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A SELF-CONSISTENT MECHANICS OF 

COMPOSITE MATERIALS 

By R. HILL 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

THE MACROSCOPIC elastic moduli of two-phase composites arc estimated by a method that takes 

account of the inhomogeneity of stress and strain in a way similar to the Hershey-Kr<>ncr theory 
of crystalline aggregates. The phases may be arbitrarily acolotropic and in any concentrations, 

but arc required to have the eharactcr of a matrix and effectively ellipsoidal inclusions. Detailed 
results arc given for an isotropic dispersion of spheres. 

I. IxTRODUCTION

PttEDll'TIOKs of macroscopic properties of two-phase solid composites have mostly 
been restricted to stating universal bounds on various overall elastic moduli 
(IlAsmN 196-t; Hl65; HILL 1963). Such hounds depend only on the relative volumes 
and do not reflect any particular geometry, except when one phase consists of 
continuous aligned fibres (IIASllIN and RosEx 196-� ;  HILL lfl(}.q. Howenr, when
one phase is a dispersion of ellipsoidal inclusions, not necessarily dilute, a much 
more direct approach is availablet. This is the ' self-consistent method. ' of 
HERSHEY (1954) and KRONER (rn.58), originally proposed for aggregates of crystals. 
In that connexion it has recently been reviewed and elaborated by the writer 
(1965a). 

The method draws on the familiar solution to an auxiliary elastic problem, 
namely a uniformly loaded infinite mass containing an ellipsoidal inhomogeneity. 
In applying this solution the properties and orientation of a typical crystal are 
assigned to the inclusion, and the macroscopic properties of the polycrystal to the 
matrix. For self-consist.ency the orientation average of the inclusion stress or 
strain is set equal to the overall stress or strain. The result is an implicit tensor 
formula for the macroscopic moduli. 

The analysis for the composite proceeds in similar spirit but necessarily differs 
in an important respect : only the particulate phase can reasonably be treated 
on this footing. However, as is well known (op. cit. 1963; § 2 (iii)), a knowledge of 
average stress or strain in this one phase suffices to determine the o\·erall properties 
when the matrix is homogeneous. As a matter of fact, notwithstanding this 
difference in viewpoint, the entire analysis is found to remain structurally close 
to that for a crystal aggregate (as given in op. cit. l965a, § § 3 and 4 ) . 

tNo mention of it in this context has been traced in the literature. But Professor B. Budiansky recently informe<l 
me that he tried the approach in 1961; his conclusions appenr elsewhere in this issue of the Journal. My own investiga� 
tion dates from March 1962, when preliminary results were given in a letter to Dr. J. D. Eshelby. 
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2. SYMBOLIC NOTATION 

For brevity cartesian tensors of second order are denoted simply by their 
kernel letter, u say, set in lower case bold face as if for a vector. Correspondingly, 
their tensor components are considered to be arranged in some definite sequence 
as a 9 X I column. Tensors of fourth order are denoted by an ordinary capital,
A say, and are regarded as 9 X 9 matrices. More precisely, the leading pair of
indices is set in correspondence with rows, and the terminal pair with columns 
(both in the chosen sequence), so that the second-order inner product of tensors A 
and u can be written as the matrix product Au. Similarly, AB can stand for the 
fourth-order inner product of A and B. 

We shall only be concerned with fourth-order tensors that are symmetric with 
respect to interchange of the leading pair of indices and also of the terminal pair. 
The representative matrices are consequently singular, with rank � 6. Neverthe
less, equations of type u = Av are compatible when u and v are any symmetric 
second-order tensors and matrix A has rank 6. In this sense we can define a unique 
inverse A-1 as the solution of 

AA-1 = 1 or A-1 A = I

where I is the suitably symmetric ' unit ' tensor

formed with the Kronecker delta. One can then verify that 

A-1 u = A-1 Av= Iv= v 

as required, for any A, u and v with the stated properties. 

3. THE At'XILIARY PROBLEM 

A single inclusion, arbitrarily ellipsoidal in shape, is imagined to be embedded 
in a homogeneous mass of some different material. The tensors of elastic moduli. 
not necessarily isotropic, are denoted by £1 and L, respectively, and their inverse
compliances by JI 1 and M. In addition to the symmetries mentioned already in
§ 2, the representative matrices have full diagonal symmetry so that all cross
moduli and compliances are pairwise equal. 

The displacement at infinity is prescribed to correspond to a uniform overall 
strain i. Across the phase interface both displacement and traction are required 
to be continuous. The solution, certainly unique when the tensors of moduli arc 
positive definite, has the character of a uniform field locally perturbed in the 
neighbourhood of the inclusion. In particular the overall average, or macroscopic. 
stress a is equal to Li, since the contribution from the inclusion is vanishingly 
small; furthermore, a and i are also the local field values at infinity. The principal 
feature of the solution is that the inclusion is strained uniformly, though not 
necessarily coaxially (EsHELBY 1957; 1961 ) . 

This property prompts the introduction of an ' overall constraint ' tensor 
L* for the L phase. with im·erse 111*, in respect of loading over the interface by
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any distribution of traction-rate compatible with a uniform field of stress, a* say. 
That is, if E* is the accompanying uniform strain of the ellipsoid, 

a* = - L* E*, E* = - M* a*. (1) 

The corresponding matrices naturally have diagonal symmetry, as may be shown 
by Betti's reciprocal theorem, and are functions of L or M and the aspect ratios 
of the ellipsoid. Once L* and M* have been determined, the solution of the auxiliary 
problem follows by superimposing the uniform fields a and i, and identifying a* 
with a1 - a and E* with E1 - i where a1 and E1 are the actual fields in the inclusion. 
Then 

{2) 
and so 

which furnish the required stress and strain in the inclusion in terms of the macro
scopic quantities (HERSHEY 1954 ). 

In an alternative approach (EsHELBY 1957), seemingly adopted by all later 
writers, attention is focussed first on a certain transformation problem for an 
infinite homogeneous elastic continuum with stiffness tensor L. In this, an ellipsoi
dal region would undergo a transformation strain e if free, but attains only the 
strain Se in situ. The components of tensor S, being dimensionless, are functions 
of the moduli ratios and of the aspect ratios of the ellipsoid and its orientation 
in the frame of reference. When L is isotropic, explicit formulae for the components 
on the principal axes have been given by Eshelby (op. cit.). When L is orthotropic 
and the transformed region is an elliptic cylinder whose axes coincide with the 
material axes, explicit formulae ha,·e been given by BHARGAVA and RADHAKRISHNA 

(1964); when L has cubic symmetry equivalent results have also been given by
WILLIS (1964). 

The general connexion with L* or M* is most easily obtained by imagining the 
transformation problem soh·ed from the viewpoint of (1 ). That is, we substitute 

E* =Se, a* = L (E* - e) in a* = - L* E*. 

Then, since these hold for all e, 

L* S = L (I -S), (I -S) 111* =Sill, (4) 

where I is the unit tensor defined in § 2. These are equivalent formulae for L* 
or ill* in terms of S. Or they can be put inversely as 

S = (L* + L)-1 L = M* (21:1* + M)-1 

for S in terms of L* or Jll*. 
Another dimensionless tensor T, the dual of S, could just as well be admitted 

on this footing. Set 

so that 

and 

M* T =Sill = P, say, 

TL= L*S = Q, say, 

M* T = M (I - T), (I - T) L* = TL, 

T = L* (L* + L)-1 = (M* + M)-1 M. 

} 
} 

(5) 

(6) 
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The significance of T is that the stress a* in the transformed region can be written
as Ts, where s is the stress that would remo\•e the strain e. Separate symbols

P and Q ha,·e heen introduced for the products in (5) since these appear frequently
hcrcnftcr. \Ve note the further connexions

and p-1 = L* TL, Q-1 = JI* + JI . } (i) 

PL+ JIQ �I, 

P = JI (I - 'l'), <J =c L (I -- S), 

.From the latter pair one secs that matrices P and Q ha,·c the diagonal symmetry
stipulated for the moduli and compliances (while S and T generally do not). This
can of course also he established purely within the context of the transformation 
problem by means of Betti·s reciprocal theorem. The interpretation of Q is that 
an ellipsoidal cavity in a medium under stress QE at infinity would deform by 
amount E: a dual intrrprctation ma�· he gin·n for I'. 

·L SEJ.F-COXSISTE�T TllEOltY

We consider statistically homogeneous dispersions in which the inclusions can 
he treated, on aYerage, either as variously-sized spheres or as similar ellipsoids 
with corresponding axes alignedt. Each phase may he arbitrarily anisotropic 
but is assumed homogeneous in situ. Consequently, in a common frame of reference,
every tensor in the generic auxiliary problem has the same components for all 
inclusions. 

Let the respecti,·e phase properties be distinguished by subscripts 1 and 2, 
and let c1 and c2 be the fractional concentrations by ,·olumc, such that c1 + c2 = 1. 
The elementary rdations between the phase an(l on-rail averages of stress and 
strain arc 

c1 (0-1 - a) + c2 (a2 - a-) = o. 
c1 (e1 - e) + c2 (e2 - e) = o. } (8) 

These incidentally imply the qrnishing of the a ,·crages of the ' polarization ' stress 

or strain : 

Cl (cr1 - /,'i.1) + C2 (a2 - li.2) = 0, 
c1 (i.1 - Jla-1) + c2 (i.2 - JJ0-2) = 0, 

since a = Li. and e =- Jiu. 
} 

Now, according to the basic postulate of the self-eonsistcnt method. 

U1 - cr = L* (e - E1),

from the leading equation (2). It follows antomaticall�· from (8) that 

i12 - a = L* ('i. - €2), 

(9) 

(10) 

(11) 

and vice i·ersa. Tims. right at the outset, it is evident that both phases will enter
subsequent formulae on the same footing. HoweYer. this does not imply· that the 

tFibns of elliptic section rnuy be t•nvisaged as n limiting t•ao;;e in whiC'h one principal axis beC'Offi{'S infinite. :\ 
direct analysis is given elsewlwre (IIJI.L 1H65b). 
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matrix phase also is treated as particulate in the theory, through a kind of con
ceptual fragmentation. It simply means that the same overall moduli are predicted 
for another composite in which the roles of the phases are reversed : that is, where 
the first phase forms a coherent matrix and the second phase is distributed as 
inclusions shaped and oriented as before, both in their original concentrations. 

It is also obvious that either of (8) would imply the 3thcr, and then (9), if both

(Hl) and (11) were postulated. This, indeed. is the standpoint in the polycrystal 
theory, where an equation corresponding to (2) is assumed for grains of all orienta
tions. But, as already remarked, such an a priori standpoint for a dispersion would
seem unconYincing. 

Equations (10) and (11 ), which may as well now be takm together, can he
re-arranged as 

or dually as } (12) 

as in (3). Combining these with (8) yields a pair of equivalent formulae for the 
overall stiffness and compliance tensors L and JJ : 

Ci (L* + Li)-
1 + C2 (L* + L2)-i = (L* + L)-i = P,

7"- Q.

}
(13) 

Ci (111* + llli)-1 + C2 (111* + 1112)-i =(JI* + M)-i . 

Since the constraint tensor L* and its inverse JI* are themselves functions of
L and 111, these formulae are actually quite complex. Variants obtainable with
the help of the last pair in (7) are 

Ci [ (L1 - L)-1 + P]-i + C2 [ (L2 - L)-i + PJ-1 = 0, }
(14) 

C1 [(Mi - M)-1 + Q]-i + C2 [ Oll2 - Jl)-i + Q]-i = 0, 
which are essentially in the form (9). An inversion immediately produces 

Ci (L - L2)-i + C2 (L -- L1)-i = P. 

Ci (111 - JJ2)-1 + C2 (M - JJi)-i = Q, } (15) 

which seem to be the simplest obtainable, superficially at least. 
Finally, we can read off from (12) the phase 'concentration-factor' tensors, 

A1 and A2 for strain, B1 and B2 for stress, which arc defined by

Thus: 

Ai-i = P(L* +Li) =I+ P(L1 - L),

A2-1 
= P (L* + L2) =I + P (L2 - L),

B1-1 
= Q (M* + M1) =I+ Q (M1 - M),

B2-1 = Q (JI* + M2) =I + Q (M2 - M).

Equations (13) are of course an expression of the basic connexions 
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When the dispersion is dilute, with c1 small, (14) reduces to

L - L2 '.::::'. c1 (L1 - La) [I + P2 (L1 - L2) ]-1,

M - M2 '.'.:::'. c1 (M1 - M2) (I+ Q2 (M1 - M2}]-1, } (16) 

correct to first order. These can alternatively be obtained (HILL 1962, § 7) by 
substituting the zeroth order approximation for the concentration factors in 

which are exact relations. 

5. ISOTROPIC DISPERSION OF SPHERES 

Suppose that the inclusions are spheres distributed in any way such that the 
composite is statistically isotropic overall. The first equation (15) then reduces 
to a pair of scalar formulae for the bulk and shear moduli, K and p. : 

where 

C1 C2 � ----+--=-,/L - 1'-2 /L - 1'-1 /L 

OC = 3 - 5� = K/( K + t p.). 

(17) 

(18) 

(19) 

The dimensionless quantities oc and � are those that appear in the specific form 
of Eshelby's S tensor in the auxiliary problem for a sphere (cf. HrLL 1965a, § 4 (ii)):

StJkl =0 t (oc - �) '011 'Ok1 + t� ('Otk '011 + 'Ou '01k). 
After substituting for oc, (17) can be solved for K parametrically in terms of 

p., for instance in the form

(20) 

It is noteworthy that this is identical with the known exact solution for composites
with arbitrary geometry, when the phases have equal shear moduli (HILL 1963, 

§ 4; 1964, § 6), and also with the solution for a spherical composite element whose
shell has rigidity p.. 

To discuss (18) in general terms one may retain �as a parameter in view of its 
restricted range, namely 

i � � < � when K, p. � 0. 

Then, clearing fractions, 

(1 - �) p.2 + {� (.u1 + f.L2) - (c1 f.L1 + C2 f.L2)} f.L - � /L1 f.L2 = O. 
The left side is found to be positive or negative respectively when p. is put equal
in turn to the so-called Voigt and Reuss estimates : 
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Consequently, the required root lies between these limits. It follows that ic is 
certainly in the interval obtained by substituting µR and µ v in the monotonic 
relation (20), and hence a fortiori between the rigorous best-possible bounds for 
arbitrary geometry, which are known to correspond to µ1 and µ2 in (20) (Hn.L 
1963, § 5). These are further satisfactory features of the theory. 

To derive the explicit equation for µ in its most convenient form, however, 
we express both sides of the first of (19) in terms of µ with the help of (18) and (20). 
The result is ( Cl IC! + C2 IC:-) + 5 (� + C2 f-'1 ) + 2 = 0. (21) 

/Cl + 3 f-L K2 + 3 f-L f-L - f-'2 f-L - f-Lt 
[ This could be multiplied out as a quartic but is far better left as it stands for 
iterative or graphical solution, by tabulating c1 or c2 as a function of µ between 
µ1 and µ2). As µ increases from 0 to oo, the first bracketed function decreases 
monotonically to zero from 1 if K1 K2 ¥ 0, from c1 if K2 = 0, from c2 if K1 = O, 
and vanishes if both K1 and K2 are O. If µ1 µ2 # 0, with µ1 > µ2 say, the second 
bracketed function decreases monotonically from - l to - oo in the range 
(0, µ2); from + oo to - oo in (µ2, µ1), with values O and - l at f-LR and µv; and 
from + oo to O in (µ1, oo ). It is thereby confirmed again, provided neither phase 
rigidity vanishes, that there is precisely one positive root and that it lies between 
the Reuss and Voigt estimates. 

This root can be stated explicitly when the dispersion is dilute. Thus, if 
c1 � I, we find µ :::: µ2 (1 -+ ,\ c1) where 

I f-'1 - (2 + OC2)� = 1-'1 - 1-'2 
from (21 ), correct to zeroth order. That is, 

(22) 

which is a special case of (16). This coincides with formulae of OLDROYD (1956, 
equation (40)) and EsHELBY (1957, § 5; 1961, equation (6.10)). 

When one phase is vacuous, say K2 and µ2 --+ 0, equation (21) has a positive 
root when and only when the concentration of this phase is less than f; for instance 
the root is µ1 (1 - 2c2)/(1 - ! c?) when K1 --+ oo. On the other hand, when both 
phases are incompressible ( K1, K2 --+ w ), equation (21) can be reduced to 

(3µ -+ 2µ2) - (3µ -+ 2µ1)
C1 - Cz µ - 1-'2 1-'1 - µ 

which gives either volume fraction explicitly in terms of µ, or to 

3µ2 
+ { (2 - 5c1) µ1 + (2 - 5c2) J-L2} µ - 2µ1 µ2 = O 

giving µ as a function of concentration. In particular, when µ1/µ2 --+ oo, the re
levant root of this quadratic behaves asymptotically like 
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A study of these examples makes it plain that the theory is unreliable under 
extreme conditions, except when the dispersed phase is .mfficiently dilute. Some such 
restriction on the range of validity was already to be expected : the general 
formulae in § 4 do not distinguish between the phases and yet the actual overall 
properties arc totally different according to which of two disparate materials is 
the matrix. 

With this proviso it appears that, in practice, the theory should be useful 
when rigorous bounds arc eitlwr not known or are too far apart for empirical 
interpolation. This conclusion, already indicated for the bulk modulus, is reinforced 
by consideration of the only non-trivial bounds presently a\·ailable for the rigidity 
modulus. These have been given by HAsm:s and SHT111KMA1' (1 963). It is con
venient to re-arrange their formulae so as to isolate the \'olnme fractions : 

µ,' - /L2 [ l + f31 (� - l) l Cp 

1/L1 - /L2 
(23) 

{! " -- f1-1 
= [ 1 + (32 (��' - 1) l C2, J /L2 - /L1 

where µ' is the upper and µ" the lower bound when the materials are numbered
so that µ1 > µ2, and where {31 and {32 denote the phase values of f3 in (19). The 
coefficients of the volume fractions arc thC' shear-strain concentration factors in 
the respective phases. These bounds WC'rc deri\'ed under the apparently essential 
restriction K1 > K2• 

We now reeast (18) similarly in thC' altcrnativC' ways 

/L - /L1 -- -�·- --

[1 +f3 (; -1 )r1
c1. 

[ 1 + {3 (:2 - 1 ) i-l c2• } (2.t.) 

These, of course, are scalar counterparts of the matrix formulae in § .i.. Our plan
is to compare the respective \'alues of c1 and c2 defined by (23) and (24) when 
µ,' 

and µ" are formally set equal to any chosen value of µ, between µ1 and µ2• 
That is, we take a horizontal section of the respective (modulus v. concentration) 
relations, in preference to a \'ertical section which would here be unprofitable. 
In preparation we note the identity 

together with a similar one in the second subscript. Now 

(25) 

is a monotonicall�· increasing function of both K and µ. Hence the right-hand
bracket in the identity is positive when K1 � K (as is the case when K1 � K2, by 
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what was proved before). It follows that each bracketed factor on the left of the 
identity exceeds the reciprocal of the other, and thus that the value of c1 defined 
in (24) is greater than that defined in (23) whenµ.' = µ.. Similarly, the value of c2 
in (24) is greater than that in (23) when µ." = µ.. 

It may be concluded that, when (µ1 - µ2) ( K1 - K2) > 0, the theoretical rigidity
lies between the Hashin-Sktrikman bounds at any concentration. More especially, 
for a dilute dispersion, (22) coincides with the first-order approximation to one 
of the bounds (namely µ" when c1 is small). On the other hand, when (µ1 - µ2) 
(K1 - K2) < 0, nothing can be concluded from the identity by this line of argument, 
just as the status of the Hashin-Shtrikman expressions themselves is then also 
undecided. Indeed, their difference is given by 

[(1 - /31) (1 - /32) ]
µ' _ µ" /31 P.1 -

/32 
P.2 /31 /32 C1 C2 

(µ1 - µ2)2 = [ µl + /31 C1 (µ2 - µ1)] [ µ2 + /32 C2 (µ1 -· µ2)] '
(26) 

its sign being controlled by a precisely similar factor in the right-hand numerator. 
Finally, it should be observed that the modulus (25) has a precise mechanical 

significance. The overall constraint tensor of an isotropic continuum with a 
spherical cavity is 

(1 - /3) L*11k1 = t µ 811 'bk1 + --13- µ ('btk 811 + Sa 81k - t 811 'bk1), 
from the first of (4) and the components of S given in § 5 (cf. Hill 1965a, equation 
(20)). That is, by the definition (1), 

2 (1 - /3) - a*tj = t µ £*kk 811 + --µ--µ (E*tJ - t E*kk 8tJ)• 
Consequently, a unit fractional increase in radius calls for an internal pressure 
4 µ, while a unit shear of the cavity calls for tractions corresponding to an internal 
field of shear stress 2 µ ( 1 - /3) //3. 

ACKNOWLEDGMENT 

This work is part of a programme of research on mechanics of materials which is supported 

by a grant from the Department of Scientific and Industrial Research. 

BHARGAVA, R. D. 

and RADHAKRISHNA, H. c. 
EsHELBY, J. D. 

HASHIN, Z. 

HASHIN, Z. and RosRN, B. \'V. 
HASHIN, z. and 

SHTRIKMAN, S. 
HERSHEY, A. V. 

1964 
1957 
1961 

1964 
1965 
1964 

1963 
1954 

REFERENCES 

J. Phys. Soc. Japan 19, 896. 
Proc. Roy. Soc. A 241, 376. 
Progress in Solid Mechanics (Edited by I. N. SNEDDON 

and R. HrLL) Vol. 2, Chap. Ill (North-Holland 

Pub. Co.). 
Appl. Mech. Rev. 17, I. 
J. Mech. Phys. Solids 13, II9. 
J. Appl. Mech. 31, 223. 

J. Mech. Phys. Solids 10, 335. 
J. Appl. Meclt. 21, 236. 

9



HILL, Jl 

KRONEU, E. 

0LDRUYl1, .J. G. 

\\'11.1.1!';, .J. R. 

1962 
1963 
1964 
1965a 
1965b 
1958 
1956 

1964 

Brit. Iron St. Res. Ass., Rep. P/19/62. 
J. Mech. Phys. Solids 11, 357. 
Ibid. 12, 199. 
Ibid. 13, 89. 
Ibid. 13, to appear. 
Z. Physik 151, 504. 
Deformation and Plow of Solids (Edited b�· H. Gramm el), 

p. 304 (Springer, Berlin). 
Quart. J. Mech. Appl. Math. 17, 157. 

10


