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Abstract 19 

Habitat mapping is an essential tool to implement the European Habitats Directive 92/43/EEC and to 20 

manage the Natura 2000 protected areas network. However, their elaboration is most often based on 21 

field surveys, which are time-consuming and expensive when dealing with large areas. In this study, 22 

we aimed to evaluate the contribution of Sentinel-2 satellite images for mapping habitats of the Natura 23 

2000 site ‘Estuaire de la Loire’. We used 1,248 phytosociological plots to establish a complete 24 

typology of the study site’s habitats. Locating these plots led us to select training areas that 25 

characterize 39 habitats to calibrate the Random Forest algorithm. We classified 11 single-date images 26 
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spread evenly over a year and performed a multi-date classification of 9 images. We obtained high 27 

overall accuracy between 76.47% and 87.28% for the single-date image classifications and 98.7% for 28 

multi-date image classification. Our results demonstrate that Sentinel-2 images are appropriate for 29 

accurate habitat mapping and constitute a relevant tool to identify and conserve habitats of community 30 

interest. 31 

 32 

1. Introduction 33 

Preserving habitats is a major challenge for European nature conservation policies (Bijlsma et al., 34 

2019). The implementation of the Habitats Directive 92/43/CEE (HabDir) especially permitted to 35 

target the most threatened habitats for which the European Union (EU) is committed to ensuring the 36 

maintain or the restoration to a favorable state of conservation (Art. 2 of HabDir) (Evans & 37 

Arvela 2011; Schaminée et al., 2016). Moreover, the Directive imposes applying measures of 38 

conservation and assessing the state of these habitats regularly. More specifically, naming protected 39 

areas led to the creation of the Natura 2000 network for which it is necessary to gather information on 40 

the habitats’ distribution and surface areas (Evans, 2012).  41 

To meet this goal, the EU member states need precise, simple and reproducible methods. Mapping 42 

represents an excellent tool to evaluate the habitat distribution and surface areas (Bunce et al., 2013). 43 

Currently, mapping methodologies are mainly based on field surveys and photo-interpretation (Ichter 44 

et al., 2014). These methods require roaming all the study areas to gather data on the vegetation and 45 

environmental factors characterizing the habitats. However, this type of mapping becomes quickly 46 

very time-consuming, costly and therefore difficult to implement in large and difficult-to-access 47 

territories (Kopeć et al., 2016; Moran et al., 2017). This is especially the case when mapping wetlands, 48 

which tend to be inaccessible because of numerous canals and flooded areas. (Harris et al., 2015; 49 

Zlinszky et al., 2014). Furthermore, this type of work is often subjective, which is why the 50 

cartographic productions can greatly vary from one operator to the other (Cherrill, 2014; Raab et al., 51 

2018; Ullerud et al., 2018). 52 
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Approaches based on remote sensing currently offer many opportunities for cost-effective, rapid and 53 

reproducible mapping (Corbane et al., 2015; Vanden Borre et al., 2011). More and more studies show 54 

that remote sensing is increasingly used for mapping natural environments (Lang et al., 2015). For 55 

example, this is the case for studies on the mapping of alkaline peatland habitats in Poland using 56 

Rapid-Eye satellite images (Stenzel et al., 2014) or on mapping Belgian heathland habitats using 57 

hyperspectral airborne imagery (Haest et al., 2017). The quality of the remote sensing-based image 58 

classification depends on the characteristics of the images used, like the number of available spectral 59 

bands, the spatial resolution or the sensor’s acquisition frequency. The Sentinel-2 satellite 60 

constellation produces 13-band multispectral images in the visible and infrared frequency range with a 61 

minimum spatial resolution of 100 m² and a high revisit frequency (several images per month). These 62 

characteristics are a good compromise for mapping wetland vegetation, in particular through multi-63 

date classifications (Rapinel et al., 2019; Vrieling et al., 2018). To overcome these obstacles, remote 64 

sensing is a pertinent tool for identifying and locating habitats and, more broadly, areas with 65 

conservation issues. In this context, this study aims to assess the contribution of Sentinel-2 satellite 66 

images to mapping habitats in the Loire estuary by (1) developing an exhaustive typology of habitats 67 

from ground reference data and by (2) testing the accuracy of single-date and multi-date Sentinel-2 68 

image classification using the Random Forest algorithm. 69 

  70 

2. Materials and Methods  71 

2.1 Study area  72 

The Natura 2000 site ‘Estuaire de la Loire’, located in western France (47° 15′N, 1° 54′O) (Fig. 1), is 73 

an estuary formed by the Loire’s alluvial plain which covers an area of 26,000 ha. It is a tidal wetland 74 

site of major ecological importance, hence its designation in 2004 as a Natura 2000 site (FR5200621 –75 

 Estuaire de la Loire). The site is recognized for the diversity of its ecosystems, from coastal habitats 76 

of dunes and salt marshes to agropastoral habitats of freshwater marshes and woodland habitats. The 77 
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large variety of habitats is mostly linked to flood frequency and duration, variations in exposure to 78 

salinity, as well as agricultural management (mainly mowing and grazing). 79 

 80 

Fig. 1. Location of the Natura 2000 site ‘Estuaire de la Loire’ and available ground data. 81 

 82 

2.2 Typology of habitat types 83 

We used two habitat classification systems to establish the typology: EUNIS 84 

(European Union Nature Information System), which represents the most complete habitat repository 85 

in Europe, covering both marine and terrestrial environments (Chytrý et al., 2020; Evans, 2012) and 86 

the Interpretation Manual of European Union Habitats-EUR28 (European Commission, 2013), which 87 

includes definitions of the habitats of community interest in annex 1 of HabDir.  88 

The typological units of these habitat repositories are mostly defined by vegetation classifications 89 

derived from sigmatist phytosociology (Gayet et al., 2018; Rodwell et al., 2018). We established the 90 

study site’s habitat typology by identifying field vegetation plots which were collected using the 91 

sigmatist phytosociological method. A vegetation plot corresponds to the list of plant species 92 

inventoried inside areas with a floristically homogeneous composition (Dengler et al. 2008). The cover 93 
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of each species is visually estimated and quantified according to the Braun-Blanquet’s scale (Braun-94 

Blanquet, 1932).  95 

We used 1,248 phytosociological vegetation plots to obtain a representative sampling of the diversity 96 

of habitat types present in the study site (Fig. 1). A total of 989 phytosociological vegetation plots 97 

were collected from the bibliography (scientific publications, PhD theses, impact studies, vegetation 98 

maps…) and we collected in the field 259 phytosociological vegetation plots for this study. This 99 

dataset is constituted of vegetation plots that were collected from 2010 to 2019. Older vegetation plots 100 

were not selected because of a too long-time gap between field and satellite data. Most bibliographical 101 

vegetation plots were located precisely (horizontal accuracy <5 m) and those collected during this 102 

study were georeferenced using a differential GPS (GPS GeoXH™ from Trimble Geo-Explorer®, 103 

horizontal accuracy <1 m). 104 

Firstly, we assigned vegetation plots to a phytosociological unit based on the descriptions contained in 105 

the Prodrome of French Vegetation (Bioret et al., 2013). Secondly, phytosociological units were 106 

related to EUNIS and EUR28 habitat types. This step (hereafter call “crosswalks”) has been carried 107 

out using the French repository of habitats and vegetation typologies HABREF (Clair et al., 2019). 108 

 109 

2.3 Acquisition of Sentinel-2 images 110 

Covering the entire site requires using two Sentinel-2 image tiles (tiles’ identification numbers: 111 

T30TWT and T30TXT). We looked for images without cloud cover and regularly distributed along an 112 

annual cycle of vegetation. Overall, we used 22 Sentinel-2 images (Level-2A – product-Bottom of 113 

Atmosphere (BOA) reflectance), corresponding to 11 acquisition dates from autumn 2018 to summer 114 

2019 (Fig. 2).  115 

 116 
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Fig. 2. Acquisition dates of Sentinel-2 images during an annual cycle of vegetation.  117 

 118 

2.4 Image preparation and vegetation indices calculations 119 

Sentinel-2 images are distributed with three spectral bands at 60m spatial resolution (B1, B9 and B10), 120 

six bands at 20m spatial resolution (B5, B6, B7, B8A, B11 and B12) and four bands at 10m spatial 121 

resolution (B2, B3, B4 and B8) (Table 1). For each date, we only selected the bands with a spatial 122 

resolution of 10m and 20m (the 60m bands were mostly intended for the atmospheric corrections). We 123 

stacked the bands with the same spatial resolution and the 20m bands were interpolated on a 10m grid 124 

using the bilinear approach. Finally, all bands were stacked to form an image of 10 spectral bands with 125 

a 10-meter spatial resolution. 126 

Table 1 Sentinel-2 band characteristics 127 

 128 

 129 

Calculating vegetation indices 130 

Remote sensing spectral indices are based on the combination of spectral bands to highlight 131 

biophysical characteristics of land surfaces. They are particularly useful for multi-date classifications 132 

as they are good indicators of seasonal changes of vegetation cover (Schuster et al., 2015). In this 133 

study, we have selected a set of 12 spectral indices (Table 2) covering the full spectral domain of 134 

Sentinel-2 bands Spectral region Central wavelength (nm) Bandwidth (nm) Resolution (m)
B1 Coastal aerosol 442.7 21 60
B2 Blue 492.4 66 10
B3 Green 559.8 36 10
B4 Red 664.6 31 10
B5 Red-edge 1 704.1 15 20
B6 Red-edge 2 740.5 15 20
B7 Red-edge 3 782.8 20 20
B8 Near-infrared 832.8 106 10
B8A Near-infrared narrow 864.7 21 20
B9 Water vapour 945.1 20 60
B10 Shortwave-infrared - Cirrus 1373.5 31 60
B11 Shortwave-infrared 1 1613.7 91 20
B12 Shortwave-infrared 2 2202.4 175 20
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Sentinel-2 and commonly used for vegetation mapping (Adam et al., 2010; Kaplan and Avdan, 2017; 135 

Roberts et al., 2011; Wakulinśka and Marcinkowska-Ochtyra, 2020). NDVI remains the most 136 

commonly used index with a very sensitive response to green vegetation thanks to its pigment 137 

absorption ratio in the red range of electromagnetic spectrum and cell reflectance in the near-infrared 138 

range (NIR), but it remains sensitive to effects of soil color, soil brightness and atmospheric effects. 139 

GNDVI differs from NDVI by establishing a ratio between the NIR and the green range. SAVI 140 

considers the effects of the soil more, which theoretically improves NDVI while EVI focuses more on 141 

atmospheric effects. The red-edge curve is more specifically targeted with MCARI. NDWI targets 142 

leave with the NIR and shortwave-infrared (SWIR) ratio sensitive to water content in leaves. Each 143 

index is therefore part of the overall answer to the problem of identifying habitat types, answer given 144 

by the combination of these indices. They are then stacked with the ten retained Sentinel-2 spectral 145 

bands to provide a file with 22 layers (12 indices and 10 spectral bands) for each date.  146 

Table 2 List of vegetation indices calculated using Sentinel-2 spectral bands.  147 

 148 

Finally, we cropped the images according to the study area’s limits and we excluded artificial areas 149 

using auxiliary thematic layers integrating roads, built-up and cultivated areas as suggested by Inglada 150 

et al. (2017) and Rapinel et al. (2015). 151 

 152 

Vegetation index Formulation Sentinel-2 bands used References

NDVI (NIR - R) / (NIR + R) (B8 - B4) / (B8 + B4) Rouse et al., 1973

NDWI (NIR - SWIR1) / (NIR + SWIR1) (B8 - B11) / (B8 + B11) Gao, 1996

GNDVI (NIR - G) / (NIR + G) (B8 - B3) / (B8 + B3) Gitelson et al., 1996

IReCI (NIR - R ) / (RE1 / RE2) (B8 - B4) * (B5 / B6) Frampton et al., 2013

PSSRa NIR / R B8 / B4 Blackburn, 1998

NDI45 (RE1 - R) / (RE1 + R) (B5 - B4) / (B5 + B4) Delegido et al., 2011

EVI 2.5 * (NIR - R) / ((NIR + 6* R - 7.5 * B) + 1) 2.5 * (B8 - B4) / ((B8 + 6 * B4 - 7.5 * B2) + 1) Huete et al., 2002

SAVI ((NIR - R) / (NIR + R + 0.428)) * (1 + 0.428) (B8 - B4) / (B8 + B4 + 0.428) * (1.0 + 0.428) Huete, 1988

MCARI [(RE1 - R) - 0.2 (RE1 - G)] * (RE1 - R) ((B5 - B4) - 0.2 * (B5 - B3)) * (B5 / B4) Daughtry et al., 2000

CRE ((NIR / RE1) - 1.0) ((B8 / B5) - 1.0) Gitelson et al., 2006

S2REP 705 + 35 * ((((NIR + R) / 2) - RE1) / (RE2 - RE1)) 705 + 35 * ((((B8 + B4) / 2) - B5) / (B6 - B5)) Frampton et al., 2013

MTCI (RE2 - RE1) / (RE1 - R) (B6 - B5) / (B5 - B4) Dash and Curran, 2004

B, G, R, RE1, RE2, NIR, SWIR1, represent blue, green, red, red-edge 1, red-edge 2, near-infrared and and shortwave-infrared 1 spectral bands.

NDVI: Normalised Difference Vegetation Index EVI: Enhanced Vegetation Index

NDWI: Normalized Difference Water Index SAVI: Soil Adjusted Vegetation Index

GNDVI: Green Normalised Difference Vegetation Index MCARI: Modified chlorophyll absorption in reflectance index

IReCI: Inverted Red-Edge Chlorophyll Index CRE: Chlorophyll Red-Edge index

PSSRa: Pigment Specific Simple Ratio S2REP: Sentinel-2 red-edge position

NDI45: Normalized difference index 4 and 5 MTCI: MERIS Terrestrial Chlorophyll Index
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2.5 Selection of training data  153 

We vectorized a Sentinel-2 image to build a vector grid consisting of 100m2 polygons (10*10m) used 154 

as support to select training areas. We superimposed this grid on a very high spatial resolution image 155 

from spring 2018 (Google Earth: Images CNES ©/Airbus, Maxar Technologies©). Based on the 156 

location of the phytosociological vegetation plots, we individually and manually selected polygons 157 

covering visually homogenous vegetation units (‘pure’ pixels) (Fig. 3). The training areas had to 158 

respect a criterion of physiognomic and colorimetric homogeneity so as not to select mixed habitats 159 

(mosaic) or pixels overlapping several typological units.  160 

 161 

Fig. 3. Methodological process to select training data. (a) very high spatial resolution image of the 162 

study area (the red marked pixels indicate the training data’s location). (b) Zoom on a part of the study 163 
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area with the vector grid displayed and the polygons selected for three EUNIS habitats (red: 164 

EUNIS A2.551; pink: EUNIS F9.3131; sea green: EUNIS A2.511). The yellow dots correspond to the 165 

phytosociological vegetation plot locations. (c) A phytosociological vegetation plot and photograph of 166 

habitat EUNIS A2.551 acquired during fieldwork. 167 

We used a study of the spatio-temporal dynamics of vegetation in the Loire estuary (Le Dez et al., 168 

2017) to determine the level of stability of plant communities in the study area. For plant communities 169 

with a high degree of stability (e.g. woodlands, forests and some types of meadows), we selected 170 

training areas using data up to the year 2010. On the other hand, for highly dynamic plant 171 

communities, we have only kept the plots collected during the year of acquisition of satellite images 172 

(e.g. annual salt marshes vegetation (A2.551 – ‘Salicornia, Suaeda and Salsola pioneer salt marshes’) 173 

or reedbeds on regularly submerged banks (C3.27 – ‘Halophile Scirpus, Bolboschoenus and 174 

Schoenoplectus beds’). In addition, during the pixel selection phase by photo-interpretation, we 175 

checked that the pixels viewed and the habitat categories identified in the typology were consistent so 176 

as not to take training samples in locations where the vegetation might have changed.   177 

Finally, we selected additional pixels for some habitat categories that were easily recognizable by 178 

photo-interpretation and for which we had little field data (e.g. C3.21 – ‘Phragmites australis beds’ or 179 

G1.1111 – ‘Western European white willow forests’).  180 

We made sure to select a number of training data that was proportional to the area covered by each 181 

habitat on the study site (Colditz 2015; Raab et al., 2018). 182 

 183 

2.6 Classification method 184 

2.6.1 Choosing the classification algorithm 185 

We used the Random Forest (RF) algorithm (Breiman 2001) to classify the habitats. RF is a machine 186 

learning classifier commonly used in remote sensing and many studies showed that it could produce 187 

accurate maps of vegetation and habitats types, including from Sentinel-2 (Marzialetti et al., 2019; 188 
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Rapinel et al., 2020; Wittke et al., 2019). RF is especially known to be fast (requiring little calculation 189 

effort) and able to process asymmetric data with many predictive variables (Millard and Richardson, 190 

2015; Sławik et al., 2019). In RF model, the original training data are randomly sampled-with-191 

replacement generating bootstrap samples. Each decision tree in RF is trained on an 'in bag' sample of 192 

the original training data. The remaining sample ('out of bag' sample) is used to be predicted by all the 193 

decision trees that allowed to evaluate the outcome (known as OOB score). For our analyses, we set 194 

the number of trees to 2,000 and the number of randomly sampled variables as candidates for each 195 

split to six.  196 

We used the overall accuracy index (OA) and the Kappa coefficient to evaluate the overall quality of 197 

classification models (Smits et al., 1999; Stehman, 1997). We produced confusion matrices 198 

representing errors by class after each modeling and we calculated the producer’s, as well as the user’s 199 

accuracy (respectively PA and UA), for each habitat (Congalton, 1991). These accuracy assessment 200 

metrics are commonly used in remote sensing (Belgiu and Csillik, 2018; Calleja et al., 2019; Rana and 201 

Venkata Suryanarayana, 2020). After processing each image, we applied the model produced from the 202 

training areas to the entire image to create a predictive habitat classification of the entire study area.  203 

 204 

2.6.2 Selection of the most important variables for multi-date image classification 205 

From the 11 Sentinel-2 image acquisition dates, we identified the most important variables 206 

(acquisition dates, spectral bands and vegetation indices) to classify habitats of the Natura 2000 site. It 207 

is possible to select the best variables using automatized methods as suggested by the Recursive 208 

Feature Elimination algorithm (Radecka et al., 2019; Rapinel et al., 2019). However, we chose to 209 

develop our supervised methodology by first assessing which of the 11 image acquisitions were 210 

relevant for separating habitat classes. The general objective is to first integrate seasonal phenological 211 

variations for all the habitats in the study site. Vegetation growth stages differ among plant 212 

communities which is an important characteristic to be used for classification. Thus, the images must 213 
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include vegetation changes starting with the development of the earliest plant communities until those 214 

appearing the latest (mainly from early spring to autumn for this site).  215 

First, we performed an RF classification for each of the 11 dates and we assessed the overall quality of 216 

the classification models using OA. We wanted to only keep the acquisition dates of the images with 217 

the highest performance, so we set an accuracy threshold at 80% (OA=0.8). Above this percentage, we 218 

considered the classification result as satisfying, as suggested by Rapinel et al. (2014) and Zlinszky et 219 

al. (2014). All images over this threshold (OA>0.8) were retained while those below (OA<0.8) were 220 

excluded because we considered their performance as too low.  221 

Secondly, we tested the importance of the spectral variables (spectral bands and vegetation indices) 222 

using the measures of mean decrease Gini (MDG) obtained from the RF algorithm classification 223 

(Hubert-Moy et al., 2020; Li et al., 2019). For each selected date (OA>80%), we selected the five best 224 

performing variables (spectral bands, vegetation indices) based on MDG (Grabska et al., 2019). 225 

Finally, we stacked all these variables (five best performing bands and/or indices of the dates with 226 

OA>80%) to build the multi-date feature dataset. 227 

 228 

2.7 Software: 229 

We used the R software (version 3.6.2) (R Development Core Team, 2019) for our analyses, with the 230 

packages ‘randomForest’ (version 4.6-14) (Liaw & Wiener, 2002), ‘rgdal’ (version 1.4-8) (Bivand et 231 

al., 2015) and ‘raster’ (version 3.0-7) (Hijmans, 2015). The results were visualized in QGIS 3.4.8 232 

(QGIS Development Team, 2019).  233 

 234 

3. Results 235 

 236 

3.1. Typology of habitats 237 
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3.1.1. Complete typology of habitats in the Natura 2000 site 238 

The complete typology brings together all the habitats identified on the study site. They are presented 239 

in Appendix A. Overall, we characterized 74 phytosociological units based on phytosociological plots’ 240 

identification.  241 

The crosswalk of phytosociological units with EUNIS habitat types led us to identify 62 habitats. 242 

Waterbodies and reed bed habitats and grassland habitats were the most diversified with 19 and 15 243 

habitats respectively. Two grassland habitats are made of a mosaic of EUNIS habitats (E2.1xE2.5 & 244 

E3.44xA2.5) linked to vegetation plots with an intermediate floristic composition between several 245 

vegetation communities (transitional vegetation). Marine habitats are also diversified with 14 EUNIS 246 

habitats inventoried. Woodland and forest habitats, as well as shrubs and thicket habitats are more 247 

unified with respectively 7 and 6 EUNIS habitats. Finally, cultivated plots constitute the last EUNIS 248 

habitat in our typology.  249 

The crosswalk with EUR28 habitat types led us to determine 15 habitats of community interest (HCI) 250 

including 3 that are considered as a priority. All the marine habitats are HCIs and represent half of the 251 

total number of HCIs with 7 EUR28 habitats, including 1 priority. The other HCIs include waterbodies 252 

and reed bed habitats (4 HCIs, of which 1 is a priority), grassland habitats (2 HCIs), woodland and 253 

forest habitats (2 HCIs, of which 1 is a priority) and shrub and thicket habitats (1 HCI).  254 

 255 

3.1.2. Typology retained for the classifications after selection of the training data 256 

The typology retained to classify the images is presented in Table 3. It includes all phytosociological 257 

units for which training areas could be selected. The other phytosociological units did not cover 258 

enough surface area to compose ‘pure’ pixels; therefore, they could not be integrated into this 259 

typology.   260 
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Ultimately, only 44 of the 74 phytosociological units identified could be included in the final 261 

typology. This result corresponds to 39 EUNIS habitats out of the 62 identified and 9 EUR28 habitats 262 

out of the 15 identified in the Natura 2000 site.  263 

Table 3 Habitat typology used for image classification (habitats for which pixels could be selected). 264 

‘Nb pixels’ corresponds to the number of pixels selected as training area for the image classification. 265 

The EUR28 habitats marked in bold correspond to priority habitats of community interest in HabDir. 266 

Fields marked with an asterisk correspond to non-vegetated or artificialized areas. They were assigned 267 

to habitat typologies based on the biotope using the criteria of the French EUNIS habitat determination 268 

guide (Gayet et al., 2018) and the ‘Cahiers d’habitats’ (Bensettiti et al., 2001–2005). 269 

 270 
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 271 

The number of training pixels per typological unit varies from 15 (mud bottoms of waterbodies) to 777 272 

(Alopecurion utriculati Zeidler 1954). Overall, 5,564 training pixels were selected for all the data.  273 

 274 

3.2 Analyses of single date images 275 

Overall accuracy indices of the single classification of the Sentinel-2 images for the 11 selected dates 276 

are presented in Fig. 4. Images acquired during spring and summer gave the best results (OA>85%). 277 

Physiognomic 

units
Phytosociological units

Nb 

pixels
EUNIS habitats EUR 28 habitats

*Sandy shore comprising clean sands (coarse, medium or fine-grained) and muddy sands 47 A2.2 - Littoral sand and muddy sand
*Muddy shores of fine particulate sediment, mostly in the silt and clay fraction 195 A2.3 - Littoral mud
Thero – Salicornietalia dolichostachyae  Tüxen ex  Boullet & Géhu 2004 92 A2.551 - Salicornia , Suaeda  and Salsola  pioneer saltmarshes
Parapholido strigosae – Hordeetum marini  (Géhu et al. 1975) Géhu & de Foucault 1978 66 A2.553 - Atlantic Sagina maritima  communities
Puccinellietum maritimae  Christiansen 1927 92 A2.542 - Atlantic lower shore communities
Glauco maritimi – Juncion maritimi  Géhu & Géhu-Franck ex  Géhu in Bardat et al. 2004 21 A2.531 - Atlantic upper shore communities
Agropyrion pungentis  Géhu 1968 152 A2.511 - Atlantic saltmarsh and drift rough grass communities
Alopecurion utriculati  Zeidler 1954 777
Ranunculo ophioglossifolii – Oenanthion fistulosae  de Foucault in de Foucault & Catteau 2012 97

*Open fresh or brackish waterbodies 96 C - Inland surface waters
*Loire river subject to the tid 125 X01 -  Estuaries
Glycerietum fluitantis  Nowínski 1930 119 C3.1 - Species-rich helophyte beds
Phragmitetum communis  Savič 1926 and Astero tripolii – Phragmitetum communis  Jeschke ex 

Krisch 1974
390 C3.21 - Phragmites australis  beds

Glycerietum aquaticae  Nowiński 1930 307 C3.251 - Sweetgrass beds
Scirpion maritimi Dahl & Hadač 1941 185 C3.27 - Halophile Scirpus , Bolboschoenus  and Schoenoplectus  beds

*Mud bottoms of waterbodies 15
C3.6 - Unvegetated or sparsely vegetated shores with soft or mobile 
sediments

Galio palustris – Caricetum ripariae  Bal.-Tul., Mucina, Ellmauer & B.Walln. in G.Grabherr & 
Mucina 1993

48 D5.21 - Beds of large Carex spp.

Thero – Airion Tüxen ex Oberdorfer 1957 113 E1.91 - Dwarf annual siliceous grassland
Mesophile hay meadows (Cynosurion cristati  Tüxen 1947; Lolio perennis – Plantaginion 

majoris  G. Sissingh 1969)
311 E2.1 - Permanent mesotrophic pastures and aftermath-grazed meadows

Cynosurion cristati  Tüxen 1947 X Grp des Sisymbrietea officinalis 81
E2.1 - Permanent mesotrophic pastures and aftermath-grazed meadows X 
E5.1 - Anthropogenic herb stands

*Land occupied by heavily fertilised or reseeded permanent grasslands 45
E2.6 - Agriculturally-improved, re-seeded and heavily fertilised grassland, 
including sports fields and grass lawns

Oenanthion fistulosae de Foucault 2008 141
Bromion racemosi Tüxen ex de Foucault 2008 246
Ranunculo repentis – Cynosurion cristati Passarge 1969 46
Wet and humid meadows dominated by Juncus effusus 23 E3.417 - Soft rush meadows
Hygrophilic pastures regularly flooded by the oligohaline water of Loire River and dominated by 
Agrostis stolonifera

125

Meso-hygrophilic pastures regularly flooded by the oligohaline water of Loire River and dominated 
by Agrostis stolonifera

121

Pastures regularly flooded by the oligohaline water of Loire River and dominated by Juncus 

inflexus
101 E3.441 - Tall rush pastures

Hygrophilic pastures regularly flooded by the brackish water of Loire River and dominated by 
Agrostis stolonifera

113

Meso-hygrophilic pastures regularly flooded by the brackish water of Loire River and dominated 
by Agrostis stolonifera

41

Juncion acutiflori  Braun-Blanquet in Braun-Blanquet & Tüxen 1952 20 E3.512 - Acidocline purple moorgrass meadows
6410 - Molinia  meadows on calcareous, peaty or clayey-
siltladen soils (Molinion caeruleae )

Sisymbrietea officinalis  Korneck 1974 and Convolvulo arvensis – Agropyrion repentis  Görs 
1966

33 E5.1 - Anthropogenic herb stands

Achilleo ptarmicae – Cirsion palustris Julve & Gillet ex de Foucault 2011 19
E5.412 - Western nemoral river bank tall-herb communities dominated by 
Filipendula

6430 - Hydrophilous tall herb fringe communities of plains 
and of the montane to alpine levels

Solano dulcamarae – Tamaricetum gallicae  de Foucault 2008 34 F9.3131 - West Mediterranean tamarisk thickets
92D0 - Southern riparian galleries and thickets (Nerio - 

Tamaricetea  and Securinegion tinctoriae )
Species-poor Prunus spinosa  or Rubus spp.  thickets 91 F3.111 - Blackthorn-bramble scrub
Salicetum triandro – viminalis  (Tüxen 1931) Lohmeyer 1952 ex  Moor 1958 174 F9.121 - lmond willow-osier scrub
Low woods and scrubs dominated by Salix atrocinerea 68 F9.2 - Salix  carr and fen scrub

Salicion albae Soó 1930 134 G1.1111 - Western European white willow forests

Alnenion glutinoso - incanae  Oberdorfer 1953 23 G1.211 - Fraxinus  - Alnus  woods of rivulets and springs

Ulmo laevis – Fraxinetum angustifoliae  (Breton) Rameau & Schmitt ex J.-M. Royer, Felzines, 
Misset & Thévenin 2006

89 G1.22 - Mixed Quercus  - Ulmus  - Fraxinus  woodland of great rivers
91F0 - Riparian mixed forests of Quercus robur , Ulmus 

laevis  and Ulmus minor , Fraxinus excelsior  or Fraxinus 

angustifolia , along the great rivers (Ulmenion minoris )

Meso-hygrophilic forests dominated by Quercus robur  and Fraxino excelsioris – Quercion 

roboris  Rameau 1996
269

G1.A1 - Quercus  - Fraxinus  - Carpinus  betulus woodland on eutrophic 
and mesotrophic soils

Plantations of species, hybrids or cultivars of the deciduous genus Populus 136 G1.C1 - Populus  plantations
Plantations of Palaearctic conifers of genus Pinus 113 G3.F12 - Native pine plantations

Cultived 
agricultural 

habitats
Cereal crops 65 I1.1 - Intensive unmixed crops

Marine habitats

Waterbodies and 
reedbeds 
habitats

Grasslands 
habitats

1130 - Estuaries

1330 - Atlantic salt meadows (Glauco-Puccinellietalia 

maritimae )

1410 - Mediterranean salt meadows (Juncetalia maritimi )

1310 - Salicornia  and other annuals colonising mud and 
sand

A2.523 - Mediterranean short Juncus , Carex , Hordeum  and Trifolium 

saltmeadows

E3.44 - Flood swards and related communities X A2.5 - Coastal 
saltmarshes and saline reedbeds

E3.44 - Flood swards and related communities

E3.41 - Atlantic and sub-Atlantic humid meadows

Scrubs and 
thickets habitats

Woodland and 
forest habitats

91E0 - Alluvial forests with Alnus glutinosa  and 

Fraxinus excelsior  (Alno-Padion , Alnion incanae , 

Salicion albae )
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The highest accuracy was obtained with the image of July 6, 2019 (OA=87.28%). The classifications 278 

of the images taken at the end of winter and in autumn present slightly lower results (80 %< OA 279 

<85%). The less accurate classifications are from the late autumn and winter images (OA <80%). 280 

 281 

Fig. 4. Overall accuracy indices of the single date classifications of Sentinel-2 images for the 11 dates. 282 

The dotted line shows the 80% threshold used to select the best-performing dates.  283 

 284 

3.3 Selected variables to build the multi-date feature dataset 285 

Based on the results of the single-image classifications, we selected images of nine dates that had an 286 

overall accuracy higher than 80% (Fig. 4). For each of these dates, we kept the five variables (spectral 287 

bands and vegetation indices) that contribute most to the classification result according to MDG 288 

(Table 4, Appendix B). In total, six different spectral bands and four vegetation indices were included 289 

in the multi-date feature dataset. The spectral bands B11 and B12 (SWIR) were systematically present 290 

for the nine dates, while the bands B5 (red-edge), B3 (green) and B2 (blue) are only present for six, 291 

four and two dates respectively and the band B8A (near-infrared narrow) only for one date. Regarding 292 

vegetation indices, GNDVI and MTCI are present for seven and four dates respectively, whereas 293 

NDWI and EVI both appear for two dates. In total, 45 variables were retained and stacked to build the 294 

multi-date feature dataset. 295 
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 296 

Table 4 List of the five variables that contributed most to the single-date image classification (spectral 297 

bands and vegetation indices) according to MDG for each date. The number indicates the variable’s 298 

order of importance according to MDG for each date (the most contributing variables are indicated by 299 

the lowest numbers - for more details, see Appendix B).  300 

 301 

 302 

Fig. 5 shows the seasonal variations of the main variables (Table 4) for habitat discrimination. The 303 

GNDVI index and B2 (blue) and B3 (green) spectral bands allow good discrimination of habitats A2.2 304 

‘Littoral sand and muddy sand’ and A2.3 – ‘Littoral mud’ all year long. On the contrary, the 305 

phenological profiles of the other habitats cannot be easily distinguished over the period studied. 306 

Overall, temporal profiles have more similar values during wintertime. The main reflectance and 307 

intensity variations of the indices are observed in spring and summer. More precisely, it is the 308 

temporal shifts in spectral responses that allow the distinction of habitats. For example, 309 

habitats A2.523 – ‘Mediterranean short Juncus, Carex, Hordeum and Trifolium salt meadows’ and 310 

A2.511 – ‘Atlantic salt marsh and drift rough grass communities’ show similar profiles on some bands 311 

(B11 and B12) and some indices (NDWI and EVI). However, they peak at different dates (June 26, 312 

2019, for A2.523 and August 25, 2019, for A2.51) because of mowing taking place at different times.  313 

 314 
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B5 3 3 4 2 3 3
GNDVI 5 5 4 4 5 5 5
MTCI 4 3 3 5
B3 4 5 5 4
NDWI 3 3
B2 4 4
EVI 4
B8A 5
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Fig. 5. Seasonal variations of the most important variables (Table 4) for habitat discrimination in the 316 

study site. Only the spectral profiles of EUNIS habitats characterizing habitats of community interest 317 

are represented. The curves are plotted from the average for all training pixels for each habitat. 318 

 319 

3.4 Multi-date classification 320 

The confusion matrix showing the results of the RF classification of the multi-date feature dataset is 321 

presented in Table 5. The predictive habitat map obtained after running the RF model on all pixels of 322 

the investigation area is shown in Fig. 6. The results are presented at the EUNIS habitats level after 323 

merging the phytosociological units corresponding to the same habitat category, following the 324 

crosswalks in Table 3.  325 

The overall evaluation of the model shows highly satisfying results with an overall accuracy of 98.7% 326 

and a kappa coefficient of 0.99. The producer’s accuracy is 100% for 19 habitats out of the 39 in the 327 

EUNIS habitat typology. The other habitats present moderate errors leading us to obtain a producer’s 328 

accuracy higher than 90%, except for EUNIS habitats D5.21, E3.512 and F9.2 with a PA of 87.5%, 329 

75% and 89.7% respectively. These results indicate that these habitats tend to be underrepresented in 330 

the predicted habitat map (Fig. 6).  331 

In the same way, the user’s accuracy is highly satisfying with 21 habitats with 100% UA whereas 332 

other habitats still present an accuracy higher than 90% UA. These slight confusions lead to an 333 

overrepresentation of habitats in the predicted map (Fig. 6).  334 

Figure 7 shows that habitats with a high number of training areas obtain a very high estimated 335 

producer’s accuracy (PA). This is the case for habitat A2.523 – ‘Mediterranean short Juncus, Carex, 336 

Hordeum and Trifolium salt meadows’ with 874 training pixels and a 99.4% PA or habitat E3.41 – 337 

‘Atlantic and sub-Atlantic humid meadows’ with 706 pixels and a 99.6% PA. Conversely, habitats 338 

with a lower PA have fewer training areas, such as habitat E3.512 – ‘Acidocline purple moor grass 339 

meadows’ with 20 training and a 75% PA or habitat D5.21 – ‘Beds of large Carex spp.’ with 48 340 



19 

 

training pixels and an 87.5% PA. However, some habitats with few training areas are very well 341 

modeled due to their specific spectral signatures, which are very different from those of other habitats. 342 

This is the case for habitats A2.531 – ‘Atlantic upper shore communities’ (21 pixels and a 100% PA) 343 

or E5.412 – ‘Western nemoral river bank tall-herb communities dominated by Filipendula’ (19 pixels 344 

and a 100% PA). 345 

Table 5 Confusion matrix between the reference data (line) and the classified data by RF (columns) 346 

for the 39 EUNIS habitats. 347 

 348 

 349 

Classified data

EUNIS Code

A2.2 A2.3 A2.5
51

A2.5
53

A2.5
31

A2.5
42

A2.5
11

A2.5
23

C X01 C3.1 C3.2
1

C3.2
51

C3.2
7

C3.6 D5.2
1

E1.9
1

E2.1 E2.1
 X

 A
5.1

E2.6 E3.4
1

E3.4
17

E3.4
4

E3.4
4 X

 A
2.5

E3.4
41

E3.5
12

E5.1 E5.4
12

F3.1
11

F9.1
21

F9.2 F9.3
13

1

G1.1
11

1

G1.2
11

G1.2
2

G1.A
1

G1.C
1

G3.F
12

I1
.1

Producer’s 

accuracy 

(%)

A2.2 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A2.3 . 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A2.551 . . 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A2.553 . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A2.531 . . . . 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A2.542 . . . 1 . 88 . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . 95.7
A2.511 . . . . . . 150 . . . . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . 98.7
A2.523 . . . . . . . 869 . . . . . . . . . . . . 3 . 2 . . . . . . . . . . . . . . . . 99.4

C . . . . . . . . 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
X01 . . . . . . . . . 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
C3.1 . . . . . . . . . . 118 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 99.2

C3.21 . . . . . . . 1 . . . 386 . 1 . . . . . . 1 . . . . . . . . 1 . . . . . . . . . 99.0
C3.251 . . . . . . . . . . . . 307 . . . . . . . . . . . . . . . . . . . . . . . . . . 100.0

C3.27 . . . . . . . . . . . 1 . 182 . . . . . . 1 . 1 . . . . . . . . . . . . . . . . 98.4
C3.6 . . . . . . . . . . . . . 1 14 . . . . . . . . . . . . . . . . . . . . . . . . 93

D5.21 . . . . . . . . . . . . 2 . . 42 . . . . 1 . 1 . . . . . . . . . 1 . . 1 . . . 87.5
E1.91 . . . . . . . . . . . . . . . . 113 . . . . . . . . . . . . . . . . . . . . . . 100

E2.1 . . . . . . . 2 . . . . . . . . . 309 . . . . . . . . . . . . . . . . . . . . . 99.4
E2.1 X A5.1 . . . . . . . . . . . . . . . . . . 81 . . . . . . . . . . . . . . . . . . . . 100

E2.6 . . . . . . . . . . . . . . . . . . . 45 . . . . . . . . . . . . . . . . . . . 100
E3.41 . . . . . . . 2 . . . . . . . . . 1 . . 703 . . . . . . . . . . . . . . . . . . 99.6

E3.417 . . . . . . . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . . . 100.0
E3.44 . . . . . . . . . . . . . . . . . . . . . . 246 . . . . . . . . . . . . . . . . 100

E3.44 X A2.5 . . . . . . . . . . . . . 1 . . . . . . . . . 153 . . . . . . . . . . . . . . . 99.4
E3.441 . . . . . . . . . . . . . . . . . . . . . . . . 101 . . . . . . . . . . . . . . 100
E3.512 . . . . . . . . . . . . 2 . . . . . . . 3 . . . . 15 . . . . . . . . . . . . . 75.0

E5.1 . . . . . . . 1 . . . . . . . . . . . . . . . 2 . . 30 . . . . . . . . . . . . 90.9
E5.412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 . . . . . . . . . . . 100
F3.111 . . . . . . . . . . . . . . . . 1 . . . . . 1 . . . . . 89 . . . . . . . . . . 97.8
F9.121 . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . 170 . . 1 . . . . . . 97.7

F9.2 . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . 61 . 2 . . 3 . . . 89.7
F9.3131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . 100
G1.1111 . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . 4 1 . 124 . 1 2 . . . 92.5

G1.211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . 1 . . . 96
G1.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 4 . 83 1 . . . 93.3
G1.A1 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . 2 . . . . . . 265 1 . . 98.5
G1.C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 . . 100

G3.F12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 . 100
I1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 100

OA : 98.7%                    
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 350 

Fig. 6. Predicted map of the 39 EUNIS habitats in the Natura 2000 site ‘Estuaire de la Loire’. The 351 

codes correspond to EUNIS habitat identifiers and crosswalks with EUR28 habitats are indicated in 352 

brackets. For details of the full habitat headings, see Table 3. 353 
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 354 

Fig. 7. Correspondence between the number of training data and the producers’ accuracy (PA) for the 355 

39 EUNIS habitats. Note that x-axis is in a log-scale. 356 

 357 

3.5 Map description 358 

Visually examining the final predictive map led us to evaluate qualitatively the consistency level with 359 

the reality in the field. Overall, the mapped units’ distribution is consistent with the general 360 

organization of known habitats in the Loire estuary.  361 

Marine habitats are distributed along both sides of the river downstream of the Natura 2000 site, which 362 

are most subject to oceanic influences. In these areas, Mediterranean salt meadows 363 

(EUNIS A2.523/EUR28 1410) cover vast areas homogeneously. Upstream, these salt meadows also 364 

develop in numerous areas as patches that mix with other habitats. Thus, these meadows represent the 365 

most extensive habitat with 5,047 ha mapped, corresponding to 19% of the study site’s total surface.  366 
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Reed beds are frequently near the river, in areas that are regularly flooded by the tides. Among reed 367 

bed habitats, habitat C3.21 – ‘Phragmites australis beds’ is dominating (977 ha) and regularly 368 

distributed in tidal marshes throughout the site. Habitat C3.27 – ‘Halophile Scirpus, Bolboschoenus 369 

and Schoenoplectus beds’ colonizes the downstream areas (510 ha) while habitat C3.251 – ‘sweetgrass 370 

beds’, intolerant to salt, succeeds it when going upstream (747 ha).  371 

Grassland habitats also cover large areas (10,400 ha) and are distributed mostly upstream and on the 372 

margins of the site, i.e., in areas that are less subjected to saltwater intrusions. Thickets and forests are 373 

rarer and cover smaller areas with 1,471 ha and 1,027 ha respectively.  These habitats usually do not 374 

tolerate salt, hence their location on the most upstream areas of the Natura 2000 site.  375 

 376 

4. Discussion  377 

4.1 The Importance of field data 378 

Using a large amount of field data is paramount to ensure high accuracy in the classification of 379 

remotely sensed images (Calleja et al., 2019; Yeo et al., 2020). Several authors insist on using a wide 380 

range of vegetation plots to establish a complete typology of habitats (Chytrý et al., 2016; Rodwell et 381 

al., 2018). In this study, we relied on a large phytosociological plots dataset which led us to develop a 382 

complete and accurate typology of the study site. Beyond confirming the diversity of the habitats 383 

present at the Natura 2000 site, we used these field plots to calibrate the RF algorithm for image 384 

classification. Indeed, these field data are essential to locate and precisely sample the training areas to 385 

optimize image classification (Millard and Richardson, 2015). We conducted this step pixel by pixel 386 

by selecting only visually homogenous areas. The number of training pixels per habitat varies and 387 

depends on the number of field plots and habitat homogeneity. In general, the most widespread 388 

habitats are characterized by more training pixels to assess their variability at the scale of the study site 389 

(Colditz, 2015; Raab et al., 2018). 390 
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Most of the plots we used are derived from bibliographical data and were collected through an 391 

important work of synthesis of the studies previously conducted on site (impact studies, vegetation 392 

maps…). Accessing preexisting data is essential to develop a robust typology and to calibrate 393 

classification algorithms. Thus, it is essential to centralize and share field plots, and especially to 394 

implement common databases (Gautreau and Noucher, 2013), such as the European Vegetation 395 

Archive which gathers thousands of vegetation plots across Europe (Chytrý et al., 2016). 396 

However, despite compiling numerous phytosociological vegetation plots, we could only use a part to 397 

calibrate the classifier. Indeed, several habitats could not be selected inside Sentinel-2 pixels because 398 

the images’ spatial resolution was insufficient to integrate habitats of small surface areas. This led us 399 

to only use a partial typology of habitats compared to the initial typology established from all the 400 

plots. For example, aquatic vegetation (i.e. Lemnetalia minoris or Hydrocharition morsus-ranae), 401 

which are uncommon and occupy small areas, could not be represented in the final map. To overcome 402 

this problem, other remote sensing images could be tested, such as high spatial resolution data (Gavish 403 

et al., 2018; Strasser and Lang, 2015). For example, Espel et al. (2020) used very fine-scale resolution 404 

Pléiades satellite imagery (50cm) to map aquatic vegetation in France.  405 

 406 

4.2 Single-date image classification 407 

4.2.1 Determining the most favorable image acquisition dates 408 

Analysis of mono-temporal Sentinel-2 imagery showed that it is possible to obtain a satisfying level of 409 

classification when using only one acquisition date. This is particularly the case for the image of July 410 

6, 2019, for which we obtained an overall accuracy of 87.74%. Analysis of the overall accuracy (OA) 411 

obtained for each date led us to determine the most favorable times of the year to get good 412 

discrimination of the habitats. Even if the overall accuracy differences are small between dates 413 

(Δ=11%), images acquired in spring and summer noticeably give the best results. This time of year is 414 

especially marked by rapid phenological variations in vegetation (appearance of leaves, flowering). 415 

Those variations are linked to the increase in day length and temperatures (Meier, 1997), as well as to 416 



24 

 

the receding water from winter flooding due in particular to evapotranspiration and the hydraulic 417 

management of marshes (Reed, 1993). During this period of maximum vegetation growth, the plants’ 418 

expression of pigment content is most pronounced, favoring habitat discrimination (Addabbo et al., 419 

2016). These observations are consistent with the results of recent studies for vegetation mapping from 420 

series of remote sensing images on floodplain meadows (Rapinel et al., 2019) or salt marsh vegetation 421 

(Vrieling et al., 2018).  422 

 423 

4.2.2 Determination of the most favorable spectral bands and indices 424 

In this study, most habitats are characterized by vegetation whose spectral response is determined by 425 

plants’ biochemical and biophysical properties (Peñuelas and Filella, 1998). Over time, variations of 426 

reflectance values and indices reflect plants’ phytosociological changes (pigment composition, plants’ 427 

internal tissue structure) allow us to differentiate habitats according to their floristic composition (Cole 428 

et al., 2014). MDG led us to highlight the most contributing variables for habitat mapping of the study 429 

site. 430 

B11 and B12 spectral bands appear as the best performing bands for all dates. These shortwave-431 

infrared (SWIR) spectral bands are especially characterized by their sensitivity to water on the earth’s 432 

surface (Middleton et al., 2012; Psomas et al., 2011) and to biochemical contents such as lignin and 433 

cellulose in plant cover (Fourty et al., 1996). SWIR bands can be particularly useful for mapping 434 

wetlands where plant communities are marked by flooding gradients (Rapinel et al., 2019). The B5 435 

band is located at the beginning of the red-edge curve (704.1 nm), and it also represents an important 436 

variable to discriminate the study site’s habitats.  Several studies have shown that different meadow 437 

vegetation types can be effectively discriminated using red-edge wavelengths (Pinar and Curran, 1996; 438 

Shoko and Mutanga, 2017) due to its sensitivity to variations in chlorophyll concentration (Curran et 439 

al., 1990; Sims and Gamon, 2002). SWIR and red-edge spectrum regions are interesting for mapping 440 

wetland vegetation as demonstrated by several previous studies (Dronova, 2015; Dronova et al., 2012; 441 

Franke et al., 2012). GNDVI (based on NIR (B8) and green (B3) bands)  is the most important 442 
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vegetation index in this study. It is a variation of NDVI but is found to be more sensitive to plants’ 443 

changes in chlorophyll content (Gitelson et al., 1996). For instance, GNDVI provided a good 444 

distinction between vegetated and non-vegetated habitats characterized by high and low values of the 445 

index respectively.  446 

The other retained variables contribute to a lesser extent: MTCI (analysis of the red-edge curve with 447 

B4, B6 and B5), B3 (leaf green intensity), NDWI (leaf water content with B8 and B11), B2 (leaf blue-448 

green intensity), EVI (leaf pigment content with B2, B4 and B8) and B8A (leaf structure). Overall, we 449 

notice that most available spectral bands contributed to the classifications’ success. Thus, our results 450 

confirm the relevance of the different spectral regions covered by Sentinel-2 satellites for vegetation 451 

mapping (Fauvel et al., 2020; Grabska et al., 2019). 452 

 453 

4.3 Multi-date classification 454 

While individual image analyses achieved satisfactory levels of accuracy, the multi-date classification 455 

considerably improved habitats modeling accuracy with a 98.8% OA and a 0.99 Kappa. PA and UA 456 

are at 100% for numerous habitats showing a perfect match between reference and modeled data. For 457 

the other habitats, PA and UA are still very close to 100%, thus indicating respectively low over-or 458 

under-representation in the final map. 459 

Numerous authors demonstrated the accuracy improvement brought by multi-date classifications 460 

compared to single-date classifications (Belgiu and Csillik, 2018; Feret et al., 2015; Raab et al., 2018). 461 

Rapinel et al. (2019) especially highlighted the benefits of a Sentinel-2 multi-date classification to 462 

differentiate marsh plant communities according to the flood duration and management measures 463 

(mowing, grazing). In the same way, the evolution of these parameters during our study period 464 

contributed to the success of the habitat classification of the Loire estuary.  465 

 466 

4.4 Habitat mapping by remote sensing: contributions for nature conservation 467 
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Our work led us to elaborate a map of EUNIS habitats from which it is possible to highlight 468 

conservation issues, specifically those linked to the European Habitat Directive (HabDir). Even if we 469 

could not map all the habitats of community interests due to their small surface areas, we mapped 9 470 

HCIs from typological crosswalks, representing a total of 7,080 ha, i.e. 26% of the total surface area of 471 

the site. Among all the habitats, HCI 1410 ‘Mediterranean salt meadows (Juncetalia maritimi)’ covers 472 

the largest area (5,047 ha, 19% of the total surface area). Thus, the use of Sentinel-2 images 473 

contributes to locate and quantify the occupied areas for these habitats of the Natura 2000 site: 474 

distribution and range being two parameters retained to assess the conservation status according to 475 

Art.17 of HabDir (European Commission, 1992; DG Environment, 2017). These data are essential for 476 

managers to define conservation measures to maintain the HICs. Thus, the habitat map produced 477 

during this study meets the needs of the manager of the Natura 2000 site ‘Estuaire de la Loire’ and 478 

will be essential to preserve this natural site.  479 

Overall, our results show that it is possible to obtain habitat maps quickly and at a low cost compared 480 

with conventional fieldwork (Ichter et al., 2014). This method can be transposed to other natural sites, 481 

in or outside the Natura 2000 network, which has the advantage of promoting a common and 482 

standardized methodological approach to habitat mapping. In addition, the approach we offer 483 

completely meets the European requirements as part of the reporting required by Europe for each 484 

member state. Indeed, this method could be adopted to evaluate the distribution and areas of habitats at 485 

the European scale, two parameters defined by the HabDir to assess the conservation status of HICs 486 

(Bijlsma et al., 2019; Gigante et al., 2016). Furthermore, this method can be used for long-term 487 

monitoring of habitats based on regularly produced maps (every three or four years depending on the 488 

habitat type). The approach we developed meets the need for a monitoring method which could be 489 

proposed as part of Art. 11 of HabDir on surveillance of the conservation status of HICs (Delbosc et 490 

al. 2021).  491 

 492 

5. Conclusion 493 
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Our results demonstrated that Sentinel-2 images allow for accurately mapping habitats and that their 494 

spectral resolution is particularly adapted to the study of wetlands. The high revisit frequency of 495 

Sentinel-2 satellites ensures the regular acquisition of images throughout the year, allowing multi-date 496 

image classification. This method led us to obtain a highly accurate habitat map, which considerably 497 

improves the accuracy level compared to single-date image classification. However, the spatial 498 

resolution of Sentinel-2 remains insufficient to include numerous habitats that are only locally and 499 

occasionally present. In this study, only 23 out of the 62 EUNIS habitats could be mapped. 500 

Consequently, using these images can only be considered to map habitats with a surface area higher 501 

than 100 m². Our results generally show that Sentinel-2 data are adapted to create habitat maps at a 502 

1:25 000 scale. For finer-scale mapping, Sentinel-2 could be complemented by high spatial resolution 503 

remote sensing data such as those provided by other satellites, UAV or airborne acquisitions. 504 
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 801 

 802 

Appendices 803 

Appendix A. Typology of habitats in the Loire Estuary. The EUR28 habitats, marked in bold, 804 

represent the priority habitats of community interest. Fields marked with an asterisk correspond to 805 

non-vegetated or artificialized areas. They were assigned to habitat typologies based on the biotope 806 

using the criteria of the French EUNIS habitat determination guide (Gayet et al., 2018) and the 807 

‘Cahiers d’habitats’ (Bensettiti et al., 2001–2005). 808 
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 809 

Physiognomic 

units
Phytosociological units EUNIS habitats EUR 28 habitats

*Sandy shore comprising clean sands (coarse, medium or fine-grained) and muddy sands A2.2 - Littoral sand and muddy sand
*Muddy shores of fine particulate sediment, mostly in the silt and clay fraction A2.3 - Littoral mud
Thero – Salicornietalia dolichostachyae  Tüxen ex  Boullet & Géhu 2004 A2.551 - Salicornia , Suaeda  and Salsola  pioneer saltmarshes
Parapholido strigosae – Hordeetum marini  (Géhu et al. 1975) Géhu & de Foucault 1978 A2.553 - Atlantic Sagina maritima  communities
Puccinellietum maritimae  Christiansen 1927 A2.542 - Atlantic lower shore communities
Halimionion portulacoidis  Géhu 1976 A2.527 - Atlantic salt scrubs
Armerion maritimae  Braun-Blanquet & De Leeuw 1936
Glauco maritimi – Juncion maritimi  Géhu & Géhu-Franck ex Géhu in Bardat et al. 2004
Agropyrion pungentis  Géhu 1968 A2.511 - Atlantic saltmarsh and drift rough grass communities
Atriplicion littoralis  Nordhagen 1940 A2.512 - Atlantic saltmarsh driftline annual communities
Alopecurion utriculati  Zeidler 1954
Ranunculo ophioglossifolii – Oenanthion fistulosae  de Foucault in de Foucault & Catteau 2012
Atriplici laciniatae – Salsolion kali  Géhu 1975 B1.12 - Middle European sand beach annual communities
Honckenyo peploidis – Elymion arenarii  Tüxen 1966 B1.31 - Embryonic shifting dunes

Ammophilion arenariae  (Tüxen in Braun-Blanquet & Tüxen 1952) Géhu 1988 B1.32 - White dunes
2120 - Shifting dunes along the shoreline with Ammophila 

arenaria  (white dunes)

Euphorbio portlandicae-Helichrysion stoechadis  Géhu et Tx. ex Sissingh 1974 B1.42 - Biscay fixed grey dunes
2130 - Fixed coastal dunes with herbaceous vegetation 

(grey dunes)

*Open fresh or brackish waterbodies C - Inland surface waters
*Loire river subject to the tid X01 -  Estuaries
Lemnetalia minoris  Tüxen ex  O. Bolòs & Masclans 1955 C1.22 - Free-floating vegetation of mesotrophic waterbodies 
Hydrocharition morsus-ranae Rübel ex  Klika in Klika & Hadač 1944 C1.23 - Rooted submerged vegetation of mesotrophic waterbodies
Potamion pectinati (W. Koch 1926) Libbert 1931
Ranunculion aquatilis  H. Passarge ex  Theurillat in Theurillat, Mucina & Hájek 2015
Nymphaeion albae  Oberd. 1957 C1.24 - Rooted floating vegetation of mesotrophic waterbodies
Phragmitetum communis  Savič 1926 and Astero tripolii – Phragmitetum communis  Jeschke ex 

Krisch 1974
C3.21 - Phragmites australis  beds

Scirpetum lacustris  Chouard 1924 C3.22 - Scirpus lacustris beds
Typhetum latifoliae  Nowínski 1930 and Typhetum angustifoliae  P.Allorge ex  Pignatti 1953 C3.23 - Typha beds
Eleocharito palustris – Sagittarion sagittifoliae  Passarge 1964 and Iridetum pseudacori  Eggler 
ex  Brzeg & M.Wojterska 2001 and Equisetetum eleocharitis  Nowiński 1930

C3.24 - Medium-tall non-graminoid waterside communities

Glycerietum aquaticae  Nowiński 1930 C3.251 - Sweetgrass beds
Glycerietum fluitantis  Nowínski 1930 C3.1 - Species-rich helophyte beds
Phalaridion arundinaceae  Kopecký 1961 C3.26 - Phalaris arundinacea  beds
Scirpion maritimi Dahl & Hadač 1941 C3.27 - Halophile Scirpus , Bolboschoenus  and Schoenoplectus  beds
Heleochloion schoenoidis  Braun-Blanquet ex  Rivas Goday, Borja, Monasterio, Galiano & Rivas-
Martínez 1956

C3.423 - Mediterranean amphibious crypsis swards 3170 - Mediterranean temporary ponds

Bidention tripartitae  (W. Koch 1926) Nordhagen 1940 and Chenopodion rubri (Tüxen in Poli 
& J. Tüxen 1960) Hilbig & Jage 1972

C3.5 - Periodically inundated shores with pioneer and ephemeral 
vegetation

Elatino triandrae – Damasonion alismatis  de Foucault 1988

Radiolion linoidis W. Pietsch 1971

*Mud bottoms of waterbodies
C3.6 - Unvegetated or sparsely vegetated shores with soft or mobile 
sediments

Caricion gracilis  Neuhäusl 1959 and Carici pseudocyperi - Rumicion hydrolapathi  H. Passarge 
1964

D5.21 - Beds of large Carex spp.

Thero – Airion Tüxen ex Oberdorfer 1957 E1.91 - Dwarf annual siliceous grassland
Mesophile hay meadows (Cynosurion cristati Tüxen 1947; Lolio perennis – Plantaginion majoris 
G. Sissingh 1969)

E2.1 - Permanent mesotrophic pastures and aftermath-grazed meadows

Cynosurion cristati  Tüxen 1947 X Grp des Sisymbrietea officinalis
E2.1 - Permanent mesotrophic pastures and aftermath-grazed meadows X 
E5.1 - Anthropogenic herb stands

*Land occupied by heavily fertilised or reseeded permanent grasslands
E2.6 - Agriculturally-improved, re-seeded and heavily fertilised grassland, 
including sports fields and grass lawns

Oenanthion fistulosae de Foucault 2008
Bromion racemosi Tüxen ex de Foucault 2008
Ranunculo repentis – Cynosurion cristati Passarge 1969
Wet and humid meadows dominated by Juncus effusus E3.417 - Soft rush meadows
Hygrophilic pastures regularly flooded by the oligohaline water of Loire River and dominated by 
Agrostis stolonifera

Meso-hygrophilic pastures regularly flooded by the oligohaline water of Loire River and dominated 
by Agrostis stolonifera

Mentho longifoliae – Juncion inflexi  Th. Müll. & Görs ex de Foucault 2008
Potentillion anserinae  Tüxen 1947
Pastures regularly flooded by the oligohaline water of Loire River and dominated by Juncus 
inflexus

E3.441 - Tall rush pastures

Hygrophilic pastures regularly flooded by the brackish water of Loire River and dominated by 
Agrostis stolonifera

Meso-hygrophilic pastures regularly flooded by the brackish water of Loire River and dominated 
by Agrostis stolonifera

Juncion acutiflori  Braun-Blanquet in Braun-Blanquet & Tüxen 1952 E3.512 - Acidocline purple moorgrass meadows
6410 - Molinia  meadows on calcareous, peaty or clayey-
siltladen soils (Molinion caeruleae )

Sisymbrietea officinalis  Korneck 1974 and Convolvulo arvensis – Agropyrion repentis  Görs 1966E5.1 - Anthropogenic herb stands

Grasslands 
habitats

E3.41 - Atlantic and sub-Atlantic humid meadows and 

E3.44 - Flood swards and related communities

E3.44 - Flood swards and related communities X A2.5 - Coastal 
saltmarshes and saline reedbeds

Waterbodies and 
reedbeds 
habitats

C1.33 - Rooted submerged vegetation of eutrophic waterbodies

C3.51 - Euro-Siberian dwarf annual amphibious swards
3130 - Oligotrophic to mesotrophic standing waters with 
vegetation of the Littorelletea uniflorae  and/or Isoeto-

Nanojuncetea

3150 - Natural eutrophic lakes with Magnopotamion  or 
Hydrocharition  -type vegetation

Marine habitats

1130 - Estuaries

1310 - Salicornia  and other annuals colonising mud and 
sand

1330 - Atlantic salt meadows (Glauco-Puccinellietalia 

maritimae )
A2.531 - Atlantic upper shore communities

A2.523 - Mediterranean short Juncus , Carex , Hordeum  and Trifolium 

saltmeadows
1410 - Mediterranean salt meadows (Juncetalia maritimi )

2110 - Embryonic shifting dunes
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 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

E5.1 - Anthropogenic herb stands
Achilleo ptarmicae – Cirsion palustris Julve & Gillet ex de Foucault 2011
Convolvulion sepium Tüxen in Oberdorfer 1957
Thalictro flavi – Filipendulion ulmariae  de Foucault in Royer et al. 2006
Calystegio sepium – Althaeion officinalis  de Foucault 2011 E5.4112 - Angelica heterocarpa  fluvial communities
Aegopodion podagrariae  Tüxen 1967 E5.43 - Shady woodland edge fringes
Holco mollis – Pteridion aquilini Passarge (1994) 2002 E5.3 - Pteridium aquilinum  fields

Solano dulcamarae – Tamaricetum gallicae  de Foucault 2008 F9.3131 - West Mediterranean tamarisk thickets
92D0 - Southern riparian galleries and thickets (Nerio - 

Tamaricetea  and Securinegion tinctoriae )
Species-poor Prunus spinosa  or Rubus spp.  thickets F3.111 - Blackthorn-bramble scrub
Ulici europaei - Cytisetum scoparii  Oberdorfer ex B. Foucault, Lazare & Bioret 2013 F3.14 - Temperate Cytisus scoparius  fields
Ulici europaei – Prunetum spinosae  Géhu & Géhu-Franck 1983 F3.15 - Ulex europaeus  thickets
Salicetum triandro – viminalis  (Tüxen 1931) Lohmeyer 1952 ex Moor 1958 F9.121 - lmond willow-osier scrub
Low woods and scrubs dominated by Salix atrocinerea F9.2 - Salix  carr and fen scrub

Salicion albae Soó 1930 G1.1111 - Western European white willow forests

Alnenion glutinoso - incanae  Oberdorfer 1953 G1.211 - Fraxinus  - Alnus  woods of rivulets and springs

Ulmo laevis – Fraxinetum angustifoliae  (Breton) Rameau & Schmitt ex J.-M. Royer, Felzines, 
Misset & Thévenin 2006

G1.22 - Mixed Quercus  - Ulmus  - Fraxinus  woodland of great rivers
91F0 - Riparian mixed forests of Quercus robur , Ulmus 

laevis  and Ulmus minor , Fraxinus excelsior  or Fraxinus 

angustifolia , along the great rivers (Ulmenion minoris )
Meso-hygrophilic forests dominated by Quercus robur  and Fraxino excelsioris – Quercion 

roboris  Rameau 1996
G1.A1 - Quercus  - Fraxinus  - Carpinus  betulus woodland on eutrophic 
and mesotrophic soils

Ulmus minor  thickets G1.A61 - Ulmus minor  woods
Plantations of species, hybrids or cultivars of the deciduous genus Populus G1.C1 - Populus  plantations
Plantations of Palaearctic conifers of genus Pinus G3.F12 - Native pine plantations

Cultived 
agricultural 

habitats
Cereal crops I1.1 - Intensive unmixed crops

91E0 - Alluvial forests with Alnus glutinosa  and 

Fraxinus excelsior  (Alno-Padion , Alnion incanae , 

Salicion albae )

Scrubs and 
thickets habitats

Woodland and 
forest habitats

E5.412 - Western nemoral river bank tall-herb communities dominated by 
Filipendula 6430 - Hydrophilous tall herb fringe communities of plains 

and of the montane to alpine levels
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Appendix B. MDG measures obtained after RF classification for the nine analyzed dates. The five 824 

most contributing variables, which have been retained to integrate the temporal series, are marked in 825 

bold.   826 

 827 




