,os,k)1≤s≤Smax,k,o

15: for each detail coefficient di,os,k of ∇β0,iE do

16: if s < Sj then . Finer scale silencing step

17: di,os,k = 0
18: end if
19: end for
20: end for
21: β0,i(j) = β0,i(j − 1)− h×∇β0,i

E for all subjects i . Parameter update step
22: α0,i(j) = IWT (β0,i(j)) for all subjects i
23: I0(j) = I0(j − 1)− h×∇I0E
24:

25: Compute the total residual value Rj
26: if

Rj−1−Rj
Rj−1

< 0.01 and Sj > 1 then

27: Sj = Sj−1 − 1 . Scale refinement step
28: end if
29: until Convergence
30: Output
31: Template image I0 and momentum vectors α0,i

we reach the finest possible scale. This is mea-
sured by computing the mean residual norm
over subjects at each step:

∆j(x) =
1

N

∑
i

‖Ij,0 ◦ Φ−1
j,i − Ii‖

2
2, (7)

where j denotes the current iteration.
We then compute the total residual value

Rj = ‖∆j‖1. If the residual decrease with
respect to the previous iteration j − 1 is below
a threshold of 1%, we decide that the algo-
rithm is close to convergence. In the case of
Figure 2, the algorithm starts at S0 = 4, per-
forms optimization until (almost) convergence
at this scale, diminishes the scale to 3 and per-
forms the subsequent scale transitions in the
same manner.

At a given scale Sj , the velocity fields are
allowed to vary spatially only at scales coarser

than Sj−1. In other words, at scale Sj , the ini-
tial velocity field of a given subject i implicitly
writes as follows:

v0,i(x) =
∑
k

aSmax,k,iφ̃Smax,k

+

Smax∑
s′=Sj

∑
k,o

dos′,k,iψ̃
o
s′,k

where φ̃Smax,k and ψ̃os′,k are linear com-
binations of localized Gaussian kernels
Kg(x, ck(0)).

This procedure ensures that the momenta
belonging to the same zone (as defined by the
support of the wavelet functions at scale Sj)
are updated with identical values. This phe-
nomenon is illustrated in Figure 2, where red
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lines delineate the support of the wavelet func-
tions at scale Sj and thus the areas where
the velocity fields are constrained to have even
values.

At each coarse-to-fine step, the support of
the wavelet functions defined at scale Sj is
decreased by a factor of 2d - and so is the size of
the areas in which the velocity fields have even
values. When the algorithm reaches scale 1, the
momenta are updated independently of each
other. Importantly, unlike previous approaches
that represented deformations in a wavelet
basis (Amit, 1994; Downie et al, 1996; Wu et al,
2000; Sun et al, 2014; Gefen et al, 2004; Tor-
bati and Ayatollahi, 2017), when the algorithm
reaches this finest scale, the momentum vec-
tors are completely free of constraints and the
parametrization of the velocity fields is equiv-
alent to its original definition (i.e. a sum of
localized small Gaussian kernels). Thus, in the-
ory, our coarse-to-fine algorithm could reach
the same solutions as the original one, but
as we will see in Section 5, the coarse-to-fine
numerical scheme converges to better solution.

4.2.3 Complexity

Contrary to the previous coarse-to-fine algo-
rithms developed in the LDDMM framework,
our strategy does not add any complexity to
the mathematical model. The parametrization
of the velocity fields remains identical to that
of Durrleman et al (2012). Computation of
the gradients and subsequent cost also remains
identical. The only additional complexity orig-
inates from the algorithms FWT and IWT,
which, following the implementation of Mallat
(2008), are of linear complexity.

5 Experiments

In this section, we compare our algorithm
to the original version from Durrleman et al
(2012) on three different datasets. The train-
ing phase consists in atlas estimation and
the test phase consists in registering the esti-
mated template image to a set of new images.
Performance of the algorithms is assessed by
computing the mean percentage decrease in
residuals after atlas estimation or registration,
and by evaluating visually the quality of the
template images.

We compare the original version of the algo-
rithm, which is available in Deformetrica Ver-
sion 4.3.0, against our modified version which
includes the wavelet reparametrization of the

initial velocity fields. Optimization relies on a
gradient descent algorithm in which the step
sizes h are first scaled by the squared norm of
the gradients and then diminished by a back-
tracking algorithm to guaranty a descent. The
following parameters are used: σ = 0.1 in the
cost criterion; initial step size h = 0.01; conver-
gence threshold = 0.0001. The initial template
image for atlas estimation are given by the
mean of the intensities of the training images.

5.1 Handwritten digits

In this section, we use images of the digit
two extracted from the well-known United
States postal database of handwritten digits
(Hastie et al, 2004). The size of the images
is 28 by 28 pixels. We test the original algo-
rithm against the coarse-to-fine strategy using
an experimental procedure similar to that of
(Durrleman et al, 2012): atlas estimation is
performed using 20 randomly-chosen training
images and the estimated template image is
registered to 10 randomly chosen test images
with the same parameters as those used during
training. This experiment is repeated five times
with different training and test sets. There is
no intersection between any of the training
and test sets. This procedure is performed for
each version of the algorithm and reproduced
with different sets of parameters (number of
control points and width of the Gaussian ker-
nel). Since the five experiments are performed
on independent datasets, we use paired Stu-
dent t-tests to compare performance between
the two algorithms. Table 1 shows the mean
residual decrease achieved by the algorithms
over the experiments. Figure 3 presents the five
template images estimated by each algorithm
with three different sets of parameters, along
with the template image estimated from the
first training set warped to five of the training
images.

Table 1 shows that the coarse-to-fine algo-
rithm outperforms the original version in terms
of residual decrease during both atlas esti-
mation and registration, with differences that
reach significance for σg = 2 and σg = 1.5.
Consistent with these results, we observe in
Figure 3 that the original algorithm yields
highly noisy template images, a trend which
worsens when the number of control points
increases, indicating overfitting. The transfor-
mation of the first template image towards
the training images yields reconstructed images
that are close to the original ones for σg =
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Fig. 3 Estimation of the template image by the original (top rows) and coarse-to-fine (bottom rows) algorithms
on the dataset of handwritten digits with 3 different parameters σg . For each experiment, five template images
(estimated with non-intersecting training sets) are presented on the left, along with the template image estimated
from the first training set wrapped to the first five training images on the right. σg and kg indicate the width of
the Gaussian kernel and the corresponding number of control points, respectively. The number of voxels per control
point are indicated in parentheses.

3, but these deformations become noisy for
lower values of σg. These observations belie the
quantitative evaluation, which shows that the
performance of the original algorithm increases
with the number of parameters. This discrep-
ancy demonstrates that residual decrease alone
is not sufficient to evaluate the accuracy of
the algorithms, as irregular vector fields might
be able to match any subject at the cost of
producing unnatural deformations.

Unlike the original algorithm, the coarse-
to-fine procedure produces realistic template
images, whose quality is preserved when
decreasing σg. Despite the use of non-
intersecting training sets, we notice that tem-
plate images are quite similar to each other.
Moreover, all reconstructed images are very
close to the original ones. Their quality slightly
increases with the number of control points:
this is most evident for the third and fifth
reconstructed subjects, which become more
accurate for lower values of σg.

σg kg Original Coarse-to-fine

Atlas estimation
3 100 89.8 ± 3.1 92.1 ± 1.9
2 196 89.9 ± 1.7 94.7 ± 0.5
1.5 361 92.7 ± 1.7 95.7 ± 1.4

Registration
3 100 90.0 ± 6.1 92.5 ± 6.0
2 196 91.5 ± 5.2 93.5 ± 6.3
1.5 361 91.0 ± 5.1 94.7 ± 7.0

Table 1 Performance of the original and coarse-to-
fine algorithms on the dataset of handwritten digits
during the training and test phases. Data are mean ±
standard deviation of residual decrease over five
experiments (in percentage). Bold style indicates that
the coarse-to-fine algorithm performed significantly
better than the original one (pvalue< 0.05). σg : width
of the Gaussian kernel; kg : number of control points.

5.2 Artificial characters

In the previous experiment, one can remark
that the algorithm’s performance diverge most
when using a high number of parameters.
Therefore, one might simply be tempted to
employ the original algorithm with a lower
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number of parameters, as in Durrleman et al
(2012) whose experiments were performed with
36 control points. However, datasets that
present a higher amount of details and inter-
subject variability may benefit from our coarse-
to-fine strategy even when a lower number of
control points is used. To confront our algo-
rithm with a more difficult task, we manually
designed a dataset of 30 characters (displayed
in Appendix A). The size of the images is 28
by 28 pixels.

We compare our algorithm to the original
version using cross-validation: the dataset is
randomly split into a training set (24 images)
and a test set (6 images). Each algorithm esti-
mates independently a template image from
the training set, and then registers the tem-
plate to each image in the test set with the
same parameters as those used during train-
ing. This procedure is repeated five times,
and reproduced with different parameters of
the algorithms (number of control points and
width of the Gaussian kernel). No statisti-
cal tests are performed because of the overlap
between the training sets and between the
test sets. Table 2 displays the mean residual
decrease during atlas estimation and registra-
tion and Figure 4 presents the five template
images estimated by each algorithm with three
different sets of parameters, along with five
reconstructed training images.

σg kg Original Coarse-to-fine

Atlas estimation
5 36 86.0 ± 4.5 94.5 ± 0.8
4 49 83.6 ± 3.8 95.6 ± 0.4
3 100 81.6 ± 4.5 96.7 ± 0.5

Registration
5 36 90.2 ± 6.2 94.0 ± 6.3
4 49 89.3 ± 6.0 95.4 ± 4.2
3 100 86.6 ± 7.5 96.4 ± 3.8

Table 2 Performance of the original and coarse-to-
fine algorithm on the dataset of artificial characters
during the training and test phases. Data are mean ±
standard deviation of residual decrease over five folds
of cross-validation (in percentage). σg : width of the
Gaussian kernel; kg : number of control points.

Table 2 shows that the coarse-to-fine algo-
rithm reaches higher performance than the
original algorithm. The performance of the
coarse-to-fine strategy increases with the num-
ber of control points during train and test,
while the original algorithm demonstrates the

opposite trend. These results are supported
by the qualitative evaluation of the template
images. In Figure 4, for σg = 5, the two algo-
rithms generate template images that present
discrete but noticeable differences. In case of
the original version, the arms and legs of the
characters appear slightly fuzzier, and the sec-
ond template image is noisy. This observation
is confirmed by comparing the reconstructed
images: those yielded by the original algorithm
are blurry (and even erroneous in case of the
third subject), while the template and recon-
structed images yielded by the coarse-to-fine
algorithm seem sharp and accurate. As with
the dataset of handwritten digits, the quality
of the template images estimated by the origi-
nal algorithm deteriorates when increasing the
number of control points: the images become
fuzzier and display more erroneous features
such as additional arms below the character’s
neck, present in four of the template images
estimated for σg = 4 and σg = 3. The morphol-
ogy of all but the fifth reconstructed characters
is also completely erroneous. In contrast, the
coarse-to-fine algorithm is able to produce very
stable, sharp and correct template images for
all parameters. Similar observations can be
made regarding the transformation of the tem-
plate image towards the five training images:
the coarse-to-fine strategy succeeds in gener-
ating images that are nearly identical to the
original ones.

These differences have a simple explana-
tion: the original version simultaneously esti-
mates the overall shape of the characters and
details such as the location and orientation of
the arms and legs, making it more dependent
on the initial template image and leading to
the selection of erroneous features, while the
coarse-to-fine strategy first focuses on estimat-
ing the characters main features, which are
then refined during the finer scales. This phe-
nomenon is illustrated by movies that show
the evolution of the estimated templates across
iterations, available at the first author’s web-
page2.

This experiment shows that on a dataset
with high variability, the original algorithm is
unable to estimate templates that are satisfy-
ing with respect to quantitative and qualitative
criteria. The coarse-to-fine algorithm outper-
forms the former in both regards regardless of
the chosen number of parameters.

2https://fleurgaudfernau.github.io/Multiscale atlas
estimation/

https://fleurgaudfernau.github.io/Multiscale_atlas_estimation/
https://fleurgaudfernau.github.io/Multiscale_atlas_estimation/
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Fig. 4 Estimation of the template image by the original (top rows) and coarse-to-fine (bottom rows) algorithms on
the dataset of artificial characters with three different parameters σg . For each experiment, five estimated template
images (for each fold of cross-validation) are presented on the left, along with the template image estimated from
the first training set wrapped to the first five training images on the right. σg indicates the width of the Gaussian
kernel, kg indicates the corresponding number of control points used, and the number of pixels per control point are
indicated in parentheses.

5.3 Fetal brain MRIs

σg kg Original Coarse-to-fine

Atlas estimation
10 1, 320 50.2 ± 3.4 52.3 ± 3.4
7 4, 050 56.4 ± 3.7 62.2 ± 0.9
5 10, 080 61.5 ± 4.0 67.5 ± 1.6

Registration
10 1, 320 58.9 ± 6.9 60.1 ± 6.7
7 4, 050 65.0 ± 6.2 68.9 ± 5.7
5 10, 080 69.6 ± 5.0 74.4 ± 5.2

Table 3 Performance of the original and
coarse-to-fine algorithm on the dataset of fetal brains
MRIs during the training and test phases. Data are
mean ± standard deviation of residual decrease over
five folds of cross-validation (in percentage). σg : width
of the Gaussian kernel; kg : number of control points.

To evaluate the performance of our coarse-
to-fine approach on a dataset of clinical images,
we select 30 fetal brain MRIs with agenesis
of the corpus callosum acquired in Hopital

Trousseau, France. Gestational ages are com-
prised between 32 and 34 weeks of gestation
(mean = 32.9 ± 0.6). A more detailed presen-
tation of the dataset is available in Gaudfernau
et al (2021).

Agenesis of the corpus callosum is a devel-
opmental anomaly characterized by the total
or partial absence of the corpus callosum. It
is often associated to anatomical features such
as widening of the lateral ventricles. Atlas esti-
mation can help better understand congenital
anomalies by providing an insight into how
these anatomical characteristics vary together
(Gaudfernau et al, 2021). However, as abnor-
mal fetal brains may present a wide range of
defects, this makes atlas estimation more diffi-
cult and prone to errors than with datasets of
healthy fetuses. Thus, it is crucial to develop
algorithms that are capable of estimating real-
istic templates on both healthy and abnormal
subjects.

The brain MRIs are preprocessed, volume
reconstructed and rigidly aligned according to
the procedure described in Gaudfernau et al
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Fig. 5 Estimation of the template image by the original and coarse-to-fine algorithms on the dataset of fetal brain
MRIs with 3 different parameters σg . σg and kg indicate the width of the Gaussian kernel and the corresponding
number of control points, respectively. The number of voxels per control point are indicated in parentheses. For
each experiment, the estimated template image from the first fold of cross-validation is presented in axial, sagittal
and coronal views in the left column. The first row displays the first two original training images; the middle and
right columns display the corresponding reconstructed images (i.e. the template image warped to the two training
images). Salient differences between the algorithms are indicated by specific markers: white arrows indicate the
cingulum bundle, blue arrows the left frontal horn, red arrows the left basal ganglia, orange circles the posterior part
of the right lateral ventricle, red circles the right superior temporal sulcus, yellow arrows the theoretical location of
the corpus callosum and green arrows the cingulate sulcus.

(2021). The final images have size 105x100x120
voxels. Cross-validation is performed in the
same manner as in section 5.2, with 24 images
used for atlas estimation and 6 images used
for testing. Figure 5 presents one example of
the five estimated template images during cross
validation for different parameters σg, and
Table 3 displays the mean residual decrease
yielded by the algorithms.

Table 3 shows the importance of setting a
high number of parameters when performing
atlas estimation on clinical images with high
variability: the performance of both algorithms

in train and test rises with the number of con-
trol points, which is reflected by the increasing
sharpness of the template images in Figure 5.

During training, the mean residual decrease
of the coarse-to-fine algorithm is superior
to that of the original algorithm for all
parametrizations. The estimated coarse-to-fine
atlases are also more stable, as indicated by
lower values of standard deviation during train-
ing. Registration results demonstrate that the
coarse-to-fine algorithm has a higher ability to
generalize to new images.

In terms of template quality, the origi-
nal and coarse-to-fine algorithms yield distinct
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results. The brain images estimated with the
latter display sharper features and enhanced
contrast between structures, especially for
higher values of σg. The template images esti-
mated by the original algorithm display more
fuzzy areas, especially in the cingulum bundle
(white arrows), the frontal horns (blue arrows)
and the posterior area of the lateral ventricles
(orange circles).

On the contrary, these structures are more
clearly delineated in the template images gen-
erated by the coarse-to-fine algorithm. In addi-
tion, this method leads to more pronounced
gyration patterns (e.g. the superior temporal
sulcus, see red circles) and more visible subcor-
tical brain structures such as the basal ganglia
(red arrows). Interestingly, the most salient
differences between the estimated templates
are located at the medial surface of the brain
(sagittal view), which presents high variability
between subjects: the surface estimated by the
original algorithm is close to the mean of the
image intensities, while the coarse-to-fine strat-
egy produces a realistic anatomy, with a visible
cingulate sulcus (green arrows).

Some differences can also been noted
between the reconstructed images yielded by
the algorithms. In addition to increased sharp-
ness, the coarse-to-fine template image warped
to the subjects reveals more abnormal features,
such as abnormally shaped corpus callosum in
the case of the first subject (yellow arrows,
middle column).

All together, these results indicate that
our coarse-to-fine algorithm can be successfully
applied to real-world, complex clinical data.

6 Discussion

In this paper, we introduced a novel, wavelet-
based reparametrization of the initial veloc-
ity fields in the LDDMM framework. Tak-
ing advantage of the hierarchical property of
the wavelet decomposition, we implemented
a coarse-to-fine optimization for atlas estima-
tion. This transfer of information from one
scale to the next ensures smarter initialization
of the deformations at each level, leading the
algorithm to favor smoother solutions while
avoiding unrealistic local minima. Contrary to
previous coarse-to-fine algorithms introduced
in the LDDMM framework (Sommer et al,
2012; Gris et al, 2016; Modin et al, 2018;
Miller et al, 2020), our approach adds very
little complexity to the mathematical model.

Specifically, the reparametrization of the veloc-
ity fields can be seen as an additional layer
of spatial regularization, which preserves the
RKHS structure of the vector fields and the
efficient numerical scheme used to compute the
gradients.

We performed experiments on three
datasets of increasing difficulty. Compared
to the original algorithm, the coarse-to-fine
algorithm yields higher quality templates with
better stability, that are able to generalize to
unseen images. Not only does our strategy pro-
duce images that have a realistic anatomy, but
it leads to enhanced preservation of anatomical
details, including unusual or abnormal ones.
This makes it particularly appropriate for
tasks involving high inter-subject variability,
specifically clinical images.

Some limitations of this algorithm have to
be highlighted. Unlike approaches based on
a mixture of kernels, our deformation model
relies on a single Gaussian kernel. While this
has the advantage of introducing no addi-
tional parameters, the results of our algorithm
depend on the choice of the kernel width σg
- but to a lesser extent than the original ver-
sion. Some methodological improvements could
be made to the FWT algorithm. In particu-
lar, the border treatment of non dyadic grids
define scaling and wavelet functions of small
support in some image borders. As illustrated
in Figure 2, this creates areas of uneven size at
coarse scales, and therefore vector fields with
locally uneven smoothness constraints. This
could pose a problem if one were to exploit
images with borders showing high variabil-
ity. To avoid this, one could replace the Haar
wavelet by smoother wavelet functions such as
the Daubechies wavelet. However, since image
borders often contain little information, this
issue is unlikely to arise.

The properties of the wavelet transform
offer interesting avenues to explore. Notably,
the wavelet functions φs,k and ψos,k are nor-
malized depending on their scale s. By mod-
ifying the weights attributed to the fine and
coarse scales in this normalization, one can
change the relative importance attributed to
high and low frequency coefficients during opti-
mization. It would be interesting to refine our
wavelet-based spatial regularizer in this way
and observe how it impacts the results.

The simplicity of our algorithm makes it
easy to implement, which opens up interesting
perspectives. The coarse-to-fine strategy could
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be applied to other types of atlases such as
spatio-temporal ones (Debavelaere et al, 2020),
or to other statistical frameworks such as the
Bayesian Mixed Effect Model (Allassonnière
et al, 2015). In regard to the latter point, a
significant advance would be to integrate our
reparametrization of the velocity fields into this
Bayesian framework by introducing priors on
the wavelet coefficients, in the spirit of Downie
et al (1996) who decomposed deformations into
a Haar wavelet basis and modelled the coeffi-
cients as independent random variables with a
mixture distribution. Moreover, our approach
could be integrated into different mathematical
settings, such as Modin et al (2018); Miller et al
(2020), where the estimation of the vector fields
at each scale of the composition could benefit
from our efficient coarse-to-fine optimization.

In the future, several improvements will be
explored, starting with the addition of a mul-
tiscale flavor to our algorithm, in line with
strategies based on simultaneously coexisting
flows (Risser et al, 2011). Specifically, we will
work on constraining the velocity fields to be
unevenly smooth according to the amount of
information contained in the images. Unlike
(Risser et al, 2011), since our algorithm pre-
serves the RKHS structure of the velocity fields
and thus the definition of the norm, this would
not add complexity to the mathematical model
nor to the optimization.

In addition, we will focus on developing
a dual coarse-to-fine strategy, by applying a
hierarchical representation to the images, as
already attempted in other mathematical mod-
els, e.g. with B-spline deformations (Rueckert
et al, 1999; Loeckx et al, 2007; Staring et al,
2009) and in the hyperelasticity framework
(Debroux et al, 2021). Alternating both coarse-
to-fine strategies would very likely provide
template images of even higher quality.
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