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Introduction

As part of studies based on the calculus of variations, the choice of a Lagrangian or a Hamiltonian is essential. When we study the dynamics of articulated systems, the choice of the Lagrangian is directly linked to the conservation of energy. The Euler-Lagrange methodology is applied to the kinetic and potential energies. This establishes a system of second order ordinary differential equations for the movement. These equations are identical to those deduced from the fundamental principle of dynamics. The choice of configuration parameters does not affect the energy value. Because the kinetic energy is a positive definite quadratic form with respect to the configuration parameters derivatives, its coefficients are ideal candidates to define and create a Riemannian metric structure on the configuration space. The Euler Lagrange equations have a contravariant tensorial nature and highlight the covariant derivatives with respect to time with the introduction of the Christoffel symbols.

• For the control of articulated robot choosing a Hamiltonian and a cost function are delicate. Here the presence of the Riemann structure is sound. It enables a cost function invariant when coordinates change. The application of the Pontryagin method from the optimal Hamiltonian leads to a system of second order differential equations for the control variables. Its tensorial nature is covariant and the Riemann-Christoffel curvature tensor is naturally revealed. In this development, the adjoint variables are directly interpreted and have a physical sense.

1) Pontryagin framework for differential equations

We study a dynamical system, where the state vector y(t ; λ(•)) is a function of time. This system is controlled by a set of variables λ(t) and satisfies a first order ordinary differential equation:

(1) dy dt = f (y(t), λ(t), t) .

We suppose also given an initial condition:

(2)

y(0 ; λ(•)) = x .
We search an optimal solution associated to the optimal control t -→ λ(t) in order to minimize the following cost function J :

(3)

J(λ(•)) ≡ T 0 g y(t), λ(t), t dt ,
where g(•, •, •) is a given real valued function.

• Pontryagin's main idea [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF] is to consider the differential equation (1) as a constraint satisfied by the variable y. Then he introduces a Lagrange multiplier p associated to the constraint (1). This new variable, due to the continuous nature of the constraint (1), is a covariant vector function of time: p = p(t because δy(0) = 0 taking fixed the initial condition [START_REF] Lovelock | Tensors, Differential Forms and Variational Principles[END_REF]. By canceling the first two terms of the right hand side of the previous relation, we find the adjoint equation ( 4) giving the evolution of the Lagrange multiplier and the associated final condition [START_REF] Rojas Quintero | An alternative to Pontryagin's principle for the optimal control of jointed arm robots[END_REF]. The third term allows to calculate the change in the functional J(•) for a variation δλ of control.

2) Pontryagin hamiltonian

We introduce the Hamiltonian for λ(t) = λ * (t) equal to the optimal value associated to the optimal condition (6).



• Proposition 2. Symplectic form of the dynamic equations. With the notations introduced proviously, the "forward" differential equation (1) and the "backward" adjoint differential equation ( 4) take the following symplectic form:

(8) dy dt = ∂H ∂p , dp dt = - ∂H ∂y .
Proof of Proposition 2.

Since ∂H ∂λ = 0 at the optimum, we have ∂H ∂p = ∂H ∂p = f and the first relation of ( 8) is proven. On the other hand, ∂H ∂y = ∂H ∂y = p ∂f ∂y -∂g ∂y and the property is established.

3) Riemanian metric

We consider now a dynamical system parameterized by a finite number of functions q j (t) like a poly-articulated system for robotics applications, as developed previously in [START_REF] Lazrak | Commande de robots en temps minimal[END_REF][START_REF] Rojas Quintero | Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale[END_REF][START_REF] Rojas Quintero | An alternative to Pontryagin's principle for the optimal control of jointed arm robots[END_REF][START_REF] Vallée | Covariant formulation of optimal control of jointed arm robots: an alternative to Pontryagin's principle[END_REF]. The set of all states q ≡ {q j } is denoted by Q. The kinetic energy K is a positive definite quadratic form of the time derivatives qj for each state q ∈ Q. The coefficients of this quadratic form define a so-called mass tensor M(q). The mass tensor is composed by a priori a nonlinear regular function of the state q ∈ Q. We have

(9) K(q, q) ≡ 1 2 k ℓ M kℓ (q) qk qℓ .
The mass tensor M(q) in ( 9) is symmetric and positive definite for each state q. It contains the mechanical caracteristics of mass, inertia of the articulated system. With Lazrak and Vallée [START_REF] Lazrak | Commande de robots en temps minimal[END_REF] and Siebert [START_REF] Siebert | Mechanical integrators for the optimal control in multibody dynamics[END_REF], we consider the Riemannian metric g defined by the mass tensor M. We set: g kℓ (q) ≡ M kℓ (q) .

• With this framework, the space of states Q has now a structure of Riemannian manifold. Therefore all classical geometrical tools of Riemannian geometry can be used (see e.g. the book [START_REF] Lovelock | Tensors, Differential Forms and Variational Principles[END_REF]): covariant space derivation

∂ j ≡ ∂ ∂q j contravariant space derivation ∂ j : < ∂ j , ∂ k > = δ j k component j, ℓ of the inverse mass tensor M -1 : M jℓ , M ij M jℓ = δ ℓ i connection Γ j ik = 1 2 M jℓ ∂ i M ℓk + ∂ k M ℓi -∂ ℓ M ik , Γ j ki = Γ j ik , d ∂ j = Γ ℓ jk dq k ∂ ℓ , d ∂ j = -Γ j kℓ dq k ∂ ℓ
, relations between covariant components ϕ j and contravariant components ϕ k of a vector field:

ϕ j = M jk ϕ k , ϕ k = M kj ϕ j covariant derivation of a vector field ϕ ≡ ϕ j ∂ j : dϕ = ∂ ℓ ϕ j + Γ j ℓk ϕ k dq ℓ ∂ j covariant derivation of a covector field ϕ ≡ ϕ ℓ ∂ ℓ : dϕ = ∂ k ϕ ℓ -Γ j kℓ ϕ j dq k ∂ ℓ Ricci identities: (10) ∂ j M kℓ = Γ p jk M ℓp + Γ p jℓ M kp , ∂ j M kℓ = -Γ k jp M pℓ -Γ ℓ jp M pk gradient of a scalar field: dV = ∂ ℓ V dq ℓ = < ∇V , dq j ∂ j > and  ∇V = ∂ ℓ V ∂ ℓ gradient of a covector field ϕ = ϕ ℓ ∂ ℓ : dϕ ≡ < ∇ϕ , dq j ∂ j > and ∇ϕ = ∂ k ϕ ℓ -Γ j kℓ ϕ j ∂ k ∂ ℓ second order gradient of a scalar field V : ∇ 2 V = ∇(∇V ) and (11) ∇ 2 V = ∂ k ∂ ℓ V -Γ j kℓ ∂ j V ∂ k ∂ ℓ components R j ikℓ of the Riemann tensor: (12) R j ikℓ ≡ ∂ ℓ Γ j ik -∂ k Γ j iℓ + Γ p ik Γ j pℓ -Γ p iℓ Γ j pk
anti-symmetry of the Riemann tensor: R j ikℓ = -R j iℓk .

• Proposition 3.

Riemanian form of the Euler-Lagrange equations. With the previous framework, in the presence of an external potential V = V (q), the Lagrangian L(q, q) = K(q, q) -V (q) allows to write the equations of motion in the classical Euler-Lagrange form:

(13) d dt ∂L ∂ qi =
∂L ∂q i These equations take also the Riemannian form:

(14) M kℓ qℓ + Γ ℓ ij qi qj + ∂ k V = 0 .
Proof of Proposition 3.

The proof is presented in the references [START_REF] Rojas Quintero | An alternative to Pontryagin's principle for the optimal control of jointed arm robots[END_REF] and [START_REF] Vallée | Covariant formulation of optimal control of jointed arm robots: an alternative to Pontryagin's principle[END_REF]. We detail it to be complete. We have, due to (9),

∂K ∂ qk = M kℓ qℓ .
We have also the following calculus:

d dt ∂L ∂ qk - ∂L ∂q k = d dt ∂K ∂ qk -∂ k K -V (q) = d dt M kℓ qℓ -∂ k 1 2 M ij qi qj + ∂ k V = ∂ j M kℓ qj qℓ + M kℓ qℓ - 1 2 ∂ k M ij qi qj + ∂ k V = M ks Γ s jℓ + M ℓs Γ s jk qj qℓ - 1 2 M is Γ s kj + M js Γ s ki qi qj + M kℓ qℓ + ∂ k V
due to the first Ricci identity (10)

= M ks Γ s ji + M is Γ s jk - 1 2 M is Γ s kj - 1 2 M js Γ s ki qi qj + M kℓ qℓ + ∂ k V = M kℓ qℓ + Γ ℓ ij qi qj + ∂ k V
and the relation ( 14) is established.

• When a mechanical forcing control u is present (forces and torques typically), the equations of motion can be formulated as follows:

(15) qj + Γ j kℓ qk qℓ + M jℓ ∂ ℓ V = u j .



We observe that with this form (15) of the equations of motion, the contravariant components of the control u have to be considered in the right hand side of the dynamical equations.

4) Optimal dynamics

In this section, we follow the ideas proposed in [START_REF] Rojas Quintero | Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale[END_REF][START_REF] Rojas Quintero | An alternative to Pontryagin's principle for the optimal control of jointed arm robots[END_REF][START_REF] Vallée | Covariant formulation of optimal control of jointed arm robots: an alternative to Pontryagin's principle[END_REF]. The space of states Q has a natural Riemannian structure. Therefore, it is natural to choose a cost function that is intrinsic and invariant, and in consequence non sensible to the change of coordinates. Following Rojas Qinteros's thesis [START_REF] Rojas Quintero | Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale[END_REF], we introduce a particular cost function to control the dynamics (15): ( 16)

J(u) = 1 2 T 0 M kℓ (q) u k u ℓ dt .
The controlled system (15) ( 16) is of type (1) ( 3) with

(17) Y = {q j , qj } , f = {Y j 2 , -Γ j kℓ qk qℓ -M jℓ ∂ ℓ V + u j } , λ = {u k } , g = 1 2 M kℓ (Y 1 ) u k u ℓ .
The Pontryagin method introduces Lagrangre multipliers (or adjoint states) p j and ξ j to form the Hamiltonian H(Y, P, λ) function of state Y defined in (17) and adjoint P obtained by combining the two adjoint states:

(18) P = {p j , ξ j } and λ = {u k } as proposed in (17). Taking into account ( 7), ( 17) and (18), we have:

(19) H(Y, P, λ) = p j qj + ξ j -Γ j kℓ qk qℓ -M jℓ ∂ ℓ V + u j - 1 2 M kℓ (Y 1 ) u k u ℓ .
• Proposition 4. Interpretation of one adjoint state. When the cost function J defined in ( 16) is stationary, the adjoint state ξ j is exactly equal to the applied force (and torque!) u j in the right hand side of the dynamic equation ( 15):

(20)

ξ j = u j .
Proof of Proposition 4.

Due to the expression (19) of the Hamiltonian function, the optimality condition ∂H ∂λ = 0 takes the simple form ξ j = M jℓ ξ ℓ . This relation is equivalent to the condition (20).

• The reduced Hamiltonian H(Y, P ) at the optimum can be explicited without difficulty. We just replace the control force u j by the adjoint state ξ j :

H(Y, P ) = p j qj + ξ j -Γ j kℓ qk qℓ -M jℓ (Y 1 ) ∂ ℓ V + 1 2 M kℓ (Y 1 ) ξ k ξ ℓ .
The symplectic dynamics (8) can be written simply:

(21) qj = ∂H ∂p j , qj = ∂H ∂ξ j , ṗj = - ∂H ∂q j , ξj = - ∂H ∂ qj .



Pontryagin calculus in Riemannian geometry

The two first equations of (21) give the initial controlled dynamics (15). We have also

     ∂H ∂q j = -∂ j Γ i kℓ qk qℓ ξ i -∂ j M iℓ ∂ ℓ V ξ i + 1 2 ∂ j M kℓ ξ k ξ ℓ ∂H ∂ qj = p j -2 Γ i kj qk ξ i .
We deduce the developed form of the two last equations of (21):

(22) ṗj = ∂ j Γ i kℓ qk qℓ ξ i + ∂ j M iℓ ∂ ℓ V ξ i - 1 2 ∂ j M kℓ ξ k ξ ℓ (23) ξj = 2 Γ i kj qk ξ i -p j .

5) Intrinsic evolution of the generalized force

We introduce the covector ξ according to its covariant coordinates: ξ = ξ j ∂ j . We have the following result, first established in [START_REF] Rojas Quintero | Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale[END_REF] and [START_REF] Vallée | Covariant formulation of optimal control of jointed arm robots: an alternative to Pontryagin's principle[END_REF]:

• Proposition 5.
Covariant evolution equation of the optimal force. With the above notations and hypotheses, the forces and torques u satisfy the following time evolution:

(24) d 2 u dt 2 j + R i kℓj qk qℓ u i + ∇ 2 jk V u k = 0 .
Proof of Proposition 5.

The time covariant derivative of the covector ξ is given by

dξ dt = ξj -Γ i jk qk ξ i ∂ j that is dξ dt j = ξj -Γ i jk qk ξ i .
We report this expression in (23):

(25)

p j = Γ i jk qk ξ i - dξ dt j .
We wish to differentiate relative to time the expression p j given in (25). The covariant derivatives of the covector p can be evaluated as follows:

dp dt j = ṗj -Γ ℓ jk qk p ℓ .
Then we have, taking into account again the relation (25): 

ṗj = d dt Γ i jk qk ξ i - dξ dt j + Γ ℓ jk qk Γ i sℓ qs ξ i - dξ dt ℓ = ∂ ℓ Γ i jk qk qℓ ξ i + Γ i jk qk ξ i + Γ i jk qk dξ dt i - d 2 ξ dt 2 j +Γ ℓ jk Γ i sℓ qk qs ξ i -Γ ℓ jk qk dξ dt ℓ = ∂ ℓ Γ i jk qk qℓ ξ i + Γ s kj Γ i sℓ qk qℓ ξ i - d 2 ξ dt 2 j + Γ i kj qk ξ i  F.
= ∂ ℓ Γ i jk qk qℓ ξ i + Γ s kj Γ i sℓ qk qℓ ξ i - d 2 ξ dt 2 j +Γ i kj -Γ k ℓs qs qℓ -M kℓ ∂ ℓ V + ξ k ξ i due to (15) = ∂ ℓ Γ i jk + Γ s jk Γ i sℓ -Γ s kℓ Γ i sj qk qℓ ξ i - d 2 ξ dt 2 j -Γ i kj M kℓ ∂ ℓ V ξ i + Γ i kj ξ k ξ i and (26) ṗj = R i kjℓ + ∂ j Γ i kℓ qk qℓ ξ i - d 2 ξ dt 2 j -Γ i kj M kℓ ∂ ℓ V ξ i + Γ i kj ξ k ξ i
taking into account the expression (12) of the Riemann tensor. We confront the relations (26) and ( 22). We deduce

(27)      R i kjℓ qk qℓ ξ i - d 2 ξ dt 2 j -Γ i kj M kℓ ∂ ℓ V ξ i + Γ i kj ξ k ξ i = ∂ j M iℓ ∂ ℓ V ξ i - 1 2 ∂ j M kℓ ξ k ξ ℓ .
We take into account the second Ricci identity (10). It comes

∂ j M kℓ ξ k ξ ℓ = -Γ k js ξ k ξ s -Γ ℓ js ξ ℓ ξ s = -2 Γ k jℓ ξ k ξ ℓ = -2 Γ i jk ξ k ξ i .
Then we can write the relation (27) in a simpler way:

R i kjℓ qk qℓ ξ i - d 2 ξ dt 2 j = Γ i kj M kℓ ∂ ℓ V + ∂ j M iℓ ∂ ℓ V ξ i = Γ i kj M kℓ ∂ ℓ V -Γ i js M sℓ ∂ ℓ V -Γ ℓ js M is ∂ ℓ V + M iℓ ∂ ℓ ∂ j V ξ i = ∂ ℓ ∂ j V -Γ s jℓ ∂ s V M iℓ ξ i = ∇ 2
jℓ V ξ ℓ due to the expression (11) of the second gradient of a scalar field. We have established the following evolution equation

d 2 ξ dt 2 j + ∇ 2 jk V ξ k = R i kjℓ qk qℓ ξ i
and the relation ( 24) is a simple consequence of the anti-symmetry of the Riemann tensor and of the identity (20).

Conclusion

We have established that the methods of Euler-Lagrange and Pontryagin conduct to two second order differential systems that couples state and control variables. The choice of a Riemannian metric allows the two systems to be in a well-defined tensorial nature: contravariant for the equation of motion and covariant for the equation of the control variables. The study of a robotic system, of which we try to optimize the control, shows how important is the introduction of an appropriate geometric structure. Riemannian geometry selected on the configuration parameter space favors the metric directly related to the mass tensor as suggested by the expression of the kinetic energy. An undeniable impact is the choice of an invariant cost function with respect to the choice of parameters, this  Pontryagin calculus in Riemannian geometry is a stabilizing factor for numerical developments. Pontryagin's principle applied to contravariant equation of motion associated with the cost function conducts to a mechanical interpretation of adjoint states. The adjoint control equation is established in a condensed form by the introduction of second order covariant derivatives and shows the Riemann curvature tensor. Moreover, this framework exhibits a numerically stable method when discretization is considered. The resolution of the coupled system gives a direct access to control variables without any additional calculation. Thus, future numerical developments will have to juggle between two coupled systems of second-order ordinary differential equations: the equation of motion and the equation for the control.

( 7 )

 7 H(p, y, λ) ≡ p fg and the optimal Hamiltonian H(p, y) ≡ H(p, y, λ * )

  Dubois, D. Fortuné, J.A. Rojas Quintero and C. Vallée due to the simplification of two terms
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