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In this article, we study numerically the dispersion of colloids in a 2-dimensional cellular
flow in the presence of an imposed mean salt gradient. Due to the additional scalar, the
colloids do not follow exactly the Eulerian flow-field, but have a (small) extra-velocity
proportional to the salt gradient, vdp = α∇S, where α is the phoretic constant and S the
salt concentration. We study the demixing of an homogenous distribution of colloids and
how their long term mean velocity Vm and effective diffusivity Deff are influenced by
the phoretic drift. We observe two regimes of colloids dynamics depending on a blockage
criterion R = αGL/

√
4DcDs, where G is the mean salt gradient amplitude, L the length-

scale of the flow and Dc, Ds the molecular diffusivities of colloids and salt. When R < 1,
the mean velocity is strongly enhanced with Vm ∝ αG

√
Pes, Pes being the salt Péclet

number. When R > 1, the compressibility effect due to the phoretic drift is so strong
that a depletion of colloids occurs along the separatrices inhibiting cell-to-cell transport.

1. Introduction

Advection-diffusion of a passive contaminant or a magnetic field by cellular flows with
closed streamlines have been the focus of many studies in the past decades, see for instance
Solomon & Gollub (1988); Shraiman (1987); Soward (1987); Young et al. (1989). In such
configurations, it has been shown that the transport of brownian particles is greatly
enhanced by advection: their dynamics at long time becomes diffusive, with the ratio
of their effective diffusivity to their molecular diffusivity growing as the square root of
the Péclet number, Pe = UL/D, where U is the velocity scale, L its the length-scale,
and D the molecular diffusivity of the particles. Since these pioneering studies, modified
versions of this problem have been addressed in the context of non tracer particles i.e.,
particles which do not strictly follow the fluid motions because of their response time to
flow modifications (Maxey 1987a). The question of long time dynamics of very heavy,
weakly inertial, particles settling under the action of gravity was addressed by Pavliotis &
Stuart (2005) and Afonso (2008) who derived expressions for the mean particle settling
velocity, which was found to be larger than the settling velocity in a quiescent fluid.
More recently, such study was extended to the case of arbitrary density ratio by Renaud
& Vanneste (2020); in particular, the authors pointed out the role of compressibility
effects due to particle inertia, which can lead to reduced transport in the case of light
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particles that tend to be trapped in vortical flow regions (Maxey 1987b; Wang & Maxey
1993). Reduction of effective diffusivity was also observed numerically by Li et al. (2021)
who studied the case of passive Brownian particles submitted to the action of a mean
transverse force in an array of vortex similar to the one of Solomon & Gollub (1988),
and in the case of active particles moving in a laminar vortical flow as transport barriers
develop (Berman et al. 2021).
Phoretic particles like colloids are another class of particles which do not follow exactly

the fluid motion; indeed they are submitted to a drift velocity that originates from hetero-
geneities in the background of chemical –diffusiophoresis– or thermal –thermophoresis–
origin. Anderson (1989) showed that the drift velocity for diffusiophoresis is of the type
vdp = Ddp∇ logS, where Ddp is the diffusiophoretic mobility and S is the concentration
in background chemical (e.g. salt), while Gupta et al. (2020) determined experimentally
that the dependence can be rather more complex (in particular, Ddp may depend
on the salt concentration). These observations are in accordance with a recent more
complex expression for the phoretic velocity proposed in Menolascina et al. (2017); Salek
et al. (2019). Thus depending on the species considered and its concentration, a drift
velocity of the type vdp = α∇S can also be observed in practice (corresponding to
Ddp ∝ S), as discussed in Chu et al. (2022); this is the expression we consider in
this article. Note finally that in a view of simplicity, in the following we mainly refer
to diffusiophoresis. However, other mechanisms like chemotaxis (movement of a motile
organism in a direction corresponding to a gradient concentration of a nutriment for
instance) lead to a similar expression for the drift velocity, but with a much larger drift
coefficient α, as also discussed in Chu et al. (2022).
Mixing of phoretic particles in the presence of salt heterogeneities was first studied

experimentally in a Ψ -shaped channel (Abécassis et al. 2009), and later in chaotic
advection at the micro or macro-scale (Deseigne et al. 2014; Mauger et al. 2016). In
particular, the authors showed that mixing is delayed when the colloids are introduced
together with the salt, and enhanced when introduced in salted water. In this context,
it has been shown that although the drift velocity is usually very weak as compared
to the flow velocity, mixing is strongly modified because, due to diffusiophoresis, the
particle velocity field is compressible (Volk et al. 2014; Raynal et al. 2018; Raynal &
Volk 2019; Chu et al. 2020, 2021). One may thus wonder how the long time transport of
such phoretic particles by a cellular flow is modified when a mean scalar gradient such
as salt or temperature is imposed to the system. It can be anticipated that in the large
time regime, a stationary state is reached, and we are interested here in the behavior of
the effective velocity and diffusivity in this asymptotic regime: for instance, we wonder
whether the average colloids velocity will be enhanced or reduced as compared to the
case without advection. Answering this question is not trivial because the presence of
strongly localized gradients may lead to enhanced cell-to-cell transport as well as arrested
transport as previously observed in a simpler geometry (Chu et al. 2020).
In this article, we study the dispersion of colloids in a 2-dimensional cellular flow in

the presence of an additional scalar (which we call salt) forced with an imposed mean
salt gradient. The flow satisfies

u(x, y) = u0(sin kx cos ky,− cos kx sin ky) , (1.1)

with k = π/L; it has closed streamlines in square cells of side L and is 2L−periodic
in space. Due to the presence of salt gradients, the colloids do not follow exactly the
Eulerian flow-field u, but have a (small) extra-velocity of the type

vdp = α∇S , (1.2)
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where α is the (small) phoretic coefficient and S is the salt concentration. Salt and colloids
concentration fields (S and C) satisfy the advection diffusion equations

∂tS +∇ · Su = Ds∇2S , (1.3)

∂tC +∇ · C(u+ vdp) = Dc ∇2C , (1.4)

where Ds and Dc are the molecular diffusion coefficients of salt and colloids respectively.
The salt concentration is forced by an imposed mean salt gradient in the x-direction

G = ⟨∇S⟩ = Gex . (1.5)

The problem is mainly governed by the salt and colloids Péclet numbers, respectively
Pes = u0L/Ds and Pec = u0L/Dc, and by a new additional non dimensional number, a
criterion of blockage, which will be shown to be the ratio R = αGL/

√
DcDs. By means

of high resolution numerical simulations performed both in the Eulerian and Lagrangian
frameworks, we will study the demixing of an homogenous distribution of colloids and how
their mean velocity Vm and effective diffusivity Deff (obtained in the long time regime)
are influenced by the phoretic drift for a wide range of parameters αG, Pes = u0L/Ds,
Pec = u0L/Dc, with α > 0 and G > 0.
This paper is organized as follows: in Section 2 we will address the well-documented

case of mixing of diffusing salt in a cellular flow in the presence of an imposed mean salt
gradient G, which converges towards a stationary state. In Section 3 we will describe
the demixing of diffusing colloids in this stationary salt concentration field; here again
the colloids concentration field reaches a stationary state. We will consider Eulerian
simulations, and explain the typical concentration fields observed. Then we will consider
Lagrangian simulations for higher colloids Péclet number Pec, and study the net mean
velocity Vm reached by the colloids, together with their effective diffusion; in particular,
we will show that, depending on the parameters considered, Vm can be much higher
than what could be expected, but also much less, up to vanishing, a situation referred
to as “blockage”. Finally in Section 4 we will go more into details concerning the mean
colloids velocity analysis. We will deduce the order of magnitude of Vm when no blockage
occurs, obtain the condition of blockage, and compare with numerical simulations in a
wide range of parameters.

2. Case of salt

The transport of a scalar or a vector in a cellular flow has been the focus of many
studies in the past decades (Shraiman 1987; Soward 1987; Young et al. 1989; Afonso
2008; Renaud & Vanneste 2020). We propose here to briefly outline the subject in the
context of an imposed mean gradient which corresponds to the original configuration of
Shraiman (1987).
The salt concentration S(x, y, t) evolves independently of the colloids and is forced by

the imposed gradient G = (Gx, Gy) following equations (1.3) and (1.5). In practice, we
solve numerically the equation for S′ = S −G · x, which satisfies the equation

∂tS
′ +∇ · S′u = Ds∇2S′ −G · u . (2.1)

Because the velocity field is periodic in space with zero average

⟨u⟩ = 1

4L2

∫∫
[0,2L]2

u(x, y) dxdy = 0 , (2.2)

the equation (2.1) for S′ can be solved with periodic boundary conditions with ⟨S′⟩ = 0
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Figure 1. Salt case, with a positive mean imposed gradient G = π/L ex (L = π). (a): 2D
concentration field for Pes = 314; the concentration is almost constant in a given cell. (b):
1D-cut along the dotted line in figure 1 a (y = π/2) for three different salt Péclet numbers:
- - -:Pes = 31.4; -·-·-: Pes = 314; —: Pes = 3141; for Pes ⩾ 314, the profile is flat except for a
very small layer around the vertical separatrix where the concentration jumps abruptly.

(Holzer & Siggia 1994). This ensures that the total salt concentration field S = S′+G ·x
satisfies boundary conditions compatible with the imposed mean gradient:

S(x+ 2L, y) = S(x, y) + 2GxL (2.3)

S(x, y + 2L) = S(x, y) + 2GyL . (2.4)

In the following, without any loss of generality, we set L = π for the numerical simula-
tions. The equation for S′ is solved in spectral space in a square domain (x, y) ∈ [0, 2π]2

using the method described in Volk et al. (2014) with a mean gradient in the x direction
(G = (G, 0)). Because equation (2.1) is linear, S′ is proportional to G so that we set
G = 1 without loss of generality. We set u0 = 1 and adjust the spatial resolution to 2562

for Péclet number Pes = u0L/Ds ∈ [30, 300] and 5122 for Pes = u0L/Ds ∈ [300, 3000].
Such very high resolutions are chosen to ensure high precision when interpolating the
salt gradient in real space which is needed for the Lagrangian dynamics of colloids.
Integrating in time from an initial condition S′ = 0, the salt concentration develops

strongly localized gradients and reaches a stationary state (∂tS = 0) thanks to the
stationarity of the forcing term−Gux (equation 2.1). Such localization can be understood
in the limit of infinite Péclet numbers. Indeed, in the case of a non-diffusing scalar
(Ds = 0), equation 1.3 leads to u · ∇S = 0, which admits a solution for which ∇S is
zero almost everywhere. Given the forcing, it implies that S is piecewise constant and
increases by jumps by a value GL in the direction x of the forcing; the jump occurs at
the vertical boundary of a cell, where the velocity is vertical and perpendicular to the
salt-gradient so that u · ∇S = 0.
This is indeed the picture that we obtain at large Péclet number, as shown in figure

1, which displays the Eulerian salt concentration field obtained for Pes = 314 (Fig 1 a)
together with a 1D horizontal profile at mid-height of a cell for different Péclet numbers
(Fig 1 b): the concentration is almost constant in a given cell, and jumps abruptly (but
on a finite slope) by a value ∆S = GL from one cell to the next one in the x-direction.
The typical width ℓs on which the concentration increases by a value ∆S (the salt
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Batchelor scale (Batchelor 1971)) results from a competition between contraction and
diffusion through the equation of salt gradient γ⃗s = ∇S:

Dγs
i

Dt
= −∂iuj γ

s
j +Ds∇2γs

i , (2.5)

where D/Dt = ∂t + uk∂k is the material derivative. This horizontal gradient is built
by bringing the scalar to the hyperbolic point (π, 0) by contraction by the velocity field
along the horizontal separatrix (i = j = x); because the concentration field is stationary
its width is set when the two terms on the right hand side of equation (2.5) are of the
same order of magnitude (Raynal & Gence 1997), that is u0/L ∼ Ds/ℓ

2
s, therefore

ℓs ∼
L√
Pes

. (2.6)

Indeed, as the horizontal velocity reverses near the point (π, 0), the advection term u·∇γx
vanishes when averaged over the width ℓs while the contraction term remains. This
concentration gradient is then advected upwards by the velocity field along the vertical
separatrix x = L = π. It reaches the top of the cell after a time τsadv ∼ L/u0, time after
which it is dissipated by diffusion since the characteristic dissipation time is τsdiff ∼ ℓ2s/Ds,
and τsadv = τsdiff because of equation (2.6). Thus this concentration discontinuity is only
visible around the vertical separatrix, with an associated gradient

γ⃗s ∼ ∆S

ℓs
ex ∼ G

√
Pes ex . (2.7)

This scenario supposes that the salt can be transported on a large scale before diffusing,
i.e. Pes ≫ 1, in agreement with figure 1 b.

3. Case of colloids

In the following we suppose that the salt has reached its stationary state, and focus
on the dynamics of the colloids which are advected by the velocity field v = u + vdp

(with vdp = α∇S) and diffuse with a diffusion coefficient Dc. Starting from a uniform
distribution, colloids will demix because ∇ · vdp ̸= 0 (Volk et al. 2014) and reach a non
uniform stationary state that we will characterize thereafter.
This problem can be addressed either in the Eulerian or in the Lagrangian frameworks.

On the one hand one may use the Lagrangian approach by solving the stochastic
differential equation governing the position Xc of the colloids:

dXc =
(
u(Xc) + α∇S(Xc)

)
dt+

√
2Dc dW , (3.1)

where W is a 2D Wiener process (Van Kampen 2007). Such framework will be used in the
following in cases when the colloid Péclet number, Pec = u0L/Dc, is very large, in order
to compute the mean velocity of the colloids and their effective diffusivity at long times.
In practice we compute a 3 cubic periodic interpolant of the over-resolved salt gradient
for each value of Pes which is then used for all cases when varying α ∈ [0, 10−2] and
Dc ∈ [10−6, 10−1]; starting from at least O(104) uniformly distributed colloidal particles,
we solve equation (3.1) numerically for each trajectory by splitting the deterministic
and stochastic parts at each time step. We use a 4th order Runge Kutta method for
the deterministic part with dt = 10−2 and a standard Euler scheme Euler scheme for
the stochastic part (Higham 2001). The simulation runs for long times as compared to
the diffusion time, τc = L2/Dc, so that the long time dynamics of the colloids is well
established.
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On the other hand the problem may also be addressed in an Eulerian framework
by investigating the colloids concentration field C, as C(x, t)/⟨C⟩ is the probability of
finding a colloid at location x at time t. The concentration C is coupled with that of
the salt through the diffusiophoretic velocity vdp = α∇S. We use the Eulerian approach
and solve the partial differential equation (1.4) in the case of moderate Péclet numbers
(Pec ⩽ 3 · 104, Dc ∈ [10−4, 10−1]) using the same code as for the salt; without loss of
generality we set the initial uniform condition C(x, y, t) = C0 = 1 as the equation is linear
in C. We run the simulation until C has reached the stationary regime (∂tC = 0), which
leads to an alternative way of measuring the mean colloid velocity through the relation
⟨C(u+ α∇S)⟩. This value proved to compare successfully to its Lagrangian counterpart
as a numerical test.

When dealing with diffusiophoresis, it is usual to consider separately the salt-attracting
case where the colloids move toward the salt gradient (α > 0), and reversely the salt-
repelling case (α < 0) (Deseigne et al. 2014; Volk et al. 2014). Indeed, changing the
sign of the diffusiophoretic parameter may fully change the physics and the scaling
involved (Raynal & Volk 2019; Chu et al. 2020). This is not the case here: the set of
coupled equations (1.3–1.4), with flow-field (1.1) and vdp = α∇S is actually invariant
under transformation α → −α, x → −x and y → −y. This implies that the physics of
the problem is unchanged when considering salt-attracted or salt-repelled colloids. Thus
without loss of generality we set

α ⩾ 0 . (3.2)

Finally, as the drift velocity (vdp = α∇S) is linear in α G, equations are unchanged if
the imposed salt gradient G is reversed and α changed into −α, so that we shall set
G = 1 in the following and only vary α.

Because colloids are expected to have a small diffusion coefficient as compared to the
salt, we shall consider only cases for which

Dc ≪ Ds (3.3)

(equivalently Pec ≫ Pes). In the case α > 0, the colloids start to demix due to diffusio-
phoresis, and gradients of colloid concentration appear. In the stationary state, the width
ℓc of these gradients is governed by the competition between the dominant mechanism
of gradient creation (contraction either by the velocity field or diffusiophoresis) and
destruction by diffusion. In the case when contraction by the velocity-field is dominant,
we obtain as for the salt an heterogeneity of width ℓc = L/

√
Pec along the vertical

separatrix, with ℓc ≪ ℓs. When diffusiophoresis is dominant, it acts as an additional
mechanism of creation of gradient, which leads to an even smaller Batchelor scale ℓc.
Finally we have whatever α

ℓc ≪ ℓs . (3.4)

3.1. Eulerian results: colloidal concentration field

The salt field is uniform, except in the vicinity of the vertical separatrices where there
is a very strong salt gradient. It is therefore understood that far from the separatrices,
diffusiophoresis does not operate and the colloids move only along the current lines; as
a result the colloids concentration remains constant in the central vortex. Because non-
trivial behavior takes place around the vertical separatrices, we consider the equation of
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evolution of the gradient in colloids γ⃗c = ∇C (Raynal & Volk 2019) †:
Dγc

i

Dt
= −∂iuj γ

c
j︸ ︷︷ ︸

(a)

+Dc∇2γc
i︸ ︷︷ ︸

(b)

−α∂jγ
c
i ∂jS︸ ︷︷ ︸

(c)

−αγc
j∂i∂jS︸ ︷︷ ︸
(d)

−αγc
i ∂

2
jS︸ ︷︷ ︸

(e)

−αC∂i∂
2
jS︸ ︷︷ ︸

(f)

. (3.5)

Let us evaluate each of those terms on the separatrix:

(a) ∼ u0γ
c/L (3.6)

(b) ∼ Dcγ
c/ℓ2c (3.7)

(c) ∼ αγc∆S/(ℓcℓs) (3.8)

(d) ∼ αγc∆S/ℓ2s ≪ (c) (3.9)

(e) ∼ αγc∆S/ℓ2s ≪ (c) (3.10)

(f) ∼ αγc∆Sℓc/ℓ
3
s ≪ (c) , (3.11)

where the three last terms are negligible compared to term (c) because of relation (3.4).
Since the velocity field u is perpendicular to the salt or colloids gradients along the
vertical separatrix, like in Section 2 the left hand-side term of equation (3.5) is zero in
this stationary regime. We consider the case when the mechanism of creation of gradients
by diffusiophoresis is stronger than by advection, which gives (c) ≳ (a). The width of
the heterogeneity in colloids is then given by the competition between the creation of
gradients by diffusiophoresis, and its destruction by diffusion ((c) ∼ (b)). Therefore we
obtain

ℓc ∼
Dcℓs
α∆S

∼ Dc

αG
√
Pes

, (3.12)

given equation (2.7). Combining condition (c) ≳ (a) with scaling (3.12) gives the following
condition for the parameter α to ensure diffusiophoresis has a stronger effect than
advection:

α ≳

√
DcDs

GL
. (3.13)

In the case of salt, the gradient is advected along the vertical separatrix and then
dissipated (see Section 2); what about colloids? The gradient of colloids is created in
the vicinity of the vertical separatrix and then advected in the cell over a distance d for
a time τ cadv ∼ d/u0, until it is dissipated by diffusion, which happens roughly at time
τ cdiff ∼ ℓ2c/Dc. We obtain the travelled distance d before dissipation by equaling the two
times, i.e.

d ∼ DcDs

α2G2L
, (3.14)

where we have used equation (3.12) for ℓc. Due to condition (3.13), this distance verifies

d ≲ L . (3.15)

In practice, since the gradient is present along the entire vertical, it is advected along
the upper edge of the cell, then rapidly diffuses. If the condition (3.13) is not met,
and if the diffusiophoretic effect is weak compared to contraction by the flow-field,
then the phenomenology for colloids goes back to that of salt where the equilibrium
state corresponds to a balance between advection and diffusion with (a) ∼ (b), and
the inhomogeneity is located only on the vertical separatrix. Therefore the colloidal
heterogeneity would essentially be dissipated somewhere on the upper edge or rapidly

† Compared to our previous work (Raynal & Volk 2019), the diffusiophoretic velocity is here
proportional to the salt gradient.
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Figure 2. Eulerian colloid field c(y, y) in four adjacent cells for α = 10−3 and Pec = 3141.
(a): Pes = 31.4, advection and diffusiophoresis have comparable strength in the creation of
gradients, the two terms in relation (3.13) are of the same order of magnitude; (b): Pes = 314:
diffusiophoresis is more efficient and relation (3.13) is met.

after, depending on how the left and right hand-side of condition (3.13) compare. This is
indeed what we observe in the Eulerian simulations when varying the different parameters
α, Pes and Pec. As an illustration, Figure 2 shows two typical colloidal concentration
fields for α = 10−3 and Pec = 3141 and two different salt Péclet numbers Pes = 31.4
(a) and Pes = 314 (b): in figure 2 a, the two terms in equation (3.13) are of the same
order of magnitude, while condition (3.13) is satisfied in figure 2 b. Note the different
scales in the colorbars: except in the cores of cells which seem more homogeneous, the
heterogeneities are more pronounced when the diffusiophoretic effects are stronger, with
more asymmetric positive and negative deviations from the mean C0 = 1.

3.2. Lagrangian results: velocity and effective diffusion

The Eulerian simulations showed how the colloids are demixed due to diffusiophoresis in
the stationary regime. As a result, it is expected that their averaged velocity is modified.
In order to explore this phenomenon when Pec is large, we now perform Lagrangian
simulations and investigate the statistics of colloids displacement at long times, denoted
∆Xc = Xc(t) − Xc(0). We denote an ensemble average over trajectories by ⟨·⟩L; this
allows to define the mean Lagrangian velocity ⟨V⟩L through the relation ⟨∆Xc⟩L ∼
⟨V⟩L×t at large times. We also measure an effective diffusion Deff : we have ⟨(∆Xc)

2⟩L−
⟨∆Xc⟩2L ∼ 2D x

eff × t and ⟨(∆Yc)
2⟩L − ⟨∆Yc⟩2L ∼ 2D y

eff × t at large times, where we
have treated separately the x and y directions in order to take into account a possible
anisotropy.
Because the mean Eulerian velocity field ⟨u⟩ is zero, one could reasonably think that

the mean Lagrangian velocity ⟨V⟩L is of the same order of magnitude as the mean salt
gradient αG. However, this is not at all the case when looking at figure 3 a, that shows
the ratio of mean Lagrangian x and y-velocity components of ⟨V⟩L to αG as a function
of the Péclet number Pec, at fixed Pes = 314 and α = 10−3: while the y-component
remains zero as expected, the x-component is much larger than 1 for most of the points.
Moreover the ratio has a non trivial behaviour: at low to moderate Péclet numbers Pec,
the velocity increases, but eventually decreases to zero at larger Péclet numbers.
Figure 3 b shows the effective diffusion coefficient in the x and y-directions. The line

is the prediction by Shraiman (1987) for a diffusing scalar without diffusiophoresis in a
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Figure 3. (a): non dimensional mean Lagrangian velocity ⟨V⟩ and (b): non dimensional effective
diffusionDeff , for Pes = 314 and α = 10−3 as a function of the Péclet number Pec. •: x-direction;
⋄: y-direction. The velocity is made non dimensional using the diffusiophoretic velocity αG
based on the mean gradient; the effective diffusion is compared to the diffusion coefficient of
the colloids Dc. The solid black line is the analytical solution proposed by Shraiman (1987):

Deff/Dc = Pe
1/2
c /

√
2π.
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Figure 4. (a): x−component of the Lagrangian velocity ⟨Vx⟩ and (b): non dimensional effective
diffusion Deff/Dc, for Pes = 314, Pec = 15 708 as a function of α. •: x-direction; ⋄: y-direction.

cellular flow: he showed that the effective diffusion grows as the square root of the Péclet
number, and becomes orders of magnitude higher than the diffusivity of the scalar. Very
interestingly, we find that the effective diffusion at small to moderate Péclet number
(Pec ⩽ 3000) is isotropic, and follows the prediction by Shraiman, although the effects of
diffusiophoresis are macroscopically visible on the velocity at those Péclet numbers. For
Pec > 3000, while the mean Lagrangian velocity begins to decay (figure 3 a), the effective
diffusivity becomes highly anisotropic, with an increase in the x-direction compared to
Shraiman’s prediction, and a decrease in the y-direction, At even higher Péclet numbers,
the effective diffusivity in both directions finally decays to zero, although for larger Péclet
numbers than for the velocity.
Figure 4 shows the mean Lagrangian velocity and effective diffusion as a function of

the diffusiophoretic coefficient α for the same salt Péclet number and Pec = 15 708, a
Péclet number for which the effective diffusion is anisotropic (figure 3 b), more realistic of
the large Péclet numbers encountered for colloids. The mean velocity in the y-direction
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ℓs

ℓd (L, 0)
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uvt

(b) ℓd

−L 0 L

Figure 5. (a): schematic displacement of a particle in the salt gradient (light blue region) around
the vertical ascending separatrix x = L. The Eulerian velocity field u is vertical ascending, and
vdp is horizontal; the total displacement is therefore vt = u+vdp, with u ≈ u0 ey. The particles
that change or will change cell are located on the grey strip of width ℓd. (b): in gray, schematic
location of particles that change cell, for cells located between y = 0 and y = L; in red, example
of trajectory. Outside this gray stripe, the particles remain trapped in a cell.

is again zero and is not shown here. For small α, ⟨Vx⟩ increases linearly, before vanishing
also at higher values. In figure 4 b, we recover at α = 0 the value predicted by Shraiman
(1987) for the effective diffusion in both directions. Then D x

eff increases rapidly for small
α, before decreasing to zero at larger values; in the y-direction, the effective diffusivity
decreases to zero as α increases.

In the next section we deepen the analysis of the colloids velocity and study the
physical mechanisms at stake which explain the observations we just reported based on
the Lagrangian simulations.

4. From enhanced dispersion to blockage

4.1. Enhanced dispersion

Figures 3 a and 4 a showed that transport is strongly enhanced at small diffusiophoretic
forcing, and blocked at higher forcing. In order to explain these observations, we shall
return to the behaviour of colloids in the salt gradient along the vertical separatrices.
Colloids that are in this region are shifted to the right under the effect of diffusiophoresis:
they move with a velocity v = u + vdp with vdp = α∇S. The velocity u is roughly
vertical, while the diffusiophoretic velocity is roughly horizontal, see figure 5 a around
the separatrix x = L (upward velocity).

We denote by ℓd the horizontal displacement travelled by a colloid under the effect
of the salt gradient as it rises or falls along the vertical separatrix ; in a first step we
suppose ℓd ⩽ ℓs. Along the vertical separatrix we have u ∼ u0, so that

ℓd
vdp

∼ L

u0
, (4.1)

see figure 5 a. Because of equation (2.7) the diffusiophoretic velocity in the salt gradient
writes

vdp ∼ αG
√
Pes (4.2)

and finally

ℓd ∼ αGL

u0

√
Pes . (4.3)

Hence the particles which change vortex during their ascent (or descent) in the salt
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gradient are located in a strip of width ℓd, indicated in gray in figure 5 a. In figure 5 b
we follow those particles on several vortices: in the horizontal strips, the salt gradient
is negligible, so that the colloids follow the Eulerian flow-field, mostly horizontal here
and such that u ∼ u0 ex. Therefore the total displacement of particles is horizontal, as
found in our Eulerian and Lagrangian simulations, see for instance figure 3 a. Note also
that the strips colored in gray in figure 5 b are in good qualitative agreement with the
regions of high concentration in the Eulerian colloidal fields in figure 2. The regions not
coloured in figure 5 b are the locations of the particles that are trapped inside a cell: by
construction, the Lagrangian velocity of these trapped particles is zero on average. We
can thus evaluate the spatial average horizontal velocity Vm on a cell of size L2:

Vm ∼ 1

L2
[(ℓd × L) vdp + (ℓd × L)u0] (4.4)

∼ ℓd
L

(vdp + u0) . (4.5)

With equation (4.1), we obtain vdp/u0 ∼ ℓd/L, so that vdp can be neglected, and, using
equation (4.3):

Vm ∼ αG
√
Pes . (4.6)

This simple result leads to some remarks:
− the mean colloids velocity is predicted to be much larger than that corresponding

to the mean salt gradient (αG), in accordance with figure 3 a;
− we recover the proportionality in α observed in figure 4 a for small α;
− relation (4.6) is expected to slightly overestimate the actual velocity. Indeed, we

assumed u ∼ u0 on the separatrices; however, the mean of u0 sin kx on the side of a cell
is rather u0/π; changing u0 into u0/π leads to

Vm ∼ αG

√
Pes
π

. (4.7)

Anyway, the velocity of a colloid is actually still lower when not laying exactly on the
separatrix, so that even equation (4.7) slightly overestimates the velocity.
Let us test this prediction by performing Lagrangian numerical experiments for many

different values of Ds, Dc and α. For all those values we measure the x-components of the
velocity and display ⟨Vx⟩L/(αG

√
Pes) as function of Pec in figure 6. It can be observed

that the formula predicts the correct order of magnitude for the maximal value of the
velocity (1/

√
π ≃ 0.56) at a given colloid Péclet number. However the expression (4.7)

does not depend on Pec disagreeing with figure 3 a, and fails to predict the rapid decay
of the mean velocity observed in figures 3 a and 4 a when increasing Pec and α. There
is thus a need to refine the analysis and figure out why the dispersion of the particles
stops, both for the velocity and the effective diffusion.

4.2. Blockage

In order to address the question of blockage, we consider again the displacement of
colloids in the layer of salt gradient around the vertical separatrices (figure 5 a). If the
diffusiophoretic effect is strong enough, an area completely empty of colloids of width
ℓd forms in a layer at the left of the separatrix in the salt gradient (on the low salt
concentration side). To effectively observe this depleted zone, and eventually for it to
become a real barrier to transport from one cell to another, this band without colloids
must be advected all around the cell, without having the time to diffuse. Blockage
therefore occurs if the diffusion time of this depleted region, ℓ2d/Dc, is large compared to
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Figure 6. Normalized horizontal velocity ⟨Vx⟩L/(αG
√
Pes) as a function of Pec for the different

numerical cases performed. Symbols (◦) Pes = 31.4, (□) Pes = 314, (⋄) Pes = 3144. The color
of symbol codes for the value of α ∈ [5× 10−6, 1.6× 10−3], the darker the larger the value.

the advection time over the entire perimeter of cell 4L/u0. This competition is governed
by the ratio R2 of the two time scales, such that

R =

√
ℓ2d/Dc

4L/u0
. (4.8)

Using relation (4.3) for ℓd, one obtains the condition of blockage:

R =
αGL

2
√
DcDs

≫ 1 , (4.9)

where we recognize ∆S = GL the jump in concentration from one cell to the other
(section 2). Note that we recover a condition similar to what we had found before
(equation (3.13)). Interestingly, this condition is independent of the Eulerian velocity
field u, although the blockage would not occur without the velocity field.

For all this section, we have assumed so far that ℓd ⩽ ℓs. However, using equations
(2.6) and (4.3), we obtain

ℓd
ℓs

∼ αG

u0
Pes =

αGL

Ds
; (4.10)

therefore ℓd, as calculated using (4.3), may be larger than ℓs. While ℓd measures the
deviation of colloids by diffusiophoresis, and since the diffusiophoretic velocity is zero
outside the salt gradient, this implies that at the most

ℓd ∼ ℓs (4.11)

(see also figure 5 a). We can therefore wonder whether the expressions obtained above
for the velocity and the blockage condition remain valid in this case. Indeed, if equation
(4.3) overestimates ℓd, then condition (4.9) could falsely lead to a condition of blockage.
We will show that in that case condition (4.9) remains a valid criterion for blockage.
As explained above a salt heterogeneity of width ℓs diffuses after having travelled

a distance L along the vertical separatrix; hence a colloidal heterogeneity of width ℓs
should travel much longer in space and time before diffusing, since Dc ≪ Ds. This can
be checked using the same criterion as before, the ratio R′2 between the diffusing time
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(a) (b) (c)

(d) (e) (f)

Figure 7. Successive positions of N = 100 long trajectories of colloids, plotted modulo 2L, in
four adjacent cells. Particles were initially distributed uniformly and randomly inside the cells
with positions dumped long after release, each color coding for one trajectory. Parameters are
Pes = 314 for each figure and different values of Pec and α. The criterion R is increasing from
(a) to (f). (a): α = 10−3, Pec = 3141, R = 0.497; (b): α = 10−3, Pec = 15 700, R = 1.11; (c):
α = 10−3, Pec = 157 000, R = 3.51; (d): α = 4. 10−3, Pec = 15 700, R = 4.44; (e): α = 10−3,
Pec = 314 000, R = 4.97; (f): α = 8× 10−3, Pec = 15 708, R = 8.88.

and the travelling time on the perimeter of a cell, i.e., taking ℓd = ℓs in equation (4.8);
we obtain

R′ =

√
ℓ2s/Dc

4L/u0
=

1

2

√
Ds

Dc
≫ 1 , (4.12)

where ℓs was evaluated using equation (2.6). Therefore this case when ℓd ∼ ℓs also
corresponds to a situation of blockage, with no transport from one cell to the other. Let
us show that in this situation of blockage we also have R ≫ 1: we denote by ℓestd the
overestimated width of the depleted band ℓd given by relation (4.3). Then ℓestd ⩾ ℓd ∼ ℓs,
and according to equations (4.8) and (4.12), R ⩾ R′. Thus we have both R ⩾ R′ and
R′ ≫ 1, and finally R ≫ 1: the criterion (4.9) on R
(i) R ≪ 1: enhanced dispersion;
(ii) R ≫ 1: blockage

is valid for all situations.
We first test the blockage criterion for different values of the parameters Ds, Dc and

α performing simulations in the Lagrangian framework: as a proxy for the stationary
distribution of colloids, we display in figure 7 successive positions of N = 100 long
trajectories of colloids, initially randomly and uniformly distributed inside four adjacent
cells, for growing values of the criterion R. These trajectories, plotted modulo 2L and
dumped long after release so that their position distribution is stationary, allow to see if
particles sample uniformly the cells or regroup is some localized regions. While the cells
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Figure 8. Normalized horizontal velocity ⟨Vx⟩L/(αG
√
Pes) versus the blockage criterion

R = αGL/2
√
DcDs for the same numerical cases as in figure 6. Symbols are ◦ Pes = 31,

□ Pes = 314, ⋄ Pes = 3144. The color of symbol codes for the value of Pec ∈ [31 ; 3.14× 105],
the darker the larger the value.

are hardly distinguishable in figure 7 a, they become more distinct as R increases, and
finally become completely disjoint. In this last regime, unfolded trajectories are trapped
in cells and their mean velocity drop to zero.
This proves that R is indeed a good indicator of trapping so that we choose to plot

the rescaled mean velocity ⟨Vx⟩L/(αG
√
Pes) of figure 6 as a function of the blockage

criterion R = αGL/2
√
DcDs instead of Pec. The result is displayed in figure 8: points

are no longer scattered but regroup on a bundle of three curves which collapse provided R
is large enough, when blockage dominates over other mechanisms of transport. Finally we
note that the separation at small R coincides with the (weak) logarithmic dependence on
the colloidal Péclet number, as pointed out from figure 3 a, and which was not taken into
account in the present model. Despite this observation, the order of magnitude obtained
for ⟨Vx⟩L is rather good.

5. Summary and conclusion

We have studied the joint mixing/demixing of salt and colloids in a cellular flow
with closed streamlines, and investigated how the long term dispersion of the colloids
is modified by a linear phoretic drift vdp = α∇S. In the chosen configuration of an
imposed salt mean gradient along the x-direction ⟨∇S⟩ = G ex, it is known that the salt
concentration reaches a stationary state characterized by the presence of strong gradients
localized along the vertical separatrices, so that the ratio of its effective diffusivity to the
molecular diffusivity grows as the square root of the salt Péclet number (Shraiman 1987).
By means of high resolution numerical simulations performed both in the Eulerian

and Lagrangian frameworks, we have shown that, starting from a uniform colloid con-
centration field (with no imposed colloid gradient), the colloids will demix. We have
considered the long time dynamics of this demixing process, characterized by their
mean velocity Vm and their effective diffusivity Deff ; in particular, we have studied
how Vm and Deff are influenced by the phoretic drift for a wide range of parameters
(αG,Pes = UL/Ds,Pec = UL/Dc) with α and G > 0.
The main finding is that we observe substantially two regimes of colloids dynamics
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depending on the blockage criterion R = αGL/
√
4DcDs. When R < 1, the colloids

are free to move and a strong demixing occurs at high Pec; the concentration becomes
homogeneous in the core of the flow cells while it is higher along the vertical separatrices,
and in regions along the horizontal separatrices where the velocity u of the flow is in the
same direction as G (G · u > 0). This is well explained as a combination of the non
divergence free drift velocity, advection from the mean flow u, and molecular diffusion.
In this regime, the effective diffusivity is very close to Dc but the mean colloids velocity
is strongly enhanced in the direction of the salt gradient. Using a model which takes
into account the thickness of the high concentration region with an enhanced cell-to-
cell transport due to the phoretic drift, we have shown that ⟨Vx⟩L ∝ αG

√
Pes. When

R = αGL/
√
4DcDs > 1 the compressibility effect due to the phoretic drift is so strong

that a depletion of colloids occurs along the separatrices so that colloids can no longer
migrate from one cell to another and transport is suppressed. In this regime of blockage,
all transport properties (mean velocity, effective diffusivity) go to zero when R is large
enough. We also made an interesting observation in the transition regime R ∼ 1 (although
we could not explain it), for which the effective diffusivity along the mean gradient,Deff,x,
first strongly increases when increasing R while Deff,y and ⟨Vx⟩L are decreasing functions
of R.

One may wonder if such behaviours as enhanced dispersion or blockage could be
observed in practice. In the case of chemotaxis, because of the very large values of the
drift coefficient α involved (Chu et al. 2022), a situation of blockage would be likely to
happen in such flow configurations, where the separatrices would become real transport
barriers (Berman et al. 2021). However, when the nutriments would lack, and the gradient
G would decrease sufficiently, the motile organisms would become free to leave their cell,
and maybe find some food somewhere else. The case of diffusiophoresis could be studied
in a similar configuration to the one of Solomon & Gollub (1988), for which a laminar flow
with closed streamlines is created in an elongated volume (H = 0.75 cm height, Lt = 15
cm large, e = 1.5 cm deep) by creating a laminar and stationary Rayleigh-Bénard flow
with a small temperature different ∆T ≃ 1◦ C. Whether enhanced transport or blockage
would be observed in such configuration by introducing salt and colloids at the same
side (salt-in configuration), or at the opposite sides (salt-out configuration), remains an
open question. Considering a drift velocity of the type vdrift = Ddp∇ logS as in Mauger
et al. (2016), with Ddp = 290 µm2.s−1 for LiCl, one may obtain an estimate of the
blockage criterion Rexp for the experiments by replacing α with Ddp/S in R to get
Rexp = DdpGL/S

√
4DcDc. In the case of the aforementioned configuration one would

have long after salt injection G = ∆S/Lt and L = H so that an estimate of the criterion
becomes

Rexp ≃ 1

40

Ddp√
DcDc

∆S

S
. (5.1)

Taking roughly ∆S/S ∼ 1, one would then have Rexp = O(0.1) which corresponds to
enhanced transport velocity and a weak modification of the effective diffusivity. One may
also argue that before developing a salt gradient over the whole width, it is developed
over a much limited length at shorter times which increases the value of the criterion.
One may then observe blockage at short time followed by enhanced transport at long
time depending on the time delay between injection of salt and colloids. We let such
experimental study for future work.
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Bizonne, Cécile, Ybert, Christophe & Raynal, Florence 2016 Diffusiophoresis at
the macroscale. Phys. Rev. Fluids 1, 034001.

Maxey, M. 1987a The Gravitational Settling Of Aerosol-Particles In Homogeneous Turbulence
And Random Flow-Fields. Journal of Fluid Mechanics 174, 441–465.

Maxey, Martin R 1987b The gravitational settling of aerosol particles in homogeneous
turbulence and random flow fields. Journal of fluid mechanics 174, 441–465.

Menolascina, Filippo, Rusconi, Roberto, Fernandez, Vicente I, Smriga, Steven,
Aminzare, Zahra, Sontag, Eduardo D & Stocker, Roman 2017 Logarithmic sensing
in bacillus subtilis aerotaxis. NPJ systems biology and applications 3 (1), 1–8.

Pavliotis, G.A. & Stuart, A.M. 2005 Periodic homogenization for inertial particles. Physica
D: Nonlinear Phenomena 204 (3), 161–187.

Raynal, Florence, Bourgoin, Mickael, Cottin-Bizonne, Cécile, Ybert, Christophe
& Volk, Romain 2018 Advection and diffusion in a chemically induced compressible
flow. Journal of Fluid Mechanics 847, 228–243.



Phoresis in cellular flows 17

Raynal, F. & Gence, J.-N. 1997 Energy saving in chaotic laminar mixing. Int. J. Heat Mass
Transfer 40 (14), 3267–3273.

Raynal, Florence & Volk, Romain 2019 Diffusiophoresis, batchelor scale and effective péclet
numbers. Journal of Fluid Mechanics 876, 818–829.

Renaud, Antoine & Vanneste, Jacques 2020 Dispersion of inertial particles in cellular flows
in the small-stokes, large-péclet regime. Journal of Fluid Mechanics 903, A2.

Salek, M Mehdi, Carrara, Francesco, Fernandez, Vicente, Guasto, Jeffrey S &
Stocker, Roman 2019 Bacterial chemotaxis in a microfluidic t-maze reveals strong
phenotypic heterogeneity in chemotactic sensitivity. Nature communications 10 (1), 1–
11.

Shraiman, Boris I 1987 Diffusive transport in a rayleigh-bénard convection cell. Physical
Review A 36 (1), 261.

Solomon, TH & Gollub, Jerry P 1988 Passive transport in steady rayleigh–bénard
convection. The Physics of fluids 31 (6), 1372–1379.

Soward, A. M. 1987 Fast dynamo action in a steady flow. Journal of Fluid Mechanics 180,
267–295.

Van Kampen, N.G. 2007 Stochastic Processes in Physics and Chemistry. North Holland.
Volk, R., Mauger, C., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F.

2014 Chaotic mixing in effective compressible flows. Phys. Rev. E 90, 013027.
Wang, Lian-Ping & Maxey, Martin R 1993 Settling velocity and concentration distribution

of heavy particles in homogeneous isotropic turbulence. Journal of fluid mechanics 256,
27–68.

Young, W, Pumir, A & Pomeau, Y 1989 Anomalous diffusion of tracer in convection rolls.
Physics of Fluids A: Fluid Dynamics 1 (3), 462–469.


	Introduction
	Case of salt
	Case of colloids
	Eulerian results: colloidal concentration field
	Lagrangian results: velocity and effective diffusion

	From enhanced dispersion to blockage 
	Enhanced dispersion
	Blockage

	Summary and conclusion

