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A PRIMAL-DUAL ALGORITHM FOR COMPUTING FINSLER DISTANCES AND
APPLICATIONS

HAMZA ENNAJI, YVAIN QUÉAU AND ABDERRAHIM ELMOATAZ†

ABSTRACT. This note discusses the computation of the distance function with respect to Finsler
metrics. To this end, we show how the Finsler variants of the Eikonal equation can be solved by
a primal-dual algorithm exploiting the variational structure. We also discuss the acceleration of
the algorithm by preconditioning techniques, and illustrate the flexibility of the proposed method
through a series of numerical examples.

1. INTRODUCTION

Computing the distance function to a target set plays a central role in geometry and arises
in many applications such as path planning, meshing, image processing, shape detection of tu-
mors from medical images, tractography or neural fiber tracking in neuroscience (see e.g., [40,
41, 49, 25, 16, 32, 31] and the references therein).

A first example is the computation of geodesics. Given a domain Ω ⊂ RN , and x, y ∈ Ω, the
geodesic distance between x and y is defined through

d(x, y) = inf
γ∈Γ(x,y)

L(γ), (1.1)

where Γ(x, y) = {γ ∈ W1,1([0, 1], Ω), γ(0) = x, γ(1) = y}, L(γ) is the so called length (or
action) functional of γ ∈ Γ(x, y) given by

L(γ) =
∫ 1

0
|γ̇(t)|dt.

It is well known that (1.1) admits a solution (provided Γ(x, y) is nonempty) γ which is of min-
imal length, i.e., d(x, y) = L(γ). Moreover, given a closed C ⊂ Ω, d(., C) = inf

y∈C
| · −y| is the

unique viscosity solution of the Eikonal equation (see e.g., [33])

‖∇u‖ = 1 in Ω \ C, and u = 0 on C. (1.2)

Then, the geodesic γ between some point x0 ∈ Ω and any point of C is characterized by the
following ordinary differential equation (ODE)

γ̇(t) = − ∇d(γ(t), C)
‖∇d(γ(t), C)‖ , with γ(0) = x0.
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2 A PRIMAL-DUAL ALGORITHM FOR COMPUTING FINSLER DISTANCES

Another classic example, arising from control theory, is the minimum time problem, where
one seeks to steer some dynamics

ẏ(t) = f (y(s), α(t)), and y(t0) = y0 ∈ RN , (1.3)

in the shortest possible time to a given target C ⊂ RN , where t0 ∈ R, α is an admissible control
and f is a continuous function satisfying the classical Caratheodory’s theorem assumptions
(see e.g., [6]) ensuring the existence and uniqueness of a global solution to (1.3). Then, the first
arrival time to C is defined through Tx(α) = inf

t
{t > 0 : y(t, α) ∈ C} and the value function of

the minimum time problem is given by

T(x) = inf
α

Tx(α).

Then, thanks to the dynamic programming principle (see e.g., [6]), T satisfies the following
boundary value problem:

H(x,∇u) = 0 in R \ C, and u = 0 on ∂C,

where R = {x ∈ RN : T(x) < ∞} and H(x, p) = sup
a
{−p · f (x, a)− 1}.

In both examples, the starting point is to compute the distance function, i.e., , to solve a
Hamilton-Jacobi (HJ) equation. HJ equations, particularly of the Eikonal type, are also at the
core of many geodesic-related problems in imaging, and have been widely considered in skele-
ton and Voronoi computation [27, 47], active contours and segmentation [30, 39, 12, 11, 10, 9]
and in many other applications (see e.g., [40, 41] and the references therein). One of the key
challenges arising in such applications is to design HJ solvers which are both efficient and able
to handle general (non-Euclidean) metrics.

The most famous methods for solving Euclidean HJ equations remain the Fast Marching
Method (FMM) [45, 48], the Fast Sweeping Method (FSM) [35, 50] and semi-Lagrangian schemes [21].
Heat methods based on Hopf-Cole transform were proposed in [14, 15], and p-Laplace ap-
proximations were considered in [23]. This approach can be extended to general Finsler met-
rics thanks to [19]. For more general metrics, generalization of the FMM has been proposed
in [38, 36, 37] using Voronoi’s first reduction. More closely related to our work are ADMM
methods, which have proven very effective for computing distance function in the Euclidean
case [4, 23] but have not been extended yet to general Finsler metrics.

Contributions and organization of the paper. In this note, we introduce an efficient primal-
dual framework for the computation of Finsler distances, based on a variational reformulation
of Finsler variants of the Eikonal equation (1.2). We also discuss several strategies to accelerate
the algorithm, and revisit different type of metrics that are present in the literature: Euclidean,
Riemannian, Randers metrics and ones appearing in transportation theory such as crystalline
metrics. For each metric, we give details concerning projections onto sublevels, which repre-
sents the main step in the proposed algorithm. The paper is organized as follows. In Section 2
we recall some facts on HJ equations and we present the variational formulation that will be
used to compute the distance function. In Section 3 we present a discrete variant of our vari-
ational formulation and introduce a PD algorithm for solving it. In Section 4 we give several
examples of distance computations and geodesic extractions, for a variety of metrics. Finally,
we draw our conclusions and discuss possible extensions in Section 5.



A PRIMAL-DUAL ALGORITHM FOR COMPUTING FINSLER DISTANCES 3

Notations. Throughout this note, Ω is a bounded regular domain of RN (N = 2 in Section 4).
We use bold notation for vectors, i.e., p ∈ RN . We write x = (x, y) for x ∈ Ω ⊂ R2. We denote
by ‖ · ‖ the Euclidean norm on RN and by S++

N the set of symmetric positive definite matrices.
Given M ∈ S++

N , we denote 〈p, q〉M = 〈p, Mq〉 and ‖p‖M = 〈p, p〉1/2
M .

2. HJ EQUATION AND THE DISTANCE FUNCTION

2.1. Reminders on HJ equations. Given a bounded regular domain Ω ⊂ RN , we consider a
continuous Hamiltonian H : Ω × RN → R such that for every x ∈ Ω

{q ∈ Rn : H(x, q) ≤ 0} , Z(x) is convex, compact and contains the origin, (2.4)

and consider the following HJ equation:

H(x,∇u) = 0, x ∈ Ω. (2.5)

We recall the following definition:

Definition 2.1. A continuous function u : Ω → R is said to be
• a viscosity subsolution of (2.5) in Ω if H(x, q) ≤ 0 for every x ∈ Ω and every q ∈

D+u(x),
• a viscosity supersolution of (2.5) in Ω if H(x, q) ≥ 0 for every x ∈ Ω and every q ∈

D−u(x),
• a viscosity solution of (2.5) in Ω if it is both a subsolution and supersolution.

Recall that here, D+u(x) and D−u(x) stand, respectively, for the superdifferential and subdif-
ferential of u at x and are given by

D+u(x) =

{
q ∈ RN : lim sup

|v|→0

u(x + v)− u(x)− 〈q, v〉
|v| ≤ 0

}
,

D−u(x) =
{

q ∈ RN : lim inf
|v|→0

u(x + v)− u(x)− 〈q, v〉
|v| ≥ 0

}
.

We refer the reader to [13, 33] for more details on the theory of viscosity solutions for HJ
equations.

The support function of the 0-sublevels set Z(x) is defined through

σ(x, q) = sup
q∈Z(x)

〈q, q〉, (2.6)

which is a Minkowski norm on Ω × RN and thus defines a Finsler metric on RN .
Assumption (2.4) ensures that σ is a possibly degenerate Finsler metric, i.e., we may have

σ(x, q) = 0 for q 6= 0, and its dual σ∗, defined by

σ∗(x, q) := sup
q

{〈q, q〉 : σ(x, q) ≤ 1}, (2.7)

may take the value +∞ (we call it a weak Finsler metric). Consequently, σ may fail to be
equivalent to the Euclidean distance. In other words, there exists K > 0 such that

0 ≤ σ(x, q) ≤ K|q| for x ∈ Ω, q ∈ RN .
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We then define the intrinsic distance by

dσ(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0
σ(ζ(t), ζ̇(t)) dt, (2.8)

which is a quasi-distance, i.e., satisfying dσ(x, x) = 0 and the triangular inequality, but not
necessarily symmetric. In addition, due to Assumption (2.4), it may happen that dσ(x, y) = 0
for x 6= y. The following proposition summarizes some basic characterizations of subsolutions
in terms of dσ.

Proposition 2.2. ([18, 22])
1) Compatibility condition: v is a subsolution of (2.5) in Ω if and only if v(x)− v(y) ≤ dσ(y, x)

for any x, y ∈ Ω.
2) We have

u(x)− u(y) ≤ dσ(y, x) ⇐⇒ σ∗(x,∇u) ≤ 1 a.e. in Ω.

After these reminders on the metric character of HJ equation, we are now in position to intro-
duce the variational formulation that will allow recovering the distance function with respect
to general Finsler metric.

2.2. Characterization of the distance function. Given a closed subset C ⊂ Ω (typically C =
∂Ω or C = {x0} for some x0 ∈ Ω), we consider the following HJ equation:{

H(x,∇u) = 0 in Ω,
u = g on C,

(2.9)

where g : C → R is a continuous function satisfying the compatibility condition

g(x)− g(y) ≤ dσ(y, x) for any x, y ∈ C.

We know then that the maximal viscosity subsolution is given by

D(x) = min
y∈C

{dσ(y, x) + g(y)} , (2.10)

which, thanks to Proposition 2.2, can be recovered via the following maximization problem:

max
{∫

Ω
u dx : u(x)− u(y) ≤ dσ(y, x), ∀x, y ∈ Ω and u = g on C

}
,

where dσ(., .) is the intrinsic distance associated to the Hamiltonian, as defined in (2.8). Equiv-
alently (cf. [18, Theorem 2.6]), we have that (2.10) is the unique solution of the following maxi-
mization problem:

max
v∈W1,∞(Ω)

{ ∫
Ω

v dx, σ∗(x,∇v(x)) ≤ 1 and v = g on C
}

. (2.11)

The advantage of this variational formulation is that it turns the PDE (2.9) into an optimization
problem for which efficient highly efficient solvers exist. Taking g ≡ 0, this provides a practical
way to recover the distance function with respect to several Finsler metrics.
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3. NUMERICAL APPROXIMATION

In this section we present the main ingredients to derive a discrete version of the variational
problem (2.11) and we write it in a suitable form to use a primal dual algorithm (PD for short)
to approximate the distance function. We also discuss some preconditioning techniques that
could help improving the results.

3.1. Discretization and formulation. Following [7], we discretize the domain Ω using a reg-
ular grid m × n: {(ih, jh) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} for a fixed h > 0. We denote by
Cd = {(i, j) : (ih, jh) ∈ C} the indices whose spatial positions belong to C and by ui,j the values
of u at (ih, jh). The space X = Rm×n is equipped with a scalar product and an associated norm
as follows:

〈u, v〉 = h2
m

∑
i=1

n

∑
j=1

ui,jvi,j and ‖u‖ =
√
〈u, u〉.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define the components of the discrete gradient operator via
finite differences:

(∇hu)1
i,j =


ui+1,j − ui,j

h
if i < m,

0 if i = m,
and (∇hu)2

i,j =


ui,j+1 − ui,j

h
if j < n,

0 if j = n.

Then the discrete gradient ∇h : X −→ Y = Rm×n×2 is given by (∇hu)i,j =
(
(∇hu)1

i,j, (∇hu)2
i,j

)
and its adjoint, the discrete divergence operator divh : Y → X, is given by

(divh φ)i,j =



φ1
1,j

h
if i = 1,

φ1
i,j − φ1

i−1,j

h
if 1 < i < m,

−φ1
m−1,j

h
if i = m,

+



φ2
i,1

h
if j = 1,

φ2
i,j − φ2

i,j−1

h
if 1 < j < n,

−φ2
i,n−1

h
if j = n.

Proposition 3.3. ([7, 8]) Under the aforementioned definitions and notations, one has that
• The adjoint operator of ∇h is ∇∗

h = −divh .
• Its norm satisfies: ‖∇h‖2 = ‖divh ‖2 ≤ 8/h2.

This suggests considering the following discrete version of the variational problem (2.11):

min
u∈X

ui,j=gi,j ∀(i,j)∈Cd

{
− h2

m

∑
i=1

n

∑
j=1

ui,j + IBσ∗ (∇hu)
}

(3.12)

where IBσ∗ is the indicator function of Bσ∗ :=
{

v ∈ Y : σ∗(ih, jh, vi,j) ≤ 1, ∀(i, j)
}

the unit ball
w.r.t. σ∗, that is

IBσ∗ (v) =

{
0 if v ∈ Bσ∗

+∞ otherwise.
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In other words, the discrete optimization problem (3.12) can be written as

min
u∈X

Fh(u) + Gh(∇hu), (3.13)

where

Fh(u) =

−h2
m

∑
i=1

n

∑
j=1

ui,j if u = g on Cd,

+∞ otherwise,
and Gh(v) = IBσ∗ .

Besides, (3.12) can be rewritten in a dual form (see [20, 18]) involving the total variation of
some vector measure fields φ with respect to the metric σ. More precisely, the dual problem is
a minimal flow type problem given by

min
φ∈Y

(−divhφ)i,j=1 for (i,j)/∈Cd

h2

{
m

∑
i=1

n

∑
j=1

σ(ih, jh,φi,j)

+ ∑
(i,j)∈Cd

gi,j
(
(divhφ)i,j + 1

) }
. (3.14)

The duality between (3.12) and (3.14) gives particularly a characterization of the distance func-
tion. More precisely, the pair (u,φ) ∈ X ×Y solves the primal and dual problems if and only if
(see e.g., [17])

divh(φ) ∈ ∂Fh(u) and φ ∈ ∂Gh(∇hu),
that is, 

−(div(φ))i,j = 1 for all (i, j) 6∈ Cd,

φi,j · ∇hui,j = σ(ih, jh,φi,j) for all (i, j),

ui,j = gi,j for all (i, j) ∈ Cd.

(3.15)

Lastly, a primal-dual formulation of the primal problem (3.12) reads (see e.g., [44] for details)

inf
u∈X

sup
φ∈Y

Fh(u) + 〈φ,∇hu〉 − G∗
h (φ),

and the latter form can be solved using the following general (PD) algorithm:

Algorithm 1 PD algorithm [8]

1st step. Initialization: choose η, τ > 0, θ ∈ [0, 1], u0 and take φ0 = ∇hu0, ū0 = u0.
2nd step. For k ≤ Itermax do

φk+1 = ProxηG∗
h
(φk + η∇h(ūk));

uk+1 = ProxτFh(u
k − τ∇∗

h(φ
k+1));

ūk+1 = uk+1 + θ(uk+1 − uk).
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It was shown in [8] that when θ = 1 and ητ‖∇h‖2 < 1, the sequence {(uk, φk)} generated by
Algorithm 1 converges to an optimal solution of (3.13). This algorithm has been widely used
especially in image processing and optimal transport fields.

3.2. Computation of the proximal operators. As one sees, in order to apply Algorithm 1 one
needs to compute the proximal operators of the functions Fh and G∗

h . Recall that for a con-
vex, lower-semicontinuous and proper function K, the proximal operator (also called resolvent
operator) reads

ProxτK(u) = argmin
v

1
2
‖u − v‖2 + τK(v), τ > 0.

For K = Fh and K = G∗
h , ProxK can be computed explicitly. In particular, we have

ProxτFh(u) = argmin
v∈X

1
2
‖v − u‖2 + τFh(v) = argmin

v=g on Cd

1
2
‖v − u‖2 − τh2

m

∑
i=1

n

∑
j=1

vi,j.

The optimal solution is reached when the derivative of the objective function vanishes. A
straightforward computation gives:

(ProxτFh(u))i,j =

{
ui,j + τ for (i, j) /∈ Cd,
gij for (i, j) ∈ Cd.

In order to compute ProxηG∗
h

we first observe that Proxη−1Gh
is nothing but the projection onto

Bσ∗ since

Proxη−1Gh
(ψ) = arg min

q∈Y

1
2
‖q −ψ‖2 +

1
η
Gh(q)

= arg min
qi,j∈Bσ∗

1
2
‖q −ψ‖2

= ProjBσ∗
(ψ).

Then, using Moreau’s identity

φ = ProxηG∗
h
(φ) + ηProxη−1Gh

(φ/η), ∀φ ∈ Y,

we get (
ProxηG∗

h
(ψ)

)
i,j
= ψi,j − ηProjBσ∗

(ψi,j/η), ∀i = 1, ..., m, j = 1, ..., n.

Therefore, to compute ProxηG∗
h
, it is sufficient to be able to project onto Bσ∗ , and thus, Algo-

rithm 1 provides a simple way to recover the distance function with respect to general Finsler
metrics. This has been made possible via gauge functionals (the support function σ and its dual
σ∗, see (2.6)-(2.7)) which makes the correspondence between geometrical objects (here unit balls
Bσ∗) and analytical objects (Hamiltonians). The details of Algorithm 1 to approximate the dis-
tance function read:



8 A PRIMAL-DUAL ALGORITHM FOR COMPUTING FINSLER DISTANCES

Algorithm 2 Primal-dual method for the numerical approximation of the distance function

Initialization: Let k = 0, choose η, τ > 0 such that ητ <
8
h2 . Take u0 = ū0 = u0 and

φ0 = ∇hu0.
Primal step:

ψk+1 = φk + η∇hūk.

φk+1
i,j = ψk+1

i,j − ηProjBσ∗
(ψk+1

i,j /η), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Dual step:
vk+1 = uk + τdivh(φ

k+1).

uk+1
i,j = vk+1

i,j + τ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Extragradient:
ūk+1 = 2uk+1 − uk.

3.3. Acceleration of the algorithm. First, let us say that PD iterations can be improved using
preconditioning and variable metrics techniques. In fact, following [42], we can consider a
preconditioned version of Algorithm 2 as follows. Given T, Q ∈ SN

++, u0 and φ0, P-DP iterations
read

(P-PD) :

φ
k+1 = ProxT

G∗
h

(
φk + T∇h(2uk+1 − uk)

)
,

uk+1 = ProxQ
Fh

(
uk − Q∇∗

h(φ
k+1)

)
,

(3.16)

where ProxM
K (u) = arg min

v

1
2
‖u − v‖2

M + K(v) and M ∈ SN
++ is the scaled proximal operator of

K relative to the metric M. To ensure the convergence of (P-PD) iterations, the preconditioners
Q and T must satisfy ‖T

1
2 ∇hQ

1
2 ‖2 < 1, which reduces to ητ‖∇h‖2 < 1 when T = η IN and

Q = τ IN . Since computing ProxM
K is difficult in general, the choice of the preconditioner is

crucial. For instance, the authors in [42] proposed a family of diagonal preconditioners as
follows. For any r ∈ [0, 2], take T = diag((ηi)i) and Q = diag((τj)j) where

ηi =
1

∑N
j=n |(∇h)i,j|2−r

, τj =
1

∑N
i=m |(∇h)i,j|r

.

To observe the difference of PD and P-PD, let us consider the Eikonal equation |∇u| = k(x)
in [0, 1]2 with homogeneous Dirichlet boundary condition with a mesh size h = 0.01, and take
the relative error

Ek := ‖uk − uk−1‖/‖uk‖ < ε = 10−6

as a stopping criterion. In the case where k ≡ 1 (Figure 1-A), we observed that it took 5900
iterations (in 11.4 seconds1) for PD to stop, whereas P-PD stopped after 5500 iterations (in 10.95

1The numerical examples were executed on a M1 CPU running MacOs Monterey system. Demonstration code
is available at https://github.com/enhamza/pd_eikonal.

https://github.com/enhamza/pd_eikonal
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seconds). In the case where

k(x) = 2π
√

cos(2πx)2 sin(2πy)2 + cos(2πy)2 sin(2πx)2

(Figure 1-B), PD stopped after 2900 iterations (in 5.6 seconds), while the P-PD stopped after
2800 (in 5.5 seconds).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations 10
4

-12

-10

-8

-6

-4

-2
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P-PD

PD

(A) Euclidean case

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations 10
4

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

P-PD

PD

(B) Riemannian case

FIGURE 1. Comparison between the convergence of primal-dual and precondi-
tioned primal-dual iterations, for two types of distances.

Figure 1 shows that the relative error Ek is smaller from the beginning of the iterations when
considering a preconditioner. We can also observe that the speed on convergence is affected by
the smoothness of the metric. We believe that use of non-diagonal preconditioning and sub-
problem procedures (like solving the u-subproblem in (3.16) using proximal-gradient descent)
could lead to improved results (see e.g., [34]). We are planing to investigate this in depth in
future work.

4. NUMERICAL EXPERIMENTS

In this section we give several examples by computing the distance function using different
Finsler metrics F : Ω × RN → R+, and the following HJ equation:{

F∗(x,∇u) = 1 in Ω \ C,
u = 0 on C.

(4.17)

Let DC be the distance function to C (given by (2.10)) obtained by solving (4.17). Then, the
geodesic curve between a point x ∈ Ω and its closest point in C satisfies

γ̇(t) = −∇F∗(γ(t),∇DC(γ(t))), γ(0) = x. (4.18)

As one can sees, Equation (4.18) is a gradient descent on the distance map with respect to
metric F∗. It can be solved using an Euler scheme. Using forward Euler discretization, one
needs to solve

γk+1 = γk − η∇F∗(γk,∇DC(γk)),
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where η > 0 is a step-size to be suitably chosen. However, for more accuracy it is solved in
practice using the technique proposed in [36] or a Runge-Kutta method2. On the other hand,
one can use the proximal-point algorithm using backward Euler discretization. Indeed, solving

γk+1 = γk − η∇F∗(γk+1,∇DC(γk+1)),

amounts to minimizing
1

2η
‖γk − x‖2 + F∗(x,∇DC(x)).

That is: γk+1 = ProxηF∗(·,∇D(·))(γk).

4.1. First examples. We provide several examples on the Euclidean space with different met-
rics. More precisely, we consider the following examples (cf. Figure 2):

• Euclidean metric: F(x, p) = ‖p‖.
• Riemannian metric: F(x, p) = k(x)‖p‖ with k > 0.
• Crystalline metric: F(x, p) = max

i=1,··· ,m
〈p, si〉 for given directions si.

• Randers metric: F(x, p) = 〈Ap, p〉1/2 + 〈b(x), p〉, where A ∈ SN
++ and b ∈ RN such that

‖b‖A−1 < 1.
We also illustrate via a quadratic Hamiltonian how to recover the distance function in a more
general setting.

FIGURE 2. Examples of unit balls BF∗ . From left to right: Euclidean unit ball ,
unit ball for an Anisotropic Riemannian metric and the unit ball of crystalline
norm.

Euclidean and Riemannian metrics. In the examples illustrated in Figure 3, the primal step in
Algorithm 2 amounts to perform projections onto Euclidean balls, that is

ProjBF∗
(q) =

q if ‖q‖ ≤ k,

k
q

‖q‖ otherwise,

where k is the radius of the ball.
2In particular, we make use of a prebuilt function in the toolbox [26].
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FIGURE 3. Top row: 3d-shape of the distance function computed with a single
starting point with F(x, p) = ‖p‖ (Euclidean distance), and geodesic curves
between several points and the starting point displayed on the contours of the
distance functions. Bottom row: 3d-shape of the distance function computed

with two starting points with F(x, p) = k(x)‖p‖ and k(x) = 1 + 8e
−x2−y2

2µ2 for
µ > 0 (Riemannian case), and geodesic curves. Note that in both cases, the
curves are orthogonal to the contours.

Crystalline metrics. Now we consider F(x, p) = max
i=1,··· ,5

〈p, si〉, usually called a crystalline norm

(see Figure 4). Let us denote by v1, · · · , v5 the vertices of the unit ball of F, i.e., BF = {p ∈
R2 : F(p) ≤ 1}. Then, the primal step in Algorithm 2 consists in projecting onto the polygon
BF∗ = conv(s1, · · · , s5), the unit ball of F∗, where F∗ is the dual norm of F (which is also
a crystalline norm). The vertices of BF∗ are orthogonal to the edges ei = vi − vi−1, that is
〈ei, si〉 = 0 for every i.

One way to achieve this projection is the following. If a vector q /∈ BF∗ , then we compute
its projection onto the successive segments [vi, vi+1] and choose the right one. Otherwise we
proceed as in [5] by determining onto which sector q belongs. Namely, if q ∈ si + Li + Li−1 with
Li = R+vi, then its projection is si. On the other hand, if q ∈ [si, si+1] + Li, then we project it
onto the segment [si, si+1] (see Figure 5).
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FIGURE 4. Left: 3d-shape of the distance function computed with a single start-
ing point with a crystalline norm F(x, p) = max

i=1,··· ,5
〈p, si〉 with s1 = (1,−1), s2 =

(1,−0.8), s3 = (−0.8, 1), s4 = (−1, 1), s5 = (−1,−1). Right: several geodesic
curves.

s1

s2

s3

s4

s5

n1 n2

n3

n4

n5

FIGURE 5. Illustration of the projection onto BF∗ for a crystalline norm.

Randers metrics. Another metrics are the so-called Randers metrics [43]. They are a simple
example of Finsler metrics which generalize Riemannian ones and have the form F(x, p) =

〈Ap, p〉1/2 + 〈b(x), p〉, where A ∈ SN
++ and b ∈ RN with ‖v‖A−1 < 1. The first term is a

Riemannian metric (anisotropic Euclidean distance) and the second term is a linear form (see
e.g., [1, 46] for more details). Its dual F∗ is also a Randers metric of the form (see e.g., [37, 38])
F∗(x, p) = 〈A∗p, p〉1/2 + 〈b∗(x), p〉 where

δ = 1 − 〈b, A−1b〉, A∗ =
(A−1b)(A−1b)t + δA−1

δ
, b∗ = −A−1

∗ A−1b
δ

.

In the example of Figure 6, we are considering a Randers metric F via its dual 〈Ap, p〉1/2 +
〈b(x), p〉 with

A =

(
0.5 0.6
0.6 1

)
, b(x) = (0.3, 0.4)t. (4.19)
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In order to project onto BF∗ , we may assume, up to diagonalizing A, that

F∗(x, p) =

(
N

∑
i=1

αip2
i

)1/2

+ 〈b(x), p〉,

where αi > 0 are the eigenvalues of A. We focus on the case where b ≡ 0 (otherwise the
projection is obtained by translating in direction b). Then, the projection of p ∈ RN onto BF∗ is
given by

ProjBF∗
(p) =

p, if p ∈ BF∗ ,(
α1p1

(α1 + η)2 , · · · ,
αNpN

(αN + η)2

)
,

where η is the positive root of

f (η) :=
N

∑
i=1

αip2
i

(αi + η)2 − 1,

which can be solved using a bisection method.

FIGURE 6. Left: 3d-shape of the distance function computed with several start-
ing points (in white) with F∗(x, p) = 〈Ap, p〉1/2 + 〈b(x), p〉 where A and b are
given in (4.19). Right: geodesic curves to several end points in blue.

4.2. General case: Projection onto level sets. More generally, the primal step in Algorithm 2
consists in projecting onto BF∗ , i.e., on the 1−sublevels of F∗. This is feasible as long as one can
compute the proximal operator of F∗ and find the appropriate parameter η of ProxηF∗ . We thus
recall the following

Theorem 4.4. [2, 3] Let Z = {v ∈ RN : H(v) ≤ c} where c ∈ R and H : RN → (−∞, ∞] is a
convex, proper function. If there exists v̄ ∈ RN such that H(v̄) < c then in terms of the real variable η,
the equation H(ProxηH(v)) = c has at least one solution in R++. If η̄ is such a solution, then

ProjZ(v) = Proxη̄H(v).

To illustrate this, we suppose that the distance function is obtained by solving a HJ equation

as in (2.9) with a quadratic Hamiltonian perturbed by a linear form , i.e., H(x, p) =
1
2
〈Ap, p〉+
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〈b(x), p〉 − 1, with A ∈ SN
++ and b ∈ RN . This kind of Hamiltonian appears typically in

Freidlin-Wentzell theory of large deviations (see e.g., [28]). Moreover, we have that (see e.g., [3,
Example 6.2.3])

ProxηH(v) = (In + ηA)−1(v − ηb). (4.20)

Then, projecting onto the unit ball of F∗ is given thanks to (4.20). This an advantageous formula
allowing in particular to project onto ellipsoids once the optimal parameter η̄ has found (usu-
ally using a bisection method). The method allows reducing additional computational costs
using other algorithms as in [29].

In the example of Figure 7, we are considering H(x, p) =
1
2
〈Ap, p〉+ 〈b(x), p〉 − 1 with

A =

(
1 0.4

0.4 2

)
, b(x) = (0.3, 0.4)t. (4.21)

FIGURE 7. Left: 3d-shape of the distance function computed with several start-

ing points (in white) with H(x, p) =
1
2
〈Ap, p〉+ 〈b(x), p〉 − 1 where A and b are

given in (4.21). Right: geodesic curves to several end points in blue.

4.3. Metrics from images. In the following examples, the metric F is constructed from an input
image I(x) in order to catch particular geodesics. In particular, we consider

F∗(x, v) = k(x)−1|v|,

were k(x) is a potential constructed from the image3. For example, taking (see [40, 41]) k(x) =
−I(x) or I(x) allows recovering curves in dark and bright regions respectively. Ather possi-
bility is to take k(x) = (ε + |I(x) − c|)−1 in order to get curves with constant value c, where
0 < ε � 1.

3The images are taken from [41] and can be found in https://www.numerical-tours.com/matlab/

https://www.numerical-tours.com/matlab/
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FIGURE 8. Examples of metrics (First column), the geodesic distances and
curves where the starting points are in white and the endpoints in red (middle
column), and the curves displayed on the image background (last column).

4.4. Finding the shortest path to exit from a labyrinth. In this last example we propose to
find the path to exit a labyrinth by reproducing the example in [24]. The problem is usually
formulated as a minimum time problem (see e.g., [6]) and thanks to the dynamic programming
principle, the solution can be obtained by solving the Eikonal equation{

|∇u(x)| = k(x) in Ω \ C,
u(x) = 0 on C,

where C represents the door and k the so-called running cost:

k(x) =


1
4

if I(x) = 1,

1010 if I(x) = 0,

where I(x) is a digital image representing the labyrinth (Figure 9).
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FIGURE 9. From left to right: input image I(x) of the labyrinth (the door C is in
gray), 3d-shape of the solution of the labyrinth problem function, and contours
of the solutions.

5. CONCLUSIONS, COMMENTS AND EXTENSIONS

In this paper, we have proposed a primal-dual algorithm to approximate the distance func-
tion with respect to Finsler metrics with a flavor of variational formulation, which transforms
the problem of estimating a distance function into solving an optimization problem. We have
illustrated the flexibility of this method via different examples.

In addition to the possible improvements of the results discussed in Subsection 3.3, other
applications and extensions are worth been investigated, as for instance, the extension of the
proposed method to surfaces and 3D points clouds. Another application that we intend to
consider in future work is the computation of skeleton or medial axis. In fact, given the distance
function to the boundary of a shape S, the skeleton of S is defined as the set of singularities of
the distance function D(.), which in particular, solves a problem of the form

max
v∈W1,∞(Ω)

{ ∫
Ω

vdx, F∗(x,∇v(x)) ≤ 1 and v = 0 on ∂Ω
}

, (5.22)

where F is a given Finsler metric. The dual problem of (5.22) reads (see [20, 18])

inf
Φ∈L2(Ω)N

{∫
Ω

F(x, Φ(x))dx : −div(Φ) = 1 in D′
(Ω)

}
. (5.23)

Then if the couple (u, Φ) solve (5.22)-(5.23), the complementary slackness condition (see also
(3.15) for the discrete level) reads

Φ(x) 6= 0 ⇒ F∗(x,∇D(x)) = 1,

i.e., the magnitude (w.r.t F) of ∇D is binding in the support of Φ (c.f Figure 10). This observation
could be used since the flow Φ is freely given by Algorithm 2 when computing the distance.
We are planing to investigate theses questions in depth in future works.

Acknowledgements. This work has been funded by ANR grant Inclusive Museum Guide
(ANR-20-CE38-0007).
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