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A PRIMAL-DUAL ALGORITHM FOR COMPUTING FINSLER DISTANCES AND APPLICATIONS

This note discusses the computation of the distance function with respect to Finsler metrics. To this end, we show how the Finsler variants of the Eikonal equation can be solved by a primal-dual algorithm exploiting the variational structure. We also discuss the acceleration of the algorithm by preconditioning techniques, and illustrate the flexibility of the proposed method through a series of numerical examples.

INTRODUCTION

Computing the distance function to a target set plays a central role in geometry and arises in many applications such as path planning, meshing, image processing, shape detection of tumors from medical images, tractography or neural fiber tracking in neuroscience (see e.g., [40,[START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF]49,25,16,32,31] and the references therein).

A first example is the computation of geodesics. Given a domain Ω ⊂ R N , and x, y ∈ Ω, the geodesic distance between x and y is defined through d(x, y) = inf γ∈Γ(x,y) L(γ), (1.1) where Γ(x, y) = {γ ∈ W 1,1 ([0, 1], Ω), γ(0) = x, γ(1) = y}, L(γ) is the so called length (or action) functional of γ ∈ Γ(x, y) given by

L(γ) = 1 0 | γ(t)|dt.
It is well known that (1.1) admits a solution (provided Γ(x, y) is nonempty) γ which is of minimal length, i. Then, the geodesic γ between some point x 0 ∈ Ω and any point of C is characterized by the following ordinary differential equation (ODE) γ(t) = -∇d(γ(t), C) ∇d(γ(t), C) , with γ(0) = x 0 .
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Another classic example, arising from control theory, is the minimum time problem, where one seeks to steer some dynamics ẏ(t) = f (y(s), α(t)), and y(t 0 ) = y 0 ∈ R N , (1.3) in the shortest possible time to a given target C ⊂ R N , where t 0 ∈ R, α is an admissible control and f is a continuous function satisfying the classical Caratheodory's theorem assumptions (see e.g., [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]) ensuring the existence and uniqueness of a global solution to (1.3). Then, the first arrival time to C is defined through T x (α) = inf t {t > 0 : y(t, α) ∈ C} and the value function of the minimum time problem is given by

T(x) = inf α T x (α).
Then, thanks to the dynamic programming principle (see e.g., [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]), T satisfies the following boundary value problem:

H(x, ∇u) = 0 in R \ C, and u = 0 on ∂C, where R = {x ∈ R N : T(x) < ∞} and H(x, p) = sup a {-p • f (x, a) -1}.

In both examples, the starting point is to compute the distance function, i.e., , to solve a Hamilton-Jacobi (HJ) equation. HJ equations, particularly of the Eikonal type, are also at the core of many geodesic-related problems in imaging, and have been widely considered in skeleton and Voronoi computation [START_REF] Hassouna | Robust skeletonization using the fast marching method[END_REF][START_REF] Telea | An augmented fast marching method for computing skeletons and centerlines[END_REF], active contours and segmentation [START_REF] Kass | Snakes: Active contour models[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF][START_REF] Cohen | Regularization properties for minimal geodesics of a potential energy[END_REF]11,[START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF][START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF] and in many other applications (see e.g., [40,[START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF] and the references therein). One of the key challenges arising in such applications is to design HJ solvers which are both efficient and able to handle general (non-Euclidean) metrics.

The most famous methods for solving Euclidean HJ equations remain the Fast Marching Method (FMM) [START_REF] Sethian | Level set methods and fast marching methods[END_REF][START_REF] Tsitsiklis | Efficient algorithms for globally optimal trajectories[END_REF], the Fast Sweeping Method (FSM) [START_REF] Luo | Fast sweeping methods for factored anisotropic eikonal equations: multiplicative and additive factors[END_REF]50] and semi-Lagrangian schemes [START_REF] Falcone | Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations[END_REF]. Heat methods based on Hopf-Cole transform were proposed in [14,[START_REF] Crane | The heat method for distance computation[END_REF], and p-Laplace approximations were considered in [23]. This approach can be extended to general Finsler metrics thanks to [START_REF] Ennaji | Quasi-convex Hamilton-Jacobi equations via limits of finsler p-Laplace problems as p → ∞[END_REF]. For more general metrics, generalization of the FMM has been proposed in [START_REF] Mirebeau | Riemannian fast-marching on cartesian grids, using Voronoi's first reduction of quadratic forms[END_REF]36,[START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF]] using Voronoi's first reduction. More closely related to our work are ADMM methods, which have proven very effective for computing distance function in the Euclidean case [START_REF] Belyaev | An ADMM-based scheme for distance function approximation[END_REF]23] but have not been extended yet to general Finsler metrics.

Contributions and organization of the paper.

In this note, we introduce an efficient primaldual framework for the computation of Finsler distances, based on a variational reformulation of Finsler variants of the Eikonal equation (1.2). We also discuss several strategies to accelerate the algorithm, and revisit different type of metrics that are present in the literature: Euclidean, Riemannian, Randers metrics and ones appearing in transportation theory such as crystalline metrics. For each metric, we give details concerning projections onto sublevels, which represents the main step in the proposed algorithm. The paper is organized as follows. In Section 2 we recall some facts on HJ equations and we present the variational formulation that will be used to compute the distance function. In Section 3 we present a discrete variant of our variational formulation and introduce a PD algorithm for solving it. In Section 4 we give several examples of distance computations and geodesic extractions, for a variety of metrics. Finally, we draw our conclusions and discuss possible extensions in Section 5.

Notations. Throughout this note, Ω is a bounded regular domain of R N (N = 2 in Section 4). We use bold notation for vectors, i.e., p ∈ R N . We write x = (x, y) for x ∈ Ω ⊂ R 2 . We denote by • the Euclidean norm on R N and by S ++ N the set of symmetric positive definite matrices. Given M ∈ S ++ N , we denote p, q M = p, Mq and p M = p, p and consider the following HJ equation:

H(x, ∇u) = 0, x ∈ Ω. (2.5)
We recall the following definition:

Definition 2.1. A continuous function u : Ω → R is said to be • a viscosity subsolution of (2.5) in Ω if H(x, q) ≤ 0 for every x ∈ Ω and every q ∈ D + u(x), • a viscosity supersolution of (2.5) in Ω if H(x, q) ≥ 0 for every x ∈ Ω and every q ∈ D -u(x), • a viscosity solution of (2.5) in Ω if it is both a subsolution and supersolution. Recall that here, D + u(x) and D -u(x) stand, respectively, for the superdifferential and subdifferential of u at x and are given by

D + u(x) = q ∈ R N : lim sup |v|→0 u(x + v) -u(x) -q, v |v| ≤ 0 , D -u(x) = q ∈ R N : lim inf |v|→0 u(x + v) -u(x) -q, v |v| ≥ 0 .
We refer the reader to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]33] for more details on the theory of viscosity solutions for HJ equations.

The support function of the 0-sublevels set Z(x) is defined through

σ(x, q) = sup q∈Z(x) q, q , (2.6) 
which is a Minkowski norm on Ω × R N and thus defines a Finsler metric on R N . Assumption (2.4) ensures that σ is a possibly degenerate Finsler metric, i.e., we may have σ(x, q) = 0 for q = 0, and its dual σ * , defined by σ * (x, q) := sup q { q, q : σ(x, q) ≤ 1}, (2.7) may take the value +∞ (we call it a weak Finsler metric). Consequently, σ may fail to be equivalent to the Euclidean distance. In other words, there exists K > 0 such that 0 ≤ σ(x, q) ≤ K|q| for x ∈ Ω, q ∈ R N .

We then define the intrinsic distance by

d σ (x, y) := inf ζ∈Γ(x,y) 1 0 σ(ζ(t), ζ(t)) dt, (2.8) 
which is a quasi-distance, i.e., satisfying d σ (x, x) = 0 and the triangular inequality, but not necessarily symmetric. In addition, due to Assumption (2.4), it may happen that d σ (x, y) = 0 for x = y. The following proposition summarizes some basic characterizations of subsolutions in terms of d σ .

Proposition 2.2.

([18, 22]) 1) Compatibility condition: v is a subsolution of (2.5) in Ω if and only if v(x) -v(y) ≤ d σ (y, x) for any x, y ∈ Ω. 2) We have u(x) -u(y) ≤ d σ (y, x) ⇐⇒ σ * (x, ∇u) ≤ 1 a.e. in Ω.
After these reminders on the metric character of HJ equation, we are now in position to introduce the variational formulation that will allow recovering the distance function with respect to general Finsler metric.

Characterization of the distance function.

Given a closed subset C ⊂ Ω (typically C = ∂Ω or C = {x 0 } for some x 0 ∈ Ω), we consider the following HJ equation:

H(x, ∇u) = 0 in Ω, u = g on C, (2.9) 
where g : C → R is a continuous function satisfying the compatibility condition g(x)g(y) ≤ d σ (y, x) for any x, y ∈ C.

We know then that the maximal viscosity subsolution is given by

D(x) = min y∈C {d σ (y, x) + g(y)} , (2.10) 
which, thanks to Proposition 2.2, can be recovered via the following maximization problem:

max

Ω u dx : u(x) -u(y) ≤ d σ (y, x), ∀x, y ∈ Ω and u = g on C ,
where d σ (., .) is the intrinsic distance associated to the Hamiltonian, as defined in (2.8). Equivalently (cf. [18, Theorem 2.6]), we have that (2.10) is the unique solution of the following maximization problem:

max v∈W 1,∞ (Ω) Ω v dx, σ * (x, ∇v(x)) ≤ 1 and v = g on C . (2.11)
The advantage of this variational formulation is that it turns the PDE (2.9) into an optimization problem for which efficient highly efficient solvers exist. Taking g ≡ 0, this provides a practical way to recover the distance function with respect to several Finsler metrics.

NUMERICAL APPROXIMATION

In this section we present the main ingredients to derive a discrete version of the variational problem (2.11) and we write it in a suitable form to use a primal dual algorithm (PD for short) to approximate the distance function. We also discuss some preconditioning techniques that could help improving the results.

3.1. Discretization and formulation. Following [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF], we discretize the domain Ω using a regular grid m × n: {(ih, jh) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} for a fixed h > 0. We denote by C d = {(i, j) : (ih, jh) ∈ C} the indices whose spatial positions belong to C and by u i,j the values of u at (ih, jh). The space X = R m×n is equipped with a scalar product and an associated norm as follows:

u, v = h 2 m ∑ i=1 n ∑ j=1 u i,j v i,j and u = u, u .
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define the components of the discrete gradient operator via finite differences:

(∇ h u) 1 i,j =    u i+1,j -u i,j h if i < m, 0 if i = m, and (∇ h u) 2 i,j =    u i,j+1 -u i,j h if j < n, 0 if j = n. Then the discrete gradient ∇ h : X -→ Y = R m×n×2 is given by (∇ h u) i,j = (∇ h u) 1 i,j , (∇ h u) 2 i,j
and its adjoint, the discrete divergence operator div h : Y → X, is given by

(div h φ) i,j =                φ 1 1,j h if i = 1, φ 1 i,j -φ 1 i-1,j h if 1 < i < m, -φ 1 m-1,j h if i = m, +                φ 2 i,1 h if j = 1, φ 2 i,j -φ 2 i,j-1 h if 1 < j < n, -φ 2 i,n-1 h if j = n.
Proposition 3.3. ([7, 8]) Under the aforementioned definitions and notations, one has that

• The adjoint operator of ∇ h is ∇ * h = -div h . • Its norm satisfies: ∇ h 2 = div h 2 ≤ 8/h 2 .
This suggests considering the following discrete version of the variational problem (2.11):

min u∈X u i,j =g i,j ∀(i,j)∈C d -h 2 m ∑ i=1 n ∑ j=1 u i,j + I B σ * (∇ h u) (3.12)
where

I B σ * is the indicator function of B σ * := v ∈ Y : σ * (ih, jh, v i,j ) ≤ 1, ∀(i, j) the unit ball w.r.t. σ * , that is I B σ * (v) = 0 if v ∈ B σ * +∞ otherwise.
In other words, the discrete optimization problem (3.12) can be written as

min u∈X F h (u) + G h (∇ h u), (3.13) 
where

F h (u) =      -h 2 m ∑ i=1 n ∑ j=1 u i,j if u = g on C d , +∞ otherwise, and G h (v) = I B σ * .
Besides, (3.12) can be rewritten in a dual form (see [START_REF] Ennaji | Continuous Lambertian shape from shading: A primal-dual algorithm[END_REF][START_REF] Ennaji | Augmented lagrangian methods for degenerate hamilton-jacobi equations[END_REF]) involving the total variation of some vector measure fields φ with respect to the metric σ. More precisely, the dual problem is a minimal flow type problem given by min

φ∈Y (-div h φ) i,j =1 for (i,j)/ ∈C d h 2 m ∑ i=1 n ∑ j=1 σ(ih, jh, φ i,j ) + ∑ (i,j)∈C d g i,j (div h φ) i,j + 1 . (3.14)
The duality between (3.12) and (3.14) gives particularly a characterization of the distance function. More precisely, the pair (u, φ) ∈ X × Y solves the primal and dual problems if and only if (see e.g., [START_REF] Ekeland | Convex analysis and variational problems[END_REF])

div h (φ) ∈ ∂F h (u) and φ ∈ ∂G h (∇ h u), that is,            -(div(φ)) i,j = 1 for all (i, j) ∈ C d , φ i,j • ∇ h u i,j = σ(ih, jh, φ i,j
) for all (i, j), u i,j = g i,j for all (i, j) ∈ C d .

(3.15)

Lastly, a primal-dual formulation of the primal problem (3.12) reads (see e.g., [START_REF] Rockafellar | Convex analysis[END_REF] for details)

inf u∈X sup φ∈Y F h (u) + φ, ∇ h u -G * h (φ),
and the latter form can be solved using the following general (PD) algorithm:

Algorithm 1 PD algorithm [8] 1st step. Initialization: choose η, τ > 0, θ ∈ [0, 1], u 0 and take φ 0 = ∇ h u 0 , ū0 = u 0 . 2nd step. For k ≤ Iter max do φ k+1 = Prox ηG * h (φ k + η∇ h ( ūk )); u k+1 = Prox τF h (u k -τ∇ * h (φ k+1 )); ūk+1 = u k+1 + θ(u k+1 -u k ).
It was shown in [8] that when θ = 1 and ητ ∇ h 2 < 1, the sequence {(u k , φ k )} generated by Algorithm 1 converges to an optimal solution of (3.13). This algorithm has been widely used especially in image processing and optimal transport fields.

Computation of the proximal operators.

As one sees, in order to apply Algorithm 1 one needs to compute the proximal operators of the functions F h and G * h . Recall that for a convex, lower-semicontinuous and proper function K, the proximal operator (also called resolvent operator) reads

Prox τK (u) = argmin v 1 2 u -v 2 + τK(v), τ > 0.
For K = F h and K = G * h , Prox K can be computed explicitly. In particular, we have

Prox τF h (u) = argmin v∈X 1 2 v -u 2 + τF h (v) = argmin v=g on C d 1 2 v -u 2 -τh 2 m ∑ i=1 n ∑ j=1 v i,j .
The optimal solution is reached when the derivative of the objective function vanishes. A straightforward computation gives:

(Prox τF h (u)) i,j = u i,j + τ for (i, j) / ∈ C d , g ij for (i, j) ∈ C d .
In order to compute Prox ηG * h we first observe that Prox η -1 G h is nothing but the projection onto

B σ * since Prox η -1 G h (ψ) = arg min q∈Y 1 2 q -ψ 2 + 1 η G h (q) = arg min q i,j ∈B σ * 1 2 q -ψ 2 = Proj B σ * (ψ).
Then, using Moreau's identity

φ = Prox ηG * h (φ) + ηProx η -1G h (φ/η), ∀φ ∈ Y, we get Prox ηG * h (ψ) i,j = ψ i,j -ηProj B σ * (ψ i,j /η), ∀i = 1, ..., m, j = 1, ..., n.
Therefore, to compute Prox ηG * h , it is sufficient to be able to project onto B σ * , and thus, Algorithm 1 provides a simple way to recover the distance function with respect to general Finsler metrics. This has been made possible via gauge functionals (the support function σ and its dual σ * , see (2.6)-(2.7)) which makes the correspondence between geometrical objects (here unit balls B σ * ) and analytical objects (Hamiltonians). The details of Algorithm 1 to approximate the distance function read: Algorithm 2 Primal-dual method for the numerical approximation of the distance function Initialization: Let k = 0, choose η, τ > 0 such that ητ < 8 h 2 . Take u 0 = ū0 = u 0 and φ 0 = ∇ h u 0 . Primal step:

ψ k+1 = φ k + η∇ h ūk . φ k+1 i,j = ψ k+1 i,j -ηProj B σ * (ψ k+1 i,j /η), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Dual step: v k+1 = u k + τdiv h (φ k+1 ). u k+1 i,j = v k+1 i,j + τ, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Extragradient: ūk+1 = 2u k+1 -u k .
3.3. Acceleration of the algorithm. First, let us say that PD iterations can be improved using preconditioning and variable metrics techniques. In fact, following [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF], we can consider a preconditioned version of Algorithm 2 as follows. Given T, Q ∈ S N ++ , u 0 and φ 0 , P-DP iterations read (P-PD) :

   φ k+1 = Prox T G * h φ k + T∇ h (2u k+1 -u k ) , u k+1 = Prox Q F h u k -Q∇ * h (φ k+1 ) , (3.16) 
where

Prox M K (u) = arg min v 1 2 u -v 2 M + K(v) and M ∈ S N
++ is the scaled proximal operator of K relative to the metric M. To ensure the convergence of (P-PD) iterations, the preconditioners Q and T must satisfy T

1 2 ∇ h Q 1 2 2 < 1, which reduces to ητ ∇ h 2 < 1 when T = η I N and Q = τI N . Since computing Prox M
K is difficult in general, the choice of the preconditioner is crucial. For instance, the authors in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] proposed a family of diagonal preconditioners as follows. For any r ∈ [0, 2], take T = diag((η i ) i ) and Q = diag((τ j ) j ) where

η i = 1 ∑ N j=n |(∇ h ) i,j | 2-r , τ j = 1 ∑ N i=m |(∇ h ) i,j | r .
To observe the difference of PD and P-PD, let us consider the Eikonal equation |∇u| = k(x) in [0, 1] 2 with homogeneous Dirichlet boundary condition with a mesh size h = 0.01, and take the relative error E k := u ku k-1 / u k < = 10 -6 as a stopping criterion. In the case where k ≡ 1 (Figure 1-A), we observed that it took 5900 iterations (in 11.4 seconds 1 ) for PD to stop, whereas P-PD stopped after 5500 iterations (in 10.95 1 The numerical examples were executed on a M1 CPU running MacOs Monterey system. Demonstration code is available at https://github.com/enhamza/pd_eikonal. seconds). In the case where k(x) = 2π cos(2πx) 2 sin(2πy) 2 + cos(2πy) 2 sin(2πx) 2 (Figure 1-B), PD stopped after 2900 iterations (in 5.6 seconds), while the P-PD stopped after 2800 (in 5.5 seconds). Figure 1 shows that the relative error E k is smaller from the beginning of the iterations when considering a preconditioner. We can also observe that the speed on convergence is affected by the smoothness of the metric. We believe that use of non-diagonal preconditioning and subproblem procedures (like solving the u-subproblem in (3.16) using proximal-gradient descent) could lead to improved results (see e.g., [START_REF] Liu | Acceleration of primal-dual methods by preconditioning and simple subproblem procedures[END_REF]). We are planing to investigate this in depth in future work.

NUMERICAL EXPERIMENTS

In this section we give several examples by computing the distance function using different Finsler metrics F : Ω × R N → R + , and the following HJ equation:

F * (x, ∇u) = 1 in Ω \ C, u = 0 on C. (4.17)
Let D C be the distance function to C (given by (2.10)) obtained by solving (4.17). Then, the geodesic curve between a point x ∈ Ω and its closest point in C satisfies

γ(t) = -∇F * (γ(t), ∇D C (γ(t))), γ(0) = x. (4.18)
As one can sees, Equation (4.18) is a gradient descent on the distance map with respect to metric F * . It can be solved using an Euler scheme. Using forward Euler discretization, one needs to solve

γ k+1 = γ k -η∇F * (γ k , ∇D C (γ k )),
where η > 0 is a step-size to be suitably chosen. However, for more accuracy it is solved in practice using the technique proposed in [36] or a Runge-Kutta method2 . On the other hand, one can use the proximal-point algorithm using backward Euler discretization. Indeed, solving

γ k+1 = γ k -η∇F * (γ k+1 , ∇D C (γ k+1 )), amounts to minimizing 1 2η γ k -x 2 + F * (x, ∇D C (x)).
That is: 

γ k+1 = Prox ηF * (•,∇D(•)) (γ k ).
• Euclidean metric: F(x, p) = p . • Riemannian metric: F(x, p) = k(x) p with k > 0. • Crystalline metric: F(x, p) = max i=1,••• ,m
p, s i for given directions s i .

• Randers metric:

F(x, p) = Ap, p 1/2 + b(x), p , where A ∈ S N ++ and b ∈ R N such that b A -1 < 1.
We also illustrate via a quadratic Hamiltonian how to recover the distance function in a more general setting. 

Euclidean and Riemannian metrics.

In the examples illustrated in Figure 3, the primal step in Algorithm 2 amounts to perform projections onto Euclidean balls, that is

Proj B F * (q) =    q if q ≤ k, k q q otherwise,
where k is the radius of the ball. for µ > 0 (Riemannian case), and geodesic curves. Note that in both cases, the curves are orthogonal to the contours.

Crystalline metrics. Now we consider

F(x, p) = max i=1,••• ,5
p, s i , usually called a crystalline norm (see Figure 4). Let us denote by v 1 , • • • , v 5 the vertices of the unit ball of F, i.e., B F = {p ∈ R 2 : F(p) ≤ 1}. Then, the primal step in Algorithm 2 consists in projecting onto the polygon B F * = conv(s 1 , • • • , s 5 ), the unit ball of F * , where F * is the dual norm of F (which is also a crystalline norm). The vertices of B F * are orthogonal to the edges e i = v iv i-1 , that is e i , s i = 0 for every i.

One way to achieve this projection is the following. If a vector q / ∈ B F * , then we compute its projection onto the successive segments [v i , v i+1 ] and choose the right one. Otherwise we proceed as in [5] by determining onto which sector q belongs. Namely, if q ∈ s i + L i + L i-1 with L i = R + v i , then its projection is s i . On the other hand, if q ∈ [s i , s i+1 ] + L i , then we project it onto the segment [s i , s i+1 ] (see Figure 5). 

Randers metrics.

Another metrics are the so-called Randers metrics [START_REF] Randers | On an asymmetrical metric in the four-space of general relativity[END_REF]. They are a simple example of Finsler metrics which generalize Riemannian ones and have the form F(x, p) = Ap, p 1/2 + b(x), p , where A ∈ S N ++ and b ∈ R N with v A -1 < 1. The first term is a Riemannian metric (anisotropic Euclidean distance) and the second term is a linear form (see e.g., [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF][START_REF] Shen | Lectures on Finsler geometry[END_REF] for more details). Its dual F * is also a Randers metric of the form (see e.g., [START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Riemannian fast-marching on cartesian grids, using Voronoi's first reduction of quadratic forms[END_REF])

F * (x, p) = A * p, p 1/2 + b * (x), p where δ = 1 -b, A -1 b , A * = (A -1 b)(A -1 b) t + δA -1 δ , b * = - A -1 * A -1 b δ .
In the example of Figure 6, we are considering a Randers metric F via its dual Ap, p In order to project onto B F * , we may assume, up to diagonalizing A, that

F * (x, p) = N ∑ i=1 α i p 2 i 1/2 + b(x), p ,
where α i > 0 are the eigenvalues of A. We focus on the case where b ≡ 0 (otherwise the projection is obtained by translating in direction b). Then, the projection of p ∈ R N onto B F * is given by

Proj B F * (p) =    p, if p ∈ B F * , α 1 p 1 (α 1 + η) 2 , • • • , α N p N (α N + η) 2 ,
where η is the positive root of

f (η) := N ∑ i=1 α i p 2 i (α i + η) 2 -1,
which can be solved using a bisection method. To illustrate this, we suppose that the distance function is obtained by solving a HJ equation as in (2.9) with a quadratic Hamiltonian perturbed by a linear form , i.e., H(x, p) = 1 2 Ap, p + b(x), p -1, with A ∈ S N ++ and b ∈ R N . This kind of Hamiltonian appears typically in Freidlin-Wentzell theory of large deviations (see e.g., [START_REF] Heymann | The geometric minimum action method: a least action principle on the space of curves[END_REF]). Moreover, we have that (see e.g., [START_REF] Beck | First-order methods in optimization[END_REF]Example 6

.2.3]) Prox ηH (v) = (I n + η A) -1 (v -ηb).
(4.20)

Then, projecting onto the unit ball of F * is given thanks to (4.20). This an advantageous formula allowing in particular to project onto ellipsoids once the optimal parameter η has found (usually using a bisection method). The method allows reducing additional computational costs using other algorithms as in [START_REF] Jia | Comparison of several fast algorithms for projection onto an ellipsoid[END_REF].

In the example of 

F * (x, v) = k(x) -1 |v|,
were k(x) is a potential constructed from the image 3 . For example, taking (see [40,[START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF]) k(x) = -I(x) or I(x) allows recovering curves in dark and bright regions respectively. Ather possibility is to take k(x) = ( + |I(x) -c|) -1 in order to get curves with constant value c, where 0 < 1. 

CONCLUSIONS, COMMENTS AND EXTENSIONS

In this paper, we have proposed a primal-dual algorithm to approximate the distance function with respect to Finsler metrics with a flavor of variational formulation, which transforms the problem of estimating a distance function into solving an optimization problem. We have illustrated the flexibility of this method via different examples.

In addition to the possible improvements of the results discussed in Subsection 3.3, other applications and extensions are worth been investigated, as for instance, the extension of the proposed method to surfaces and 3D points clouds. Another application that we intend to consider in future work is the computation of skeleton or medial axis. In fact, given the distance function to the boundary of a shape S, the skeleton of S is defined as the set of singularities of the distance function D(.), which in particular, solves a problem of the form max where F is a given Finsler metric. The dual problem of (5. [START_REF] Fathi | PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians[END_REF]) reads (see [START_REF] Ennaji | Continuous Lambertian shape from shading: A primal-dual algorithm[END_REF][START_REF] Ennaji | Augmented lagrangian methods for degenerate hamilton-jacobi equations[END_REF]) inf Φ∈L 2 (Ω) N Ω F(x, Φ(x))dx : -div(Φ) = 1 in D (Ω) .

(5.23)

Then if the couple (u, Φ) solve (5.22)-(5.23), the complementary slackness condition (see also (3.15) for the discrete level) reads

Φ(x) = 0 ⇒ F * (x, ∇D(x)) = 1,
i.e., the magnitude (w.r.t F) of ∇D is binding in the support of Φ (c.f Figure 10). This observation could be used since the flow Φ is freely given by Algorithm 2 when computing the distance. 

  e., d(x, y) = L(γ). Moreover, given a closed C ⊂ Ω, d(., C) = inf y∈C | • -y| is the unique viscosity solution of the Eikonal equation (see e.g., [33]) ∇u = 1 in Ω \ C, and u = 0 on C. (1.2)
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 1 FIGURE 1. Comparison between the convergence of primal-dual and preconditioned primal-dual iterations, for two types of distances.

FIGURE 2 .

 2 FIGURE 2. Examples of unit balls B F * . From left to right: Euclidean unit ball , unit ball for an Anisotropic Riemannian metric and the unit ball of crystalline norm.

FIGURE 3 .

 3 FIGURE 3. Top row: 3d-shape of the distance function computed with a single starting point with F(x, p) = p (Euclidean distance), and geodesic curves between several points and the starting point displayed on the contours of the distance functions. Bottom row: 3d-shape of the distance function computed with two starting points with F(x, p) = k(x) p and k(x) = 1 + 8e -x 2 -y 2 2µ 2
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 45 FIGURE 4. Left: 3d-shape of the distance function computed with a single starting point with a crystalline norm F(x, p) = max i=1,••• ,5 p, s i with s 1 = (1, -1), s 2 = (1, -0.8), s 3 = (-0.8, 1), s 4 = (-1, 1), s 5 = (-1, -1). Right: several geodesic curves.

FIGURE 6 .

 6 FIGURE 6. Left: 3d-shape of the distance function computed with several starting points (in white) with F * (x, p) = Ap, p 1/2 + b(x), p where A and b are given in (4.19). Right: geodesic curves to several end points in blue.
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 7272 FIGURE 7. Left: 3d-shape of the distance function computed with several starting points (in white) with H(x, p) = 1 2 Ap, p + b(x), p -1 where A and b are given in (4.21). Right: geodesic curves to several end points in blue.
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 844 FIGURE 8. Examples of metrics (First column), the geodesic distances and curves where the starting points are in white and the endpoints in red (middle column), and the curves displayed on the image background (last column).

FIGURE 9 .

 9 FIGURE 9. From left to right: input image I(x) of the labyrinth (the door C is in gray), 3d-shape of the solution of the labyrinth problem function, and contours of the solutions.

v∈W 1 ,

 1 ∞ (Ω) Ω vdx, F * (x, ∇v(x)) ≤ 1 and v = 0 on ∂Ω , (5.22)

FIGURE 10 .

 10 FIGURE 10. Left to right: distance to the boundary, medial axis approximated by thresholding the magnitude of the gradient, and optimal flow Φ.

  4.1. First examples. We provide several examples on the Euclidean space with different metrics. More precisely, we consider the following examples (cf. Figure 2):

In particular, we make use of a prebuilt function in the toolbox[START_REF] Peyré | Toolbox fast marching[END_REF].

The images are taken from[START_REF] Peyré | Geodesic methods in computer vision and graphics[END_REF] and can be found in https://www.numerical-tours.com/matlab/

We are planing to investigate theses questions in depth in future works. Acknowledgements. This work has been funded by ANR grant Inclusive Museum Guide (ANR-20-CE38-0007).