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The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals

The elasticity of a polycrystalline aggregate is expressed in terms of the elasticity of the individual grains. The stress within each grain is estimated with the aid of an analysis of the stress distribution around a spherical cavity in an isotropic medium. The strain within each grain is expressed in terms of the average stress in the polycrystal as a whole by pseudoelastic constants which are related to the actual elastic constants. The calculated elasticities for physical tests and for x-ray dif f measurements in polycrystals are given for a few cubic metals.

INTRODUCTION

T HE elasticity of a polycrystalline aggregate •cnn be calcu lated from the elasticity of the monocrystnllinc grains.

Such calculations have been published previously on the basis of various assumptions.

Thus Voigt (1)2 calculated the average stress on the assumption that the local strain is every where uniform, while Reuss (2) calculated the average strain on the assumption that the local stress is everywhere uniform. Laur ent and Eudier (4) calculated the average stress on the assump tion that the principal axes of stress and strain arc uniform. Hu ber and Schmid [START_REF]Determination of the Elastic Properties of Quasi-Isotropic Polycrystals by Averaging[END_REF] found the average values of the elastic moduli over all orientations of a free single crystal. Ilruggcman [START_REF]Elnstiziti:itskonstanten von Kristallaggregaten[END_REF] introduced boundary conditions at the grain boundal'ies, but assumed that the grains arc lamellar with various distributions of oricntntion. The present paper is an analysis of the stress dis tribution in n polycrystalline cubic metal with isometric and ran domly oriented crystalline grains.

Comparisons (7 to !l) between the experimental dnta and the calculated averages show that the data agree more closely with Bruggcman's theory than with the other previous theories. The present theory gives values of the elastic moduli which agree with

Ilruggeman's values to within a fraction of a per cent, but arc derived from simpler formulas.

The crystal grains of a polycrystalline aggregate arc irregular polyhedra which vary in size and orientation from grain to grain.

The environment of each grain contains many other grains, which must remain in contact over their intergranulnr boundal'ies as they deform. The interactions between adjacent grains create local deformations in each grain. The local strnin is derived from the local displacement by a differential operation which is linear in the limiting case of elastic deformations and the local stress at equilibrium is a solution of a linear differential equation. If all of the grnins with the same orientations were superimposed and their strain patterns were added together, the composite strain 1 U. S. Naval Proving Ground.

t Numbers in parentheses refer to the Bibliography at the end or the paper.

would still be obtained from the composite dis1>lacement by the same differential operation as the local strain, nncl the composite stress would still be a solution of the same differential equation us the local stress. The average strain pattern in the neighborhood of a grnin is therefore the same as the strnin pattern for a proto type grnin immersed in a continuous medium with average proper ties which vary gradu11lly from those of the crystal lattice at the center of the grain to those of the polycrystalline aggrngatc at a great distance from the grain. If the actual grains have a com pletely random distribution of properties, the prototype grain is essentially spherical and the polycrystalline aggregate is isotropic.

It is assumed that the avcrngc elastic moduli of the polycrystnl are the same for a divergent average strain as they are for a homogeneous average strain. The diffuse boundary of the proto type grain then can be replaced by a sharp boundary. The elas ticity of a spherical boundary and the elasticity of a single crystal are used in finding the elasticity of the prototype grain.

E1..ASTICITY OF A Sr11E1UCAL BOUNDARY IN AN Is0Tnor1c MEDIU�t

The displacement /::,, r of a point in the medium at equilibrium is a solution of the three-dimensional equation (10) (A+ µ)\l\l•/::,, r + µ\l•\l/::,, r = 0 ........... [LI in which A, µare elastic constants. The stress tensor is given by the expression ( 10) A\l•/::,, r/ + µ(\l/::,, r + \l'/::,, r) ............

. [2]

in which I is the identity tensor and \l' /::,, r is the transposed form of \l /::,, r. Let r, 0, <p be spherical polar co-ordinates and let 1?1, 1? 2 , 1?1, be vectors of unit length in the directions of increasing r, 0, <p.

In the special case of a spherical boundary of radius a whose in terior is subject to a uniaxinl strain along the polar axis, the dis placement /::,, r per unit Rtrain is given by the equation 3 (A + µ) (at a4 ) /::,, r = -2 (3A + 8µ) ;i -;. a l?, [5 (3)\ + 5µ) a 2 9 (A + µ) a4] 1 {) + 2 (3A + 8µ) ;; -2 (3)\ + 8µ) ;. a cos l?i [ 5µ a 2 (A + µ) a4] • -(3).. + 8µ);:; + 3

(a ).. + 8µ) ;. a a m {) cos{) 1?2 .• [3] The components of stress cru, crn, cru, cru, when referred to the unit vectors 1?1, e,, 1? 1 , arc given by the equations

1 __ ! ( Ll A + 6 µ) � _ 6 (A + µ) � -0'1 1 2µ 2 (3A + 8µ) r 1 (3A + 8µ) r • 1 -crn = 2µ
-[� ( 9 ).. + IO µ) � -18 (A + µ) �] cos' 0 .. [4) 2 (3A + 8µ) r 1 (3A + 8µ) r ' [START_REF]The Elnstic Behavior of a Crystalline Aggregate[END_REF].. + 8µ) ;:

1 (2A + 7µ) a' !l (A + µ) a' 2 ( 
I + 2 (3A + 8µ) ;:I [� µ � -21 (A + µ) �] cos'{) [5} + 2 (3A + 8µ) r 3 2 (3A + 8µ) r 1 • • 1 1 (2)\ -3µ) a' 3 (A + µ) a• -CT"= - -+ - - 2µ 2 (3A + 8µ) r3 2 (3A + 8µ) r • 1 1 -0'12 2µ [ 15 
µ a 3 15 (A + µ) a•] + 2 (3A + 8 µ) ;:i -2 (3A + 8 µ) ;:-. cos 2 O. • 161 [5 (3A + 2µ) a 3 (A + µ) a•] .
= -2 (3A + 8 µ) ;:i - 1 2 (3A + 8 µ) -;:-; sin 0 cos 0 .. [START_REF]On the Calculation of Physical Constants of Quasi-Isotropio Polycrystals[END_REF] At the boundary r = a the equations are reduced to

1 2µ 0'11 1 (A + 6µ) I (9A + 14µ) -2 (3A + 8 µ) -2 (3A + 8 µ) cos 2 0 . . (r =a) .. [ 8 1 1 l (9A + l•Jµ) .
2µ 0' 12 = + 2 (3A + 8 µ) s m 0 cos 0 .. (r =a) . . [9] The force on the i11terior of the boundary is equivalent to a uniform pressure which is equal to 

(A + 6µ) (3A + 8 

. [IO]

in combination with a uniaxial compression stress along the polar axis which is equal to The components of the tensors are compared in Table 3.

(9A + l•Iµ) (3A + 8 
If II is the six-dimensional vector strain at a distance from the grain boundary, then the six-dimensional stress � at a distance is given by the product C•II. If II; is the six-dimensional vector strain in the interior of the grain, then that part of the strain which contributes to the distortion of the boundary is II, -II. which may be used to simplify the evaluation of J. The quan tities j,, jz, ja are then expressed hy the equations 1 j, + j, + ja = 3 Application of the rule of Descartes shows that this equation has only one positive real root us long as en is greater thnn c,2. Negative real roots would be physically unstable.

[(9A + Hµ)µ + 2(!JA + l!lµ)(c11 -c12) I [(9A + l..Jµ)µ + (3A + 8µ)(c11 -c12)] .. [21 I j , = ! [(9A + 1 4µ)µ -! (9A + 1 4 µ)(c1 1 -en) I . .
The tensor of ela�ticity of the polycrystal is given by the equation 

ELASTIC MODULI FROM DIRECT MEASUREMENTS

It is not easy to obtain data (12) on truly isotropic specimens of polycrystalline . metals. The grains in specimens which are prepared by casting or by electrolysis have preferred orientations ( 13). The specimens can be recrystallized by heating after cold work, but the preferred orieutntiens tend to persist. Diffusion of the orientations during recrystallization is increased by alloying elements which give solution-hardening effects. Nearly random orientations are produced in steel by the polymorphic transforma tion from austenite to ferrite.

A necessary although not �ufficicnt indication of the isotropy of a specimen is provided by the accuracy with which a set of three or more independent elastic moduli satisfies the relationships for isotropic media. Direct measurements of the bulk modulus would not be influenced by the presence of preferred orientations, and measurements of the Young's modulus and the shear modulus should be consistent with the bulk modulus. The published data have been dcterm.illcd by both static meas urements of stress-strain relat. ions and dynamic measurements of vibration frequencies. Vibrations and supersonic pulses have been adiabatic in free bars, but flexural vibrations have been isothermal in bars which were �o heavily weighted that the vibrations could be counted by eye. The adiabatic data ca.n be reduced to iso thermal values with the aid of the second law of thermodynamics ( 1). The adiabatic compressibility differs from the isothermal compressibility by the amount -(a 2 V'l')/CP in which a is the cubical coefficient of thermal expansion, Vis the molal volume, 1' is the absolute temperature, and C P is the molal heat capacity aL constant pressure. The differences between the adiabatic and isothermal values of c11, cir, K are equal, while the differences for cu, µ are zero. The most nearly consistent values of the shear modulus µ and the bulk modulus K, which have been calculate.I from the elastic data (27 to 41) for single crystals, are compared with the most nearly consistent measurements (14 to 26) on poly crystalline aggregates in Fig. 1. Solid symbols designate the values for the polycrystal where J � I, and hollow symbols designate the values for crystals without constraint, for which J ==I. The possible range of µ from 1 /2(c11 -c12) to c,. is indi cated by arrows. The unit of stress is 10 1 2 (dyne)/(cm)2.

E1,,\STIC MoouLI Fno�t X-RAY DIFFRACTION

The x-ray diffraction camera selects a set of coplanar atomi<' planes in the polycrystalline aggregate and determines the average change in the interplanar spacing which is produced by an ex ternal stress. Let the normals of the diffracting planes be ori ented at the polar angles a, f3 with respect to the crystallographic axes, and let the normals be oriented at the polar angles 8, rp with respect to fixed axes. The crystallographic axes are brought into n position for diffraction if they arc rotated successively through the angles -{3, -a, x, 8, rp about the fixed z, y, z, y, z-axes. The rotation tensor H for these rotations is given by the equation

H = H-rt•H-a•Hx•Ho•H<p• • ...........

. (31]

The average interna.l strain II, of the diffracting grains, when re ferred to crystallographic axes, is given by the equation If the penetration of the x rays into the specimen is deep, the measured strnin i for unit uniaxial stress in the z-axis is given by the equation diffrneled rays which make maximum and minimum angles with the axis of stress. This method is equivalent to a direct compari �011 between the slopes of lines whirh co1111ect l with cos2 8. X-ray :;tresses have been computed, from the reported datu, on the assumpLion that the crystal lat. tice is isotropic. The theoretical values for these stresses, which would be observed in the interior 

i = �12 + (�11 -�12) cos2 8 + (�11 -�12 -! � •• )r(1 -3 cos2 8) ... .. .

CONCLUSION

Although the experimental data confirm the magnitude of the elasticity which is predicted by the theoretical analysis, they are not comprehensive enough to provide a quantitative check of the analysis. A determination of all twenty-one of the elastic con stants of each polycrystalline specimen would make possible a correction for the effects of preferred orientation. 

  µ) µ ..................

  µ) µ ... ... .. .... . .... . [lll Combinations of similar solution� with the polar axes in dif ferent directions give any combination of u11iform strains in the interior of the boundary.ELASTIC CONSTANTS OF A SJXGLE CRYSTALLet the stress and strain be referred to a set of orthogonal axes with Cartesian co-ordinates x, y, z. The components of the three dimensional strain tensor are given by the matrix 0'32 0'33 Since these three-dimensional tensors arc symmetric, it is con venient to represent them by six-dimensional vectors[START_REF]A Review of the Definitions of Finite Strain[END_REF]. Let the engineering components of strain be the covariant compo nents of a six-dimensional strain vector IT, and let the conventional component . � of stress be the contravariant components of a six-dimensional stress vector L. The matrix of elastic con stants is then symmetric, as required by the first law of thermo dynamics. The conventional elastic constants cu, c 1 2, c" of a cubic lattice are clements of the contrnvaria.nt matrix of a six dimensional tensor C; nnd the conventional elastic constants s11 , s12, s�, are elements of the covariant matrix of the six-dimensional tensor C; -1 when the matrices are referred to crystallographic axes. The matrix of elastic constants is illustrated by Table1.The stress-strain relationship for the crystal is given by the equa tion L = C,•II ................ . .. .[START_REF] Boas | Anisotropy in Metals[END_REF] 

cu

  If 11 or L represent the strain or stress when referred to fixed axes, then there is a six-dimensional rotation tensor H such that H•II or H•L gives the components of strain or stress when re fcrretl to rotated axes. For example, the contrnvarin . nt compo nents of the tensor H for a rotation through the angle x about the z-axis arc given by Table2. The rotation tensor H for three suc ce�sivc rotations through the Eulerian angles x, 0, ip, about the statiouary z, y, z-axes is the product H x•Ho•Hv> of tl1rce tensors, with one tensor for each rotation. The tensor H is orthogonal. TADLE 2 CONTRAVARIANT COi\IPONENTS OF THE ROTATIO:-< TENSOR H FOR ROTAT)()N THROUGH x ABOUT z AXIS Hx ,sin 2x +•/,sin 2x 0 +1/t sin x 0 •/,cos x 0 •/,cos 2x TABLE 3 COJll PARISON DETWEEN CONTRAVARIANT COi\1-PONENTS OF VARIOUS TENSOHS OF SAJll E 8µ ) I' -ca>.+ 8 ;;) i--2 (3>. + 8µ) ELASTIC l\[oouu OF A Por,ycnrsTAl,LINE MEDIUM The elasticit�r of an isotropic medium may be represented by a six-dimensional tensor C, and the el11sticity of a spherical bom1d ary i11 the medium mny be rcprcsc11ted by a six-dimensional ten sor C0• The tensors C, C0, C1 nil belong to the same class of sym metry in so far as the same components in each tensor are equal to each other or arc equal to zero. The sum, product, or recipro cals of any tensors in this class arc also tensors in the same class.

  The six-dimensional stress 2:; on the interior of the boundary iR given by the equation �. = � + C0(II , -II) .............. (13] The stress 2:, in the interior is also given by the equation L, = c,.II, .... . . ......... . ... l14J Elimination of II and II, from Equations (13] and [14), and definition of a new tensor J by the equation J==U-c.-c,-1)-1•(/-c . . c-1) .•.•.••• f15J in which I is the six-dimensional identity tensor, leads to the equation kj = Fl:-.................... [16] The tensor J can be expressed as the sum of three tensors J1, J 2, J3 whose components arc given in Tnble 3 when the mntrices of the tensors are referred to crystallographic nxcs. The average ] of the tensor J is given by the equ!Ltion ] = -1f ff H-••J•Hsin8drpd8 dx ....... [ 1 7] 87!' 2The components of the avcrngcs ],, ],, la of the tensors J,, J2, J3 nrc given in Table3. The 1wcrage intcrnnl stress is equal to the external stress if] is equal to I, or if the quantities j,, j2, jJ satisfy t. 11e equations j, + 'Jj2 +j 3 = 1 . . ...... .. . . . . . . . (18] -2j, + ia = 1 . .. .. . . ........ .. [ l!l [ The first of these equations lends to the equation 3A + 2µ =Cu+ 2c12 = 3K ............. [20]

. [22 I 3 [

 3 (9;\ + Hµ)µ + (3;\ + 8µ)(c11 -en )] 15(A + 2µ)c,t ja = [23 1 (9;\ + Hµ)µ + 2(3;\ + 8µ)co ........ . Elimination of A from Equations [ 1 9 ], [20], [22], [23 I lends to (. he quartic equation 6-Jµ' + 16( 4c11 + 5c12)µ 3 + [3(c11 + 2cl2)(5c11 + 11c12) -8(7c11 -'1c12)c., ]µ 2 -(2!k11 -20c12)(c11 + 2c12)c.,µ -3( C11 + 2c12) 2 ( C11 -c12)Cu = 0 ......................... [24]

c- 1

 1 = ....!... ff f H-1 •Ci-1•J-H sin 8drpd8dx . .. . [25] 87!' 2 Pseudoelast. ic constants �"' �12, �u are defined by the equations �11 = 811 -2j2(811 -812) .............. [26 I 62 = 812 + j2(811 -812) ............... [27] �u = j,8., ........................... [28] and are the covariant components of the tensor Ci -1 •J. The Young's modulus of the polycrystal is given by the equation 5 E = ............ . . 3�11 + 2�12 + � .. and the shear modulus is given by the equation

  ...•....•.....[START_REF]On the Elastic Anisotropy of Iron[END_REF] 4(1,;11 -i,;12) + 3 c;" These are just the equations of Reuss (2) when J =I.

  .. Jz.. c,-1•J•H•�dx .......... [32J 2 71' 0 The x-ray diffraction measurements give that component of the average internal strain Ha•Hrt•ITi which is in the polar axis.
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 712 FIG. 1 COMPARISON BETWEEN ExrEnnn:NTAL AND T11EollETICA1. VALUES OF IsoTHEHMAI. E1.As-r1c .\lonu1,1 FOil Po1.YCllYSTA1.1.1xE AGGl!EGATES (Experimental cun•es based on measurements of polycrvstals by: a, Bridgmon (15, 16); b, C: rllneiscn (17); c. Kocl1 nnd Dannecker (18); d. l\ik11ta (19); •, KO.ter (20); /, i\loorc (21); D, Schneider nnd Durton (22); /1, Lysc nnd Godfrey (23); i, Abmm[START_REF]The Value of Young's Modulus for Steel[END_REF] or Clc1wes nnd llicgel (25); j, :\ludi;e nnd Luff(26). Theoretical ,•nines based on measurements of single crystals by: O-elAll Goens (28); (Cu, . .\u, Pb) Goens nnd \\'certs (29): (Fe) Goens and Schmid (30) ; D-• (Ag, Au) Rohl (31); (WJ Wright (32); 0-+ (Pb] $wilt and Tyndall (33); (W) Ilricli;mnn (3•1); (Fe] l\i111urn 135); (Ki) Hondn and Shirakawa (36, 37); 6-/& (Al, Cu] Lazarus (38); (Ni ] Ilor.orlh, i\lason, i\lcSkimin, and Walker (3\J-11), The nrrows indicate the mnge of µfrom >/2(c11 -e n) to CH.)

TABLE 4

 4 COi\ I PAnISON llET\\'EJo:N X-RAY :'l!EASUREi\!ENTS OF ELASTIC CONSTANTS, REPORTED IlY Si\l!Tll AND WOOD, A:-ID THEORETICAL ELASTIC CONSTANTS CALCULATED FRO;\! DATA FOR SINGLE CRYST . . \LS Diffracting planes cos2 0 103 in Fe .... 0.026 004 in Cu .... 0. 021 :i�1 in C11 ... . 0.0,l6 Polycrystal -0.145 -0.342 -0.181 Obsen•ed -0.183 ± O.OOi -0.447 --0. 175 Free crystal --0.203 -0.578 -0.182

TABLE I CONTRA

 I 

	...	...	en	2cu	2en	2eu

VARIANT ELASTIC CONSTANTS OF A CUBIC LATTICE

C;

TABLE 5

 5 COMPARISON BETWEEN X-RAY STRESSES, CAL CULATED BY KEl\IMNITZ ON THE ASSUl\IPTION Tl!AT CRYSTAL LATTICE IS ISOTHOPIC, AND THEORETICAL VALUES FOR THESE STRESSES BASED ON ACTUAL ELASTICITY OF CRYSTAL ' LATTICE , and in crystals without constraint, are compared in Table 5 with the experimental val ues.

	Diffracting planes	-X-ray stress per unit external atress---Polycrystal Observed Free crystal
	103 112	1.13 0.04	1.29±0.10 0.86 ± 0.12	1.41 0.06
	of a polycrystal			
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