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 September 8, 2023Conic singularities and immediate transversality Franc ¸ois Laudenbach Abstract. I introduced the notion of immediate transversality in a recent paper on A ∞structures on Morse complexes. In the present paper, I get that immediate transversality holds for every compact submanifold with C 1 conic singularities, not only in the setup of Morse theory. This is an occasion of speaking of this type of singularities.

This paper is an expanded version of a talk given in the geometry seminar at the mathematical center IRMA of the University of Strasbourg (France) on November 8, 2021.

In the first section, we recall the notion of submanifold with C 1 conic singularities. That is the type of singularities which are visible in the closure of invariant submanifolds of Morse gradients under some easy assumption of simplicity about the gradient of a given Morse function. We introduce the notion of tangent cone, in general different from the considered cone, except when the latter is linear. In the considered setup, linearizability is shown to be a general property.

Section 2 consists of a detailed reminder of what I proved on this topic in the late nineties. I add a complete proof concerning the CW -structure one can derive from such a simple Morse gradient.

Section 3 is devoted to the notion of immediate transversality by flow that I introduced last year. Namely, given a compact submanifold Σ with C 1 conic singularities in an ambient manifold M , find a vector field X on M whose flow X t puts Σ immediately transverse to Σ, that is, for every t ∈ (0, ε), one has X t (Σ) ⋔ Σ. I proved this property holds in the setup of Morse theory and is a key for A ∞ -structures on Morse complexes, unique up to homotopy.

In the present paper, we get a slight generalization: such an immediate transversality holds for any compact submanifold with C 1 singularities. It would be interesting to know what is the actual framework where immediate transversality holds.

I thank Athanase Papadopoulos for having given me the occasion of speaking of this topic.

1. Generalities about C 1 conic singularities

In this section we state and prove some general facts relative to this type of singularities.

Definition 1.1. A subset Σ in a smooth 1 n-dimensional manifold M is said to be a submanifold with C 1 conic singularities if Σ is the disjoint union of smooth submanifolds Σ j , possibly empty, with j = dim Σ j (named the strata), which have the following mutual behaviour: there exists a family of tubular neighborhoods N j around Σ j such that:

(1) Each stratum of Σ is transverse to the sphere bundle ∂N j ; that is denoted Σ ⋔ ∂N j .

(2) The intersection Σ∩N j is a C 1 subbundle of the disc bundle N j over Σ j . More precisely, there are an open covering {U α } α∈A of Σ j and C 1 trivializations ϕ α of the pair (N j , Σ ∩ N j ) over U α which reads

ϕ α : U α × (D n-j , cS) ∼ = -→ (N j , Σ ∩ N j )| Uα .
Here, S is itself a submanifold of the sphere S n-j-1 = ∂D n-j with C 1 conic singularities and cS is the radial cone based on S. In the sphere bundle, the fiber Σ ∩ ∂N j,x over x ∈ U α is carried back by ϕ α to a submanifold {x} × S.

The union [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF], the above definition makes sense by an induction on the ambient dimension. Moreover, if Σ k meets N j,x at some point y then, in a trivializing chart, the tangent space T y Σ k contains a local parallel copy of T x Σ j and hence k > j. So, only strata of dimension higher than j are visible in N j ∖ Σ j . 2. If the tube N j has a radius sufficiently small, the a priori non-radial cone Σ x is transverse to the sphere t ∂N j,x in N j,x for every t ∈ (0, 1]. This follows from the Taylor formula at order 1 with integral remainder for C 1 maps, applied here to ϕ α : {x} × D n-j → N j with x ∈ U α , that is:

Σ k 0 := ⊔ k j=0 Σ j is called the k-skeleton of Σ. Remarks 1.2. 1. By item
(1.1) ϕ α (tz) -Dϕ α (0) • tz = 1 0 [Dϕ α (stz) -Dϕ α (0)] • tz ds.

□

What follows in the remainder of this section is only related to what happens in a tube around one stratum. So, we use lighter notation: B is a-for simplicity-compact k-dimensional smooth manifold, E is a smooth (nk)-disk bundle over B and C ⊂ E is a C 1 conic subbundle of E over B. This means that the zero-section of E is a stratum of C and each fiber C x is C 1 diffeomorphic to a radial cone cS over a smooth submanifold S with C 1 conic singularities in the (nk -1)-dimensional sphere.

There are local trivializations ϕ α :

U α × (D n-k , cS) → (E, C)| Uα where {U α } is a finite covering of B. The change of trivialization over U αβ := U α ∩ U β is ϕ βα := ϕ -1
β ϕ α restricted to the part of the bundles over U αβ . This collection of trivializations is known to fulfill some cocycle equation:

(1.2) ϕ αγ ϕ γβ ϕ βα = Id| U αβγ ×(D n-k ,cS)
where U αβγ stands for the triple intersection U α ∩ U β ∩ U γ . By the chain rule applied to the vertical derivative at 0 in a fiber over x ∈ U αβγ , one gets a linear cocycle

(1.3) D v ϕ αγ (0) • D v ϕ γβ (0) • D v ϕ βα (0) = Id| U αβγ ×R n-k
In the next definition, T v 0 E stands for the vertical tangent bundle to E along the zero-section.

Definition 1.3. The tangent cone bundle to C, noted T C, is the subbundle of T v 0 E over B defined by the linear 1-cocycle formed by the collection of {D v ϕ αβ (0)} where α and β range over the set of indices of the covering.

Since two systems of local trivialization of (E, C) define cohomologous cocycles, the same is true for vertical derivatives at 0. Therefore, up to an isomorphism, T C does not depend on the chosen trivializations. Definition 1.4. One says that C is a linear conic subbundle if it has linear local trivializations ϕ α or, equivalently, C is equal to its tangent cone. One says that C is linearizable if it is isomorphic to a linear conic subbundle.

In particular, if C is linear each fiber is a radial cone. (1.4)

C ′ t := 1 t • (C ′ ∩ t E ′ ) ∂E ∂(tE ) C Figure 2. Cone C ′ ∩ (t E ′ ) is drawn with thick lines.
makes sense and defines some conic subbundle of E ′ . Its limit when t goes to zero is the tangent cone bundle T C ∩ E ′ which follows from formula (1.1). This fiberwise isotopy of C 1 conic subbundles is induced by an ambient fiberwise isotopy of E ′ . Finally, from this isotopy one derives an isomorphism to a linear conic bundle. For writing smooth formulas, a solution would be to choose a fiberwise contracting vector field which is tangent to each stratum of C ′ and uniquely integrable. This is allowed by the nature of singularities. □

Here are a few more generalities which allow us to build new examples of submanifolds with C 1 conic singularities. Definition 1.7. Given a smooth manifold M and (A, B) a pair of smooth stratified submanifolds of M , we say A and B are transverse, denoted A ⋔ B, if the strata of A and B are pairwise transverse.

If A and B are submanifolds with C 1 conic singularities, one proves easily that mutual transversality is a generic property. More precisely, if A and B are not transverse, generically for a diffeomorphism g of M , the manifold g(A) is transverse to B. Proposition 1.8. If A and B are two mutually transverse submanifolds of M with C 1 conic singularities, then A ∪ B is also such a submanifold.

Proof. (Sketch) Let S A and S B denote two strata of A and B respectively. Let L := S A ∩ S B . Consider the normal bundle to S A in M over L. Let Sν A denote its sphere bundle. And similarly with B. Then L is a typical stratum of A ∪ B. The fiber over x ∈ L of its conic transverse structure is isomorphic to the cone based on the join (Sν A ) x * (Sν B ) x . This join, viewed in the unit sphere of the fiber over x of the normal bundle to L in M , consists of the union of geodesic segments from (Sν A ) x to (Sν B ) x . □

About conic singularities in Morse theory

In 1992, I have been asked by Jean-Michel Bismut how is the closure of the stable/unstable manifolds of a gradient vector field X of a Morse function f on a compact n-dimensional manifold M . The answer is simpler under the assumption the gradient is simple near all critical points of f in the following sense.

Definition 2.1. The vector field X is said to be a simple descending gradient2 of f near a ∈ critf if the X = -∇f in the Euclidean metric of Morse coordinates x = (x 1 , . . . , x n ) where f reads

(2.1) f (x) = f (a) + 1 2 (-x 2 1 -• • • -x 2 k + x 2 k+1 + • • • + x 2 n ).
Here k is the Morse index of f in a. The set of critical points of index k of f will be denoted crit k f .

In that case, the local stable (resp. unstable) manifold W s loc (a, X) (resp. W u loc (a, X)) are radially foliated by the local orbits of X.

By Smale [START_REF] Smale | On gradient dynamical systems[END_REF], the gradient X is generically Morse-Smale meaning that the stable and unstable manifolds of all critical points are pairwise transverse. 3 We have proved the next proposition in [START_REF] Laudenbach | An extension of a Theorem by Cheeger and Müller[END_REF]. It is stated by using Definition 1.1 of C 1 conic singularities. Proposition 2.2. If f is a Morse function on M and X is a Morse-Smale gradient which is simple near the critical points of f , then the closure of the invariant manifolds W u/s (a, X), a ∈ critf , are submanifolds with C 1 conic singularities.

Equivalently, on may state the following: Under the same assumptions the union

(2.2) Σ := ∪ index(a)<n W u (a, X)
is a submanifold of M with C 1 conic singularities.

Remarks 2.3. 1. In the setting of Proposition 2.2 (2nd form), the stratum Σ j is made of the union of the unstable manifolds associated to the critical points of Morse index j. In that case, the regularity of the local trivializations by radial cones is not greater than 1 in general. This regularity issue is discussed in [6, Appendice].

2.

As observed in Section 2 of [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF], Proposition 2.2 extends to the case where M has a non-empty boundary and the data are generic with respect to the boundary. 4The next corollary-a statement anticipated by René Thom [START_REF] Thom | Une partition en cellules associée à une fonction sur une variété[END_REF]-was given in [START_REF] Laudenbach | An extension of a Theorem by Cheeger and Müller[END_REF] just as a remark with a hint for proving; indeed, it was not the main goal of that appendix. At that time, I was seriously criticized about this remark. Among those who were confident in the statement, some told me that difficult steps were missing in my suggested proof. Here, I would like to give a formal proof for closing the discussion.

I should say that this statement was first proved by G. Kalmbach [START_REF] Kalmbach | On some results in Morse theory[END_REF] in the same setting-a reference that I was ignoring up to reading the next reference. Very recently, the cell decomposition has been obtained by A. Abbondandolo & P. Majer [START_REF] Abbondandolo | Stable foliations and CW-structure induced by a Morse-Smale gradient-like flow[END_REF] for every gradient-like vector fields; beside the mathematical part, this paper contains an interesting history of the topic.

Corollary 2.4. In the setting of Proposition 2.2, the partition of M made of the unstable manifolds W u (a, X), a ∈ critf , is induced by some CW -complex structure on M in the sense that its "open" cells are the unstable manifolds of the zeroes of X.

What is missing in the information given by the unstable manifolds is the way where each closed cell is attached to the lower dimensional skeleton. A priori, it is not immediately clear that the closure of W u (a, X) is the image of a closed ball and the attaching map does not seem to be given by the dynamics.

Before proving Corollary 2.4 we need some refreshing about Proposition 2.2 (see the next two subsections).

2.5.

Magic of the simple Morse coordinates. Since maxima and minima are not interesting for the present discussion, we limit ourselves to the case of the n-dimensional Morse Model of index k, 0 < k < n, denoted M (n, k). It is obtained by rotating the 2-dimensional model of index 1 around the x-axis5 and the y-axis in order to create stable and unstable manifolds of dimension nk and k respectively.

There is a top boundary denoted ∂ + M (n, k) which is a trivial k-dimensional disc bundle over some (nk -1)-dimensional Euclidean sphere S + centered at O in the local stable manifold W s loc (O, X). The fibers are discs parallel to the unstable manifold W u loc (O, X)-for brevity the radius of S + is not specified. Similarly the bottom boundary ∂ -M (n, k) is a trival (nk)dimensional disc bundle over a Euclidean (k -1)-sphere S -in W u loc (O, X); its fibers are parallel to W s loc (O, X). The core of the top (resp. the bottom) boundary is named the co-sphere (resp. the attaching sphere)-see Figure 2.5.

Let Σ + ⊂ ∂ + M (n, k) be a (k +s)-dimensional submanifold with C 1 conic singularities and let F Σ + be the closure in M (n, k) of the set of trajectories starting from Σ + . Suppose Σ + transverse to the co-sphere and set K := Σ + ∩ S + . Let cK be the radial cone of K in {0} × D n-k . For every x ∈ S -the fiber D x of ∂ -M (n, k) is provided with a cone cK x by translating over x some homothetic of cK. By transversality, the projection of Σ + to the unstable manifold is of maximal rank near K; then, by flowing, the projection to the factor D k × {0} of first k coordinates is also onto. So,

F Σ + contains (D k × {0}) ∪ ({0} × cK) and, for every x ∈ S -, the disc D x is transverse to F Σ + .
By a beautiful property of the polar coordinates-here, one should speak of multispherical coordinates-the following holds.

Magic Fact. Whatever the angle along K between Σ + and the co-sphere, for every x ∈ S -, the radial cone cK x ∼ = cK is the tangent cone to F Σ + ⋔ D x . This is the main flavour of Proposition 2.2. Of course, the same propagates along the unstable manifold for every choice among its tubular neighborhoods which are fine enough.

2.6. Some choices. By induction on the dimension, one truncates the unstable manifolds in order to create for every k some compact domains Σ k ⊂ Σ k and some tubular neighborhoods T k over Σ k , sufficiently fine for still having the magic conic property and fulfilling a few more conditions:

(1) T 0 is a finite union of balls where X is radial.

(2) The restriction of T k to the boundary ∂Σ k is covered by the interior of T k-1

0 := T 0 ∪ • • • ∪ T k-1 . (3) Let W k be a collar neighborhood of ∂Σ k in Σ k and let E k be the restriction of T k to W k .
Then, if E k meets T j and j < k, we have E k ⊂ int T j . Moreover, in that case, each fiber of E k over W k is contained in some fiber of this T j . The third item adds some requirement to the disc bundle over Σ k . But, as it is said in the very end of Subsection 2.5, the conic structure is not affected by this new requirement.

T k-1 0 T k-1 0 a ∈ crit k f W s (a, X) ∂Σ k Figure 4.
Here, a is a critical point of index k. Its unstable manifold is schemed horizontally. The two balls represent parts of the chosen neighborhood of the (k -1)skeleton.

2.7.

Proof of Corollary 2.4. We are going to prove, by an induction on k from k = 0 to n, that the union of unstable manifolds of dimension not greater than k is a CW -complex whose open cells are these unstable manifolds. For k = 0, there is nothing to do: one starts with a finite collection of points. Assume the claim holds for the union of strata of dimension less than k. Let p k : T k → Σ k denote the projection of the bundle structure. The proof may be made cell by cell. For a ∈ crit k f , we denote W u (a, X) the intersection W u (a, X) ∩ Σ k . Choose an identification of i op : W u (a, X) → intD k with the open k-ball sending the orbits of X to the Euclidean rays. And choose a similar identification i c : W u (a, X) → D k with the closed k-ball; these two are supposed to coincide near a. The composition i -1 c • i op yields an abstract compactification of W u (a, X) as a closed k-cell.

If we are able to describe a continuous map f a from ∂W u (a, X) to the (k -1)-skeleton Σ k-1 0 whose image is the frontier of W u (a, X), then f a is one (among many others) desired cell attachment.

If z ∈ ∂W u (a, X) is covered by only one tube T j , j < k, then f a (z) := p j (z) looks to be an easy recipe for cell attaching. But if z is covered by T j and T i , i < j, we need to "average" the two possible projections; here, item (3) of Subsection 2.6 is used. Concretely, one proceeds as follows.

One chooses some continuous function λ j : W j → [0, 1] with value 0 on ∂Σ j and 1 on the opposite side of the collar; one extends λ j to E j by pre-composing with p j . By the conic structure transverse to Σ i there is an arc γ z : [0, 1] → Σ i , depending continuously on z which joins x := p i (z) to y := p j (z) in the fiber T i,x and γ z (s) runs in Σ j when s > 0.

Therefore, the following "averaged" attachment is convenient in the above setting of three strata (Σ i , Σ j , Σ k ), ranked by increasing dimension and pairwise adhering one to the next:

(2.3) f a (z) =    p j (z) if z ∈ (T j ∖ E j ) γ z (λ j (z)) if z ∈ E j p i (z) if not.
In general, it is a sequence (Σ i 1 , Σ i 2 , . . . , Σ ir , Σ k ) that we have to consider, where each stratum adheres to the next one. In that case, there are several projections of z ∈ ∂W (a, X) to p i ℓ (z) ∈ Σ i ℓ , 1 ≤ ℓ ≤ r; there are also several paths γ z,ℓ joining p i ℓ-1 (z) to p i ℓ (z) and running in Σ i ℓ at positive time. Then the attaching map f a (z) reads

(2.4) f a (z) =              p ir (z) if z ∈ (T ir ∖ E ir ) γ z,r (λ ir (z)) if z ∈ E ir • • • • • • γ z,ℓ (λ i ℓ (z)) if z ∈ (E i ℓ ∖ E i ℓ-1 ) • • • and so on p i 1 (z) if not.
So, the attaching map of W (a, X) is now completely described and Corollary 2.4 is proved. □

Immediate transversality

Even in their advanced version, for instance in jet spaces [START_REF] Thom | Les singularités des applications différentiables[END_REF] or in a more abstract context [START_REF] Thom | Un lemme sur les applications différentiables[END_REF], Thom's transversality theorems just state approximation results, possibly with fine topologies on the considered functional spaces.

These transversality theorems were not sufficient for getting A ∞ -structures on Morse complexes in the line of K. Fukaya's program [START_REF] Fukaya | Morse homotopy, A ∞ -categories, and Floer homologies[END_REF]. The enhanced version of transversality, we named immediate transversality, appeared to be the right tool-possibly among others-to complete this program as we did in [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF]. This seems to be a new topic.

In the present paper, we slightly generalize the setup compared with [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF], but we are far from knowing what is the right setting for immediate transversality. (1) Let f : A → M be a smooth map and S be a smooth submanifold in M . The ambient isotopy (φ t ) t∈[0,1] of M , from Id M , is said to make f immediately transverse to S if there exists ε > 0 such that

(3.1) (φ t • f ) ⋔ S for every t ∈ (0, ε).
(2) When φ t in (1) is the flow of an autonomous vector field one speaks of immediate transversality by flow.

It is worth noting that, in case of Definition 3.1(2), one gets a remarkable and very rare property, namely the transversality to every element of a given one-parameter family. More precisely, for every 0 < t 1 < t 2 < ε the following holds:

(3.2) (φ t 2 • f ) ⋔ φ t (S) for every t ∈ [0, t 1 ].
For proving the above formula, one just applies the one-parameter group formula of flow and the fact that an ambient diffeomorphism preserves transversality. Regarding (N, p, S) as a linear disc bundle one is allowed, for x ∈ S, to think of u(x) as a vector in the vector space generated by the disc N x , the fiber over x. Moreover, thanks to the underlying affine structure, one can translate u(x) by parallelism at every point of N x . So, we have a vector field, denoted ⃗ u, over N that extends arbitrarily to the complement of N in M .

The germ of its flow is a translation flow: for x ∈ S and every small enough positive t, we have ⃗ u t (x) = x + tu(x). Since u is a section of T transverse to the zero-section, the flow generated by ⃗ u makes S immediately transverse to its initial position. We shall see that the case of submanifolds with conic singularities is less elementary. Theorem 3.3. Let Σ be a compact submanifold with C 1 conic singularities in an n-dimensional smooth manifold M . Then there exists a "large" family of flows (φ t ) on M making Σ immediatly transverse to its initial position. 6The main example we have in mind is given by the union of unstable manifolds of a simple descending gradient of a Morse function excluding the n-dimensional unstable manifolds. The difference with [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF] is that no particular assumptions are made on the topology of strata in Σ. 7Proof. It will be done in three steps. In Step I, one looks at the neighbourhood of one vertex of Σ, that is, the cone based on a stratified submanifold in the (n -1)-sphere. In Step II, one looks at a C 1 bundle over a compact base whose fibers are stratified cones. In Step III, one glues together the different pieces making the given submanifold with C 1 conic singularities.

Step I: a unique radial cone. One may suppose the ambient manifold is R n provided with a cone C whose vertex is the origin O and which is based on a compact stratified submanifold L (as link ) of the (n -1)-dimensional sphere S n-1 with C 1 conic singularities. The strata of C, apart from the origin, are the cones on strata of L, punctured at O. Proposition 3.4. Generically for ⃗ u ∈ R n , the translation flow generated by ⃗ u makes C immediately transverse to C.

Proof. One first looks at the space of secants Sec(S 1 , S 2 ) for each pair (S 1 , S 2 ) of strata from C. We choose to parametrize Sec(S 1 , S 2 ) as a submanifold of

S 1 × ⃗ R n : (3.3) Sec(S 1 , S 2 ) = {(x, ⃗ u) ∈ S 1 × ⃗ R n | x + ⃗ u ∈ S 2 }
Without loss of generality we may suppose that S i , i = 1, 2, has a regular equation f i = 0. Therefore, one checks that Sec(S 1 , S 2 ) is defined by the system

(3.4) f 1 (x) = 0 f 2 (x + ⃗ u) = 0
whose linearized system reads

(3.5) df 1 (x) δx = 0 df 2 (x + ⃗ u)(δx + δ⃗ u) = 0.
As x and ⃗ u are independent variables, it follows that this system is of maximal rank. So, Sec(S 1 , S 2 ) is smooth. Then, Sard's theorem applies: the projection

(3.6) π : Sec(S 1 , S 2 ) → ⃗ R n (x, ⃗ u) → ⃗ u
has a dense set-in the sense of Baire which is now called generic-of regular values.

Claim: Coplanarity criterium. The vector ⃗ u ∈ ⃗ R n is a critical value of π if and only if the tangent spaces T x S 1 and T x+⃗ u S 2 are coplanar that is, are contained in a common hyperplane. 8Proof ⇐. Suppose L is a linear form on ⃗ R n which vanishes on the two kernels ker df 1 (x) and ker df 2 (x + ⃗ u). Then L(δx) = 0 and L(δx + δ⃗ u) = 0 for every (δx, δ⃗ u) tangent to Sec(S 1 , S 2 ). Therefore, L(δ⃗ u) = 0 and the image of dπ ( x, ⃗ u) is contained in the kernel of L. So, π is not a submersion near (x, ⃗ u) ∈ Sec(S 1 , S 2 ).

⇒. By contraposition, we have to prove that if the two considered kernels are not coplanar then, for every δ⃗ u ∈ ⃗ R n , the system

(3.7) df 1 (x) δx = 0 df 2 (x + ⃗ u) δx = -df 2 (x + ⃗ u) δ⃗ u
has a solution with δx as unknown. This is an exercise of Algebra which we leave to the reader. □

This claim still holds when considering all pairs of strata; we just have to define the tangent space T x C as the tangent space to the unique stratum which contains x. Indeed, it sufficies to intersect finitely many residual sets since there are finitely many strata numbered by their dimension.

Having this claim in hand, we conclude that, generically, ⃗ u translates the cone C to a cone which is transverse to C, that is (C + ⃗ u) ⋔ C. But elementary geometry shows that the critical values of π is itself a cone. As a conclusion, the translation flow generated by a generic vector ⃗ u is of immediate transversality with respect to C which what is desired for Step I. □

We have not used the compactness of the basis of C. This additional assumption allows us to state that the residual set R of generic vectors in question is the complementary of a cone with a compact basis. So, R is open in ⃗ R n . This is proved in a more general setting in Proposition 3.7 (see also [2, Appendix B].)

Step II: A C 1 cone bundle over a compact base. Let (E, C) be the pair made of an (nk)-disc bundle and a C 1 conic subbundle; their common base space B is a compact kdimensional smooth manifold. Up to taking a smaller tube, by Proposition 1.6 we may assume C is a linear conic subbundle without loss of generality.

Let U = {U α } α∈I be a finite open covering of B with the following properties where the index set is I = {1, . . . , ℓ}:

(1) For every α ∈ I the pair (E, C) has a linear trivialization ϕ α over the open set U α .

(2) Each U α is endowed with a compactly supported smooth function ρ α : U α → [0, 1] such that, naming V α the interior of the level set ρ -1 α (1), the family {V α } α∈I still covers B.

Step II-1: C is a linear conic subbundle of E. Then one considers the vector space

G of ℓ-tuples v := (⃗ v 1 , ..., ⃗ v ℓ ) of vectors in R n-k , that is, G := ℓ i=1 ⃗ R n-k . Such a v acts on E by translation in each fiber E x , x ∈ B. More precisely, the vector v = (⃗ v α ) α∈I acts on z ∈ E x by the formula (3.8) v • z = (⃗ v 1 , ⃗ v 2 , • • • , ⃗ v ℓ ) • z = z + α ϕ α,x ρ α (x)⃗ v α =: z + σ v (x).
This formula is well defined since ϕ α is linear-up to replacing the disc bundle E by the spanned vector bundle span(E)-and two translations commute. An element v ∈ G may be thought of as a translation field in E over the base B that we denote σ v .

For every x ∈ V α and z ∈ E x , this action is submersive at z. Indeed, this action is already submersive if the entries of v are null except the entry of index α. So, we have a map ψ : G × C → span(E), piecewise smooth and submersive onto E at every point of the source. The inverse image ψ -1 (C) is stratified and Sard's theorem applies to the projection π : ψ -1 (C) → G. So, the set of critical values of π is meager. By characterizing these critical values similarly to

Step I, one concludes there is a residual R ⊂ G such that for every v ∈ R we have

(3.9) (v • C) ⋔ C, that is (C + σ v ) ⋔ C,
where σ v stands for the section x → v(x) and the sum is applied fiberwise. Now, if σ is an arbitrary other smooth section of span(E) the family {v • σ} v∈G is a submersive family onto E. So, by the same reasoning as in the case σ = 0 we get a dense set of smooth sections σ of span(E) such that

(3.10) (C + σ) ⋔ C. 9
Moreover, due to the radial conic feature of C, such a section generates a flow of immediate transversality to C; more precisely, This may be checked by showing that the opposite of (3.11) is a homogeneous condition on σ. Step II-2: Openness property. Proof. Let σ 0 be a smooth section of span(E) having the demanded transversality property. Since the base space of the fibration is compact the question is local over B. There are two types of points x ∈ B.

1) Generic points: that is, σ 0 (x) maps C x transversely to C x in E x . In that case, the same occurs in the nearby fibers. Therefore, for every hyperplane H ⊂ T z+σ 0 (x) E x tangent to C x at z +σ 0 (x), the angle between C x +σ 0 (x) and H-considering each stratum separately-is locally positively bounded from below; here we use the compactness of the considered Grassmanian.

Since this angle does not approach to zero near z, any small enough perturbation of σ 0 in the C 1 topology has the same property. That would prove the desired openness over a neighborhood of such a point z if the stratum of C containing z were compact, which is not.

For circumventing this difficulty we are going to use the fact that the spherical basis S x ⊂ S n-k-1 of the cone C x has itself C 1 conic singularities; that compensates for non-compactness of the strata of C x .

Indeed, let S 0 ⊂ C x be a stratum transverse to H. Then the angle between S 0 and H controls, at every point close enough to S 0 , the angle of S with H for every stratum S ⊂ C x adhering to S 0 . As a consequence, the reasoning on angles works as if the strata of C x were compact.

2) Bifurcation locus. Now, let us consider a point x 0 ∈ B where (C x 0 + σ 0 (x 0 )) ⋔ C x 0 is not fulfilled. Nevertheless, by assumption on σ 0 for every z ∈ C x 0 we have (3.13) DΘ(T z C) ⋔ H for every hyperplan H ⊂ T z+σ 0 (x 0 ) E tangent to C at z + σ 0 (x 0 ) and to C x at z; here, Θ stands for the affine automorphism of span(E) defines by the translations σ 0 (x), x close to x 0 . (compare with Remark 3.6.) One recalls that T z C means the tangent space to the stratum which contains z. Again we get an angle which has a positive infimum when z runs over C x 0 . This angle varies continuously under C 1 perturbation, whatever the nature of x 0 , generic or not, in the perturbed translation. □

As a consequence of this openness property, we can state and prove a relative version of Proposition 3.5 whose statement is now enhanced in the following form.

Corollary 3.8. In the above setting, let σ 0 be a germ of generic section of span(E) over a collar neighborhood of the boundary ∂B. Then, as a germ, σ 0 extends to a global section σ of span(E) which generates a translation flow of immediate transversality to C. Moreover, the set of such extensions is open and dense in the space of all extensions of the given germ.

Proof. For the proof, it is easier to realize the germ σ 0 as a section over some collar neighborhood W of ∂B. Let σ0 be an arbitrary extension of this realization of the germ, still denoted by σ 0 , to a global section of span(E). Let λ : W → [0, 1] be a smooth function vanishing on a neighborhood of ∂B and equal to 1 near the interior boundary component of W .

By Proposition 3.5, there exists a global section σ which generates a translation flow of immediate transversality to C and may be chosen arbitrarily close to σ. By Proposition 3.7, if this approximation is small enough in the C 1 topology, the section

σ W := σ 0 + λ(σ |W -σ 0 )
is still a generic section over W . Since genericness is a local property, the gluing of σ W and σ|B∖W yields the desired section (by the choice of λ, the germ of σ W along ∂B is the germ σ 0 .) □

Step III: Gluing of tubes. Recall the compact submanifold Σ in M with C 1 conic singularities. By Proposition 1.6 we may assume the conic structure induced by Σ in the tube chosen around each stratum is linear in the sense of Definition 1.4. Let S k and S j be two connected components respectively of j-and k-dimensional strata in Σ. By the choices made in subsection 2.6, we have compact domains S j and S k ; and also an (nj)-disc bundle N j over S j (resp. an (nk)-disc bundle over S k .)

In what follows, S j lies in the closure of S k . By conditions (2) and (3) in the mentioned choices, the collar neighborhood W k of ∂S k in S k meets N j and avoids its sphere bundle SN j ; and similarly for the disc-bundle E k induced by N k over W k . Finally, each fiber of E k generates an affine (nk)-subspace in a fiber of N j .

Step III-1: Reduced translation flow and reducing process. Let u be a translation field in N j . For every fiber N j,z , every point x ∈ W k ∩N j,z and every y ∈ N k,x we have a splitting of tangent spaces

(3.14) T y (N j,z ) = T x (W k ∩ N j,z ) ⊕ T y (N k,x )
Here, the tangent space T x (W k ∩ N j,z ) is carried up to point y by parallelism with respect to the affine structure of N j,z . This splitting decomposes the translation vector u(z) = u(y) into ( * ) For every t ∈ [0, ε), z ∈ S j , x ∈ W k ∩ N j,z , y ∈ N k,x and for every hyperplane H in the tangent space T y+tu(z) Σ, then or else y + tu(z) does not belong to Σ or the angle γ H (t) of H with the image of T y Σ through T y (u t ) is larger than κt, where T y (u t ) denotes the tangent map at y of the translation by tu. 12So, the constant κ is a velocity in nature. Let D z u denote the covariant derivative at z ∈ S j of the section u of N j with respect to the (local) above-mentioned linear connection h. By linearity of h, although y ∈ N j,z may not belong to the zero section, it makes sense to derive u at y. An infinitesimal statement which implies ( * ) reads as follows:

( * * ) For every y ∈ Σ∩N j,z , the subspaces T y Σ and D y u(T y Σ) are not coplanar in the tangent space T y N j .

Claim. Let V be an open set in E k and y be a point in V ∩ N k,x . If h 0 = h 1 along V , then the statement holds in V .

Indeed, h 0 is tangent to Σ as is h 1 . Then transversality translates to the vertical component of u. Let D x be the covariant derivative at x of a section of N k with respect to the connection h 1 . By an order-one Taylor expansion at y, an "infinitesimal contact" at y, namely, some hyperplane H makes D y u k v (T y Σ) coplanar to T y Σ, implies that some angle γ H(t) is o(t) as t goes to 0 and H(t) goes to H. This contradicts ( * ) and proves (1) under the assumption of the claim. If (2) fails it should fail infinitesimally which is impossible by [START_REF] Abbondandolo | Stable foliations and CW-structure induced by a Morse-Smale gradient-like flow[END_REF]. □

Let y ∈ N k,x and let y + tu k v be the vertically displaced point with a small t; suppose both points belong to Σ. The planes h 1 (y) and h 1 (y + tu k v ) are both tangent to Σ but could no longer be parallel with respect to the h 0 -parallelism. Nevertheless, thanks to the 1-form ω which measures the "difference h 1h 0 ", one computes that the angle between h 1 (y) and h 1 (y + tu k v ), the latter being translated to y by a vertical translation which is horizontal with respect to h 0 -whose factor h ′′ 0 induces the parallelism of the fiber N j,z -is a O(t).13 Therefore, if t > 0 is sufficiently small, this angle is negligeable with respect to κ. So, the reasoning for the claim still holds and Proposition 3.10 is proved. □ End of the proof of Theorem 3.3. Observe that having Proposition 3.10 in hand allows one to apply Corollary 3.8 for getting an extension ũ of u to N j ∪ N k which generates a flow of immediate transversality to Σ ∩ (N j ∪ N k ). That is what we call a successful gluing! Up to some skipped details (Remark 3.9), the gluing process completes the proof of Theorem 3.3: starting from Step I, that is from the tube N 0 with a generic translation u, one inductively glues the tubes and applies Proposition 3.10 up to the stratum of maximal dimension which itself offers us a case of toy example. □

Figure 1 .

 1 Figure 1. A schematic drawing for a one-parameter family of radial cones in 3-balls.

Figure 3 .

 3 Figure 3. Here, n = 2, k = 1.

3. 2 .

 2 Toy example. Given a closed n-dimensional smooth manifold M endowed with a closed smooth submanifold S, one can consider a closed tubular neighborhood N of S in M , with a projection p : N → S, and a smooth section u : S → N vanishing transversely. Such a section exists by the very first transversality theorem of Thom[START_REF] Thom | Quelques propriétés globales des variétés différentiables[END_REF] Théorème I.5].

  tσ) ⋔ C for every t > 0.

Proposition 3 . 7 .

 37 If C → B is a linear conic subbundle in E → B over a compact base B, the set of smooth sections σ of span(E) such that C + σ is transverse to C is open in the set of smooth sections of span(E) for the smooth topology. By (3.11) we already know that (C + σ) ⋔ C implies that σ generates a translation flow of immediate transversality to C.

  ′ ⊂ E such that the sphere bundle ∂E ′ is transverse to C and C ∩ E ′ is linearizable.

	Proposition 1.6. Every C 1 conic subbundle C of a disc bundle E is germinally linearizable.
	Proof. By Remark 1.2.2, there is a disc subbundle E ′ ⊂ E such that for every t ∈ (0, 1] the sphere bundle t ∂E ′ is transverse to C. Set C ′ := C ∩ E ′ . Now, we apply to C ′ a variation of the famous Alexander trick, namely, for every t ∈ (0, 1]

Definition 1.5. One says that the pair (E, C) is germinally linearizable if there exists a disc subbundle E

  Proposition 3.5. Let C be a linear cone bundle in a disc bundle E over B. Then, there is a dense set of smooth sections σ of span(E) which generates a translation flow on span(E) of immediate transversality to C. Remark 3.6. The transversality stated in (3.9) does not mean that it holds fiberwise. The latter only holds in generic fibers. In their complement, that is over points of the bifurcation locus, transversality is provided by the image of the linear derivative operator Dσ v . More precisely, the section σ v , viewed as a translation field over B, defines a gauge transformation Θ : span(E) → span(E) over Id B . At z ∈ E x , its derivative DΘ : T z E → T z+v(x) span(E) is a linear map over Id| TxB . If x belongs to the bifurcation locus, property (3.9) states as follows: For every z ∈ C x and every hyperplane H ⊂ T z+v(x) E which is tangent to the fiber C x at z and to C at z + v(x), then (3.12) DΘ(T z C) is transverse to H.
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	So, we have:

For cell attachings it would be uncomfortable to work with an ascending gradient.

Smale did not assume X is simple. But the same proof yields the genericity of Morse-Smale gradients among the simple gradients.

In this setting of non-empty boundary, the stable/unstable manifolds are explained in[START_REF] Laudenbach | A Morse complex on manifolds with boundary[END_REF].

In general, this axis is not 1-dimensional! and similarly for the y-axis.

Here, a family F of maps C → E, parametrized by a manifold P , is said to be large if the corresponding map F : P × C → E is a submersion at every point of its domain. One may extend this definition to families of flows by demanding this property at every positive time.

In[START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF] the strata are disjoint unions of Euclidean spaces.

If H is a hyperplane tangent to S 1 at x it must contain the corresponding generator of the cone S 1 , and hence the origin.

This way of reasoning by using finite dimensional submersive families is essentially what is done by Thom in[START_REF] Thom | Un lemme sur les applications différentiables[END_REF].

At that aim it is convenient to look at the "completed cone bundle", that is, in span(E) instead of the disc bundle.

This matter is known to be delicate to handle.

We recall T y Σ stands for the tangent space at y to the stratum of Σ which contains y

For a given x ∈ W k , the linear form ω(x) evaluated on a vector δx ∈ T x S k is an endomorphism of span(N x ) which has to be evaluated on the vector tu k v .

horizontal and vertical component at x, namely: (3.15) u(z) = u k h (x) ⊕ u k v (y) This splitting is independent of y along the fiber N k,x . The vertical component x → u k v (x) is termed the reduction of u to N k .

The bundle structure of Σ∩N j over S j allows us to choose the collar W k so that its intersection with N j,z is a collar of ∂S k ∩ N j,z in S k ∩ N j,z . One chooses a smooth function µ : W k → [0, 1] equal to 1 near ∂S k and equal to 0 near the opposite boundary component of the collar. Then µ is lifted to E k as a constant function in each fiber N k,x over W k . The balanced reducing process consists of replacing the constant vector field u(z) on E k,z by the vector field

µ is equal to u over ∂S k and to the reduction of u to T k over the opposite boundary component of the collar W k . Remark 3.9. In general, at some points of ∂S k one has to consider not only the inclusion S j → cl(S k ) into the closure of S k but a sequence S j = S j 1 , S j 2 , ...S jp = S k where each term (that is a connected component of stratum) lies in the closure of the next term-compare with formula (2.4). This would require to compose a sequence of reducing processes with a lot of notation. As there is no new idea in such details, they will be skipped.

Step III-2 For completing the gluing, we just need the next proposition. The setting is the same as in the previous step.

Proposition 3.10. The translation field u on the tube N j is assumed to generate a flow of immediate transversality to Σ ∩ N j . Then we have:

(1) The reduction of u to N k generates a flow of immediate transversality to Σ ∩ N k .

(2) The balanced reduction of u to N k generates a flow of immediate transversality to Σ∩E k .

Proof. As it rarely occurs, this issue deals with bi-1-jets 11 of N j , that is pairs of tangent planes to Σ ∩ N j and is local in nature. So, it is enough to look at the order-one Taylor expansion of the considered vector fields. Over the neighborhood of the considered x ∈ W k , over there E k fibers not only over W k but also over some domain of S j . So, we are allowed to choose a local trivialization φ of (E k , Σ∩E k ) which extends to a local trivialization φ of (N j , Σ ∩ N j ).

After such a choice, the linear disc bundle N k is locally endowed with two linear connections, h 0 and h 1 , seen as plane distributions complementary to the fibers. The distribution h 0 splits as a direct sum h 0 = h ′ 0 ⊕ h ′′ 0 , the first factor h ′ 0 is given by the restriction to N k of the connection h of N j which is derived from the local trivialization φ and the second factor h ′′ 0 is parallel to T x (S k ∩ N j,z ) with respect to the affine structure of N j,z at every point of the fiber N k,x . And

The difference between these two connections, seen as a vertical deviation, is measured by a differential 1-form ω on S k valued in the vector space of linear endomorphisms of span(N k ).

The translation field u on N j is assumed to generate a flow of immediate transversality to Σ ∩ N j . In particular, for every small enough ε > 0, there is κ > 0 satisfying the following: