
HAL Id: hal-03619924
https://hal.science/hal-03619924

Submitted on 25 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experience in Learning Test-driven Development: Space
Invaders Project-driven
Isabelle Blasquez, Hervé Leblanc

To cite this version:
Isabelle Blasquez, Hervé Leblanc. Experience in Learning Test-driven Development: Space Invaders
Project-driven. 23rd ACM Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2018), Jul 2018, Larcana, Cyprus. pp.111-116. �hal-03619924�

https://hal.science/hal-03619924
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22745

Official URL

DOI : http://doi.org/10.1145/3197091.3197132

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Blasquez, Isabelle and Leblanc, Hervé
Experience in Learning Test-driven Development: Space Invaders
Project-driven. (2018) In: 23rd ACM Annual Conference on
Innovation and Technology in Computer Science Education
(ITiCSE 2018), 2 July 2018 - 4 July 2018 (Larcana, Cyprus).

Experience in Learning Test-Driven Development:
Space Invaders Project-Driven

Isabelle Blasquez
Limoges University
Limoges, France

isabelle.blasquez@unilim.fr

Hervé Leblanc
IRIT

Toulouse, France
leblanc@irit.fr

ABSTRACT

From Kent Beck’s point of view, Test-Driven Development (TDD)
really encourages simple design and inspires con"dence. This agile
software engineering practice suggests a di#erent programming
way that requires writing tests before writing the code in short
cycles to reduce feedbacks loops. To help novice programmers
discover and appreciate it, this paper describes an experience based
on a laboratory course for learning TDD by developping a Space
Invaders game through a step-by-step project-driven approach. To
improve student engagement, a game development is chosen. All
concepts are taught within the context of this project and students
learn by doing. Applied in the context of a basis of object-oriented
design course, this experience should raise student awareness of
design’s and programming’s good practices as testing, refactoring,
simple design and short releases. The evaluation shows that this
experience helps students to engage in the learning process, to
re$ect on the importance of testing in a software development, to
make aware of code quality and to understand the benefits of TDD.

KEYWORDS

Test-Driven Development, Agile Game Development, Sofware En-
gineering Learning

1 INTRODUCTION

Test Driven Development (TDD) is an agile software engineer-
ing practice promoted by eXtreme Programming (XP) [2] which
suggests a different programming way that requires writing tests
before writing the code in short cycles to reduce feedbacks loops.

https://doi.org/10.1145/3197091.3197132

The mantra “Red-Green-Refactor” introduced by [3] outlines the

three steps of such a cycle of development. The "rst step is to write

a new test and check that it fails (Red) because the functionality

it is testing for doesn’t exist. The second step is to write quickly a

code to pass all the tests (Green). The third step is to make code

better by refactoring [10] or clean code [16].

As agile methodologies become mainstream in the software in-

dustry, many experience reports and surveys have been proposed

about the teaching of agile software development. These studies

are mainly focused on Scrum [14] and on agile collaboration and

values skills [17]. Fewer learning approaches are proposed in lit-

terature to teach TDD. Moreover TDD seems mostly to be taught

to "nal-year undergraduates [6] although the bene"ts on student

testing and programmer performance have already shown for early

programmers [11].

As we think that students should be rise awareness as soon as

possible of design’s and programming’s good practices promoted by

eXtreme Programming, we present in this paper a centered-student

learning approach that we apply to introduce TDD for "rst-year

undegraduates. Unlike a classical Project-Based-Learning approach,

the students are strongly guided at "rst by detailed instructions and

tiny steps so they can adapt their learning progress at their own

pace. In the course of time, the students become more and more

responsible actors of theirs own choices. To engage students in the

learning process, we also provide a concrete and engaging context

with a 2D game development about a Space Invaders.

This paper is structured as follow : section 2 discusses related

work. Section 3 describes the learning experience. Section 4 evalu-

ates the quality of this learning resource and its impacts on students’

perception towards TDD, good design, and programming practices.

Section 5 summarizes the experience and gives "nal conclusions.

2 RELATEDWORK

The actual approaches to learn TDD can be classi"ed into three

groups: educational games, coding dojo sessions, and practical

works on projects.

Learning TDD through educational games is proposed in [12]

with a A LEGO-based approach developped by agile practitioners

who conducted numerous training workshops for professional soft-

ware developers. This approach introduces TDD concepts more

interactively and visually than a classical lecture.

Practising TDD through Coding Dojo sessions is a collaborative

approach proposed by [5] for professional software developpers as

a session where a group of programmers would gather to solve a

code kata (a problem with further improvements) together. It is a

collaborative and non-competitive environment where people can

Table 1: Space Invaders Product Backlog

Minimal Viable Space Invaders Classical Space Invaders Optional Features

1. Move the ship in the board 8. Fire multiple shoots from the ship 13. Add a pause

2. Size the ship 9. Add a line of invaders 14. Suggest other levels

3. Choose the speed of the ship 10. Add a score 15. Vary speed

4. Fire a single shoot from the ship 11. Fire a shot from an invader randomly ...

5. Add an invader 12. Add a wave of invaders

6. Detect a collision between 2 sprites

7. Finish the game

be continuously learning and sharing agile practices [19]. Profes-

sional software developers usually organize coding dojo sessions

to learn from others and to improve their design and programming

skills by applying technical practices from XP. In academia, the

coding dojo is commonly experimented to convey Agile software

engineering best practices, to improve testing and programming

skills and to improve motivation in students to learn TDD and pair

programming [19]. In a coding dojo session, students have to code,

explain their code and they review code of other students [9]. The

limitation is that each session focuses on a speci"c and isolated

exercise.

Learning TDD through Project-Based Learning is a strategy to

explore large, open-ended problems [18]. Project Based Learning

(PBL) is perceived as a student-centered approach [7, 20]. The stu-

dents must to produce a solution to solve a problem and an outcome

in the form of a report. PBL is based on "ve principles: students

work together in groups; a real world problem that a#ects the life

of the students is presented for investigation; students discuss "nd-

ings and consult the teacher for guidance, input, and feedback; the

maturity level of students skills determines the degree of guidance

provided by the teacher; resulting products can be shared with the

community. In addition to the variety of application domains, PBL

promotes sudents commitment and autonomy in a collaborative

learning way. Unfortunately, PBL for TDD seem to be not appropi-

ate for "rst-year undergraduates which are novices and require

guidance.

To engage novice students in learning TDD, we propose a project-

driven approach as a PBL light. The driven side of this approach

focus on providing a material o#ering a detailled guidance for the

"rst steps of the project. According to Bloom’s taxonomy [4], this

driven side addresses the knowledge and comprehension of TDD as

educational learning objectives. Then, the students will be gradu-

ally left autonomous in the development of their project and the

application of TDD is also adressed as educational learning objec-

tive. The project-driven approach follows the recommendations

of the study of Novice Programmers conducted by [13], namely

learning by doing, programming by themselves, using example pro-

grams, avoiding students su#er from a lack of personal instruction,

practicing sessions in computer rooms and in small groups.

Game development has been widely used in computer science

education to increase students motivation, engagement and learn-

ing [22]. Moreover, as a game involves a large number of interacting

objects, it is well-adapted to introduce object-oriented design [8].

As this experience is lead as a part of an object-oriented design

course for novices programmers and designers, the domain appli-

cation of game development improves the required engagement of

students.

3 LEARNING EXPERIENCE DESIGN

In this section, we describe how to set up the experience by a project-

driven approach based on a Space Invaders game development1. The

goal of this shooting game is to destroy a wave of aliens invaders

to earn as many points as possible. The invaders move back and

forth across the screen, slowly advancing toward earth. They also

"re randomly in a single direction. The player "res shoots from the

ship restricted to a single axis of motion.

The learning objectives are the use of a part of eXtreme Pro-

gramming best practices [2]: testing, refactoring, simple design,

pair programming and short releases.

3.1 Kick-o!

To simulate an agile development (iterative and incremental ap-

proach), the development is divided into three parts with di#erent

objectives. The "rst part is to deliver a minimal viable Space In-

vaders (only one ship, one alien invader and a single shot from

ship on the screen). The second part is to deliver a classical Space

Invaders (collection of aliens who "re randomly, multiple shots

from ship and score). The last part is to deliver the Space Invaders

with optional features as pause, levels, speed variation for example.

The creativity of the students is encouraged at the last part. The

two "rst guided parts are divided into features. The features have

been prioritized and are listed in the product backlog in the table 1.

To deliver the "rst part, two technical tasks are necessary:

– a sprint zero (according in agile terminology) for the preparation

of the technical environment and a quick analysis of the problem.

The technical stack is composed by: Java for programming lan-

guage, Eclipse for IDE, In"nitest2 for Continuous Testing plug-in

(each time a change is made, all the tests are run), git as version

control system and a Github as the hosting service. The quick

analysis session consist in studying the features of the backlog,

according to an ubiqutous language. For example, an enemy can

also be named alien or invader. We choose to use invader and

we de"ne it in a glossary and identify the "rst classes of the

application as Invader, Ship and Shoot.

1http://www.classicgaming.cc/classics/space-invaders/
2https://in"nitest.github.io

– the set up of a graphics engine and its integration in the game.

We choose a light homemade graphics engine, but real graphics

engine as libGDX 3 could also be convenient.

The previous tasks and the "rst four features of the table 1 are

very detailed. The students are guided step by step to be immersed

in the TDD approach and to gradually discover the refactoring tools

of the IDE to increase their productivity. For the rest of the features,

students are more and more autonomous to develop the game.

3.2 Focus on features’ intructions

We brie$y explain how the "rst feature Move the ship in the board

is detailed.

First, the feature is decomposed in small stories which are: create

a board, place the ship in the board at a certain position, move the

ship to the right direction of the board, and move the ship to the

left direction of the board.

Stories are implemented one by one. For each story, the same

protocol is repeated: "rst, de"ne the acceptance criteria and then

develop using the TDD approach.

For the "rst story, the acceptance criteria is to obtain a 2D empty

board of desired size. Then, the development begins as a succession

of short cycles based on the three steps of the TDD mantra.

Step 1: Add a failing test (Make it fail) The test is given using

carefully naming. It must add a new behavior. For example, the "rst

test is:

@Test

public void test_anEmptyBoard_atTheBeginningOfGame () {

SpaceInvaders spaceinvaders = new SpaceInvaders (5, 15);

assertEquals(

"...............\n" +

"...............\n" +

"...............\n" +

"...............\n" +

"...............\n" , spaceinvaders.toString ());

}

The test must be run and must fail.

Step 2: Make it work The implementation of SpaceInvaders

class, constructor, and method toString is also detailed.

Step 3: Make it better (Refactor) A refactoring is a change made

to the internal structure of software to make it easier to understand

and cheaper to modify without changing its observable behav-

ior [10]. The questionCanmy code be refactored (both the test and the

production code)? is always asked to help students re$ect about their

code and decide if a refactoring is necessary. Each little refactoring

is preceded by questions about local design and mostly references

one of the fourth eXtreme Programming simplicity rules [2]:

• pass all tests;

• clear, explicit and consistent;

• duplicates no behavior or con"guration;

• minimal methods, classes, modules.

We focus on responsibility of classes and methods, naming of

variables and methods, duplication of code, and the code smells

long method and magic numbers.

Here only one cycle is necessary to implement this "rst story:

create a board. The next iteration is concerned by the implemen-

tation of the second story: place the ship in the board at a certain

3https://libgdx.badlogicgames.com

position. First, the acceptance criteria must be de"ned and the im-

plementation can start by coding the following test:

@Test

public void test_ANewShipIsCorrectlyPlacedAtTheBoard () {

SpaceInvaders spaceinvaders = new SpaceInvaders (5, 15);

spaceinvaders.placeANewShip (5,7);

assertEquals(

"...............\n" +

"...............\n" +

"...............\n" +

"...............\n" +

".......S.......\n" , spaceinvaders.toString ());

}

A newmethod placeANewShipmust be implemented in the class

SpaceInvaders. The step of Make it work and Make it better will

complete this iteration. The developpement of this second story

will require several iterations because it is necessary to test that

the ship can not be placed outside the board (too far right, left, up

and down). Then the two last stories (move the ship to the right

and to the left direction) can be implemented.

Concepts and good practices are presented, detailed and fre-

quently repeated in all steps of iterations to make explicit the

teacher’s design and so transmit his knowledge and expertise. It is

also indicated to commit at the end of an iteration.

Over the features, students acquire expertise. The instructions

become less and less accurate until providing only the title of the

feature. This point is reached from the feature 5 in our experience.

At this point, the project-driven switches to a classical project-

based learning. The teacher takes the role of an observator and if

necessary helps student team to continously improve their work

and remove impediments.

3.3 Focus on sessions’ organisation

3.3.1 Material. Thematerial includes presentation of the project,

the features’instructions and a template for the outcome. The ma-

terial is available from the "rst session. To easily access, Github is

used to share on-line public material.

3.3.2 Planning. Because the project-driven approach aims to

o#er a self-organized learning space, no planning and no speci"c

goal are de"ned for any session. By analogy with agile development,

the project-driven approach can be seen as an implementation of

a Kanban pull system [1]. Each team takes a new feature (new

concepts to understand and implement) when the previous one is

"nished. Each team manages his own work$ow, the only goal being

to deliver the minimal skillable learning objective at the end of the

last session. As the material is avalaible on line, each student can

reworks some parts whenever he wants. To visualize the work$ow,

the commits history can be consult and an outcome is required to

summarize the progression.

3.3.3 Outcome. Two outcomes are required per session. At the

end of a session, students must push their last commit on their

Github repository. For the next session, a summary has been re-

quired per team. This summary was based on a template with the

following headings : the list of the implemented features and their

acceptance criteria, the class diagram of their project (in reverse-

engineering using Object Aid UML4 for example), a word cloud of

4http://www.objectaid.com

their production code (using Source Code Word Cloud Generator5),
the di&culties they have encountered during the session (option-
nal) and, any comments they "nd useful. The class diagram helps
students to be aware of the emergence of the design over the iter-
ations, the word cloud helps students to improve the naming and
code readibility because only domain terminology should appear
to re$ect the code intent.

3.4 Assessment

Two types of assessment are used : report and review. During the
last session, the teacher made a code review of the work done by the
team after a demonstration of the game. A discussion is engaged
to help students to demonstrate their knowledge and skills and
to identify any problems. At the end of the experience, a report
including a presentation of the project and all the summaries has
been delivered by each team.

4 LEARNING EXPERIENCE EVALUATION
This experience has been designed and delivered as a part of the
basis of an object-oriented design course. This course is a part of
French National Pedagogical Program (PPN), a common program
to all technical colleges specialized in Computer Technology. The
"rst part of this course focus on classical design with lectures and
exercices about object modelling for analysis and design (class
diagrams, sequence diagrams). The laboratory is the second part of
this course. A total of 40 one-year french undergraduates attended
7 sessions with two 2-hours sessions per week. Students are novice
programmers: they have started learning Java for only a few weeks.
They are novice designers too.

On one hand, the evaluation concerns the e&ciency of this learn-
ing resource by the student engagement and the quality of the
project-driven approach. On the other hand, it concerns the impacts
on student’s perception towards TDD, good design, and program-

ming practices. This evaluation is a combination of questionnaires
and open-ended questions. The survey is avalaible online and is
completed anonymously per each student at the end of the last
session.

4.1 Student’s engagement

For the "rst question of the survey, students must indicate the last
shipped feature. The answers are:
– Fire a single shoot from the ship (feature 4): 2 students

– Detect a collision between 2 sprites (feature 6): 2 students

– End the game (feature 7): 10 students

– Fire multiple shoots from the ship (feature 8): 8 students

– Add a line of invaders in the game (feature 9): 8 students

– Fire randomly a shot from an invader (feature 11): 6 students

– Add a wave of invaders (feature 12): 4 students

These results show that 90% of students achieve the minimal

skillable learning objective and even 65% of students exceed this ob-

jective by shipping even beyond feature 7. The choice of developing

a game seems to have motivated the students to achieve the objec-

tive. As the students were in pair-programming, these results also

show that 2 groups of students were in di&culty, mainly because of

5https://sourcecodecloud.codeplex.com/

their di&culties to code in Java and their lack of comprehension and

practice of algorithmic techniques. The development was originally

only in-class, but the desire to play motivated some students to

continue their work in their own time between sessions. Moreover

some students have planned to continue this game development as

a side project.

4.2 Student’s perception towards the quality of
the learning resource

The evaluation of the project-driven approach has been adapted

from a model initially presented in [21]. This model aims to assess

the quality of a learning ressource (initially an educational game)

through the students’ perceptions about levels of motivation, user

experience and learning promoted by this ressource. Results of our

questionnaire are presented in table. 2. It consists in 17 items on

a Likert scale with response alternatives ranging from strongly

disagree (-2) to strongly agree (2).

4.2.1 Motivation. Overall, students perceived a positive contri-

bution of the experience to motivate them to study. The students

also indicated that the laboratory captures their attention: espe-

cially, the relevancy of laboratory content and its connection with

other knowledge. Regarding the con"dence dimension, the labo-

ratory helped student to con"dent that they were learning, yet

taking account the negative ratings of the item on the ease of un-

derstanding. Beyond the TDD technique, the lack of oriented-object

programming practice can also explain di&culties for some novice

programmers. The majority of the students also con"rmed that the

learning content is relevant to their professional work.

4.2.2 User Experience. The user experience has been rated very

positively by the students. This demonstrates that they experi-

enced the laboratory as a positive and engaging learning approach.

Students would like practise this kind of lab again (with a game

development) which obtain 80% of approbation, the highest rating

of this questionnaire. Overall, results are positive in terms of fun,

challenge, and social interactions. Regarding the competence di-

mension, 70% of the students believe that the game has been an

e&cient way to learn. They also con"rmed that they had fun with

the activities of this lab. In terms of challenge, the students found

the laboratory moving at an adequate pace. The majority of the

students agreed that the course promotes moments of cooperation.

4.2.3 Learning. The course seems to be relevant to the needs

of the students. Students expressed that they believe that the lab

contributed positively to their learning and 90% of them indicate

that it helped them to learn TDD in an e&cient way. As Students

are only "rst undergraduates, it could be di&cult to estimate if this

lab will improve their professionnal performance in practice even

if 50% of students had approved and perceived the impact of TDD.

4.3 Student’s perception towards the TDD
bene"ts and disadvantages

From Kent Beck’s point of view, Test-Driven Development (TDD)

really encourages simple designs and inspires con"dence [3]. The

students were asked to give their own opinion on this point as

novice programmers and designers. The results con"rm Kent Beck’s

Table 2: Online survey results for evaluation of the quality of project-driven approach

Questions
-2 -1 0 1 2

s. disagree disagree agree s.agree

Motivation

There was something interesting in this course that captured my attention 0% 2.4% 19.5% 46.3% 31.7%
The way the lab works suits my way of learning relevance 2.4% 17.1% 24.4% 39% 17.1%
The lab content is connected to other knowledge I already had 0% 7.3% 22% 56.1% 14.6%
Domain experience are relevant to my interests and my needs 0% 7.3% 36.6% 41.5% 14.6%
As I worked on this lab, I felt con"dent that I was learning 4.9% 7.3% 34.1% 34.1% 19.5%
It was easy to understand TDD and start using it as study material 2.4% 9.8% 19.5% 34.1% 34.1%
I am satis"ed because I know I will have opportunities to use in practice things I

learned during this lab 0% 7.3% 29.3% 53.7% 9.8%

User Experience

The lab was an e&cient way to learn 0% 2.4% 26.8% 51.2% 19.5%
I had fun with the activities of this lab 4.9% 4.9% 19.5% 43.6% 24.4%

I would like to practice this kind of lab again (with a game development) 7.3% 4.9% 9.8% 39% 39%
The lab is properly challenging for me, the tasks are not too easy nor too di&cult 0% 9.8% 34.1% 39% 17.1%
The lab progresses at an adequate pace and does not become monotonous - o#ers

new obstacles, situations or variations in its tasks. 0% 7.3% 24.4% 46.3% 22%
I was able to interact with others during this lab 2.4% 12.2% 22% 36.6% 26.8%
The lab promotes moments of cooperation and/ or competition between the

students 7.3% 12.2% 17.1% 51.2% 12.2%

Learning

The lab help me to learn TDD 2.4% 2.4% 4.9% 65.9% 24.4%
This experience with this lab will improve my professional performance in practice 0% 12.2% 39% 29.3% 19.5%
The lab has been e#ective for my learning, comparing it with other class activities

of a traditional teaching approach 2.4% 7.3% 17.1% 48.8% 24.4%

vision: 75% feel more con"dent about their code and 85% feel to

improve the quality of their code.

To help student re$ect on the bene"ts and disadvantages of TDD,

two open-ended questions have been added: Why will you use TDD

in your future developments ? What are the disadvantages of using

TDD in a software development ?

In terms of bene"ts, students have identi"ed TDD as “a method

easy to follow” which “avoids errors and allows to obtain a cleaner

and more understandable code”. They think that “testing and refac-

toring help to improve the readabilty of the code and thus make it

possible to easilier change it.” Students appreciate “naming of the

tests”, “code readibility”, that “each feature works in astonishment”.

One student says “Usually, I code for a long time without testing.

This kind of development can help me "x this mistake” and an other

adds “this saves us from errors due to our precipitation to code”.

In terms of disadvantages, students "nd the TDD approach di&-

cult to apply and “time-consuming” : “I have a lot of di&culty in

writting unit tests”, “Time spent writing tests”and they add that

“TDD requires a minimum of computer expertise to be e#ective”.

E#ectively, test code has the same value than production code: it

requires tought, design, and care [16] and the emergence of a simple

design is more e&cient by the knowledge of advanced concepts as

SOLID principles and design patterns.

4.4 Student’s awareness of good design and
programming practices

We also use open-ended questions to help students re$ect on testing

and refactoring. For each of these techniques the questions are:

Why will you use this in your future developments ? What are the

disadvantages of using this in a software development ?

4.4.1 Testing. The "rst bene"t highlighted by most of the stu-

dents is to use testing as a veri"cation tool which ensures the

non-regression. They are now aware of the importance of the au-

tomation of tests in any software development. Some are more

accurate :“they mainly allow me to avoid regressions and serve

as documentation of the code”, “Tests help to better understand a

problem and write a more e&cient code”, “Make sure to write a

code that meets the needs of our test”, “Make it possible to predict

errors and/or to easily understand them when one is encountered”

for example. Overall, the answers re$ect the following thought

from [15] the act of writing a unit test is more an act of design than

of veri!cation. It is also more an act of documentation than of ver-

i!cation. As mentioned earlier, the main disadvantage raised by

students is writing tests is time-consuming and some students pre-

cise “to want test long and complicated applications but not simple

applications”.

4.4.2 Refactoring. Students have a positive feeling about refac-
toring: “The refactoring steps helped me a lot”. The readibility and
code quality is mentioned by almost all students. Some add: “Refac-
toring allows a better understanding of the code, not only by others,
but also by ourselves”, “allows to re$ect about the most e#ective
implementation”, “gives us the impression of improving our code”.
Students don’t really notice any disadvantage for refactoring but
rather di&culties to set up it: “refactoring is the hardest part of
TDD for me, I "nd it really useful when you need to reuse code. But
I still have trouble putting it in place”, “Identify where to perform
refactoring is di&cult”.

4.5 Global student’s perception towards the
experience

Two open-ended questions ended the survey to obtain feedback

and improvement suggestions. For this experience, students most

appreciate:

– the “fun” dimension of the experience and the choice of “devel-

oping a game from A to Z”;

– the structured and detailed dimension that o#ers the oppor-

tunity to “progress at its own pace”: “structures steps allowing a

better re$ection (a guideline)”, “easy to understand”, “progressive

learning”, “time to understand”, “All the "rst steps are extremely

detailed which allows to return if we had errors”.

To improve the experience, two points have been underlined.

Students would like that the “lack of instructions should be more

progressive”. Students would like “more sessions” to develop ad-

vanced features and play with a more complex Space Invaders.

4.6 Teacher’s point of view

At the end of the course, the teachers organized a retrospective

during which they discussed the experience and considered possible

future improvements. They appreciated the challenge side of the

TDD (green bar-red bar) which prompted students to get involved

more than in a traditional lab. They have a positive feeling that

the small steps of this project has prompted students to regularly

commit and push and it was also a good introduction to practice git.

They found that students consistently and seriously provided their

outcomes and were pleasantly surprised by the students re$ect on

TDD techniques.

Moreover, they observed that the students had di&culty in writ-

ing tests for detecting a collision, which shows that the act of design

is not easy to practice and requires more training. Teachers also

plan to set up code review sessions to reduce the gap between the

last shipped features.

5 CONCLUSION AND FUTHERWORK

In this work, we present an experience in learning Test Driven

Development. Because teaching a new programming way is chal-

lenging, we propose a game development project-driven.

The project-driven approach o#ers a self-organized learning

space. The driven side of this centered-student approach o#ers

step-by-step detailed instructions for students to learn by doing.

The project side gives students autonomy to organize their learning

process at their own pace. The context of game development engage

students in the learning process. By public sharing online all the

instructional material, the students will be able to self-organize by

building their own pedagogical progression, by imposing their own

challenges. Because each student has his own abilities, a minimal

skillable learning objective is set to give everyone the opportunity

to deliver a minimum viable product.

At the end of the experience 90% of the students achieve the

minimal skillable learning objective and 90% of the students are

agree that this learning approach help them to learn TDD. More-

over, more than two out of three students feel that TDD inspires

con"dence and improves code quality. We will continue this ex-

perience for the advanced object design and programming course

where SOLID principles and design patterns will be studied.

REFERENCES
[1] David J. Anderson. 2010. Kanban: Successful Evolutionary Change for Your Tech-

nology Business. Blue Hole Press.
[2] K. Beck. 2000. Extreme Programming Explained: Embrace Change. Addison-

Wesley.
[3] Ken Beck. 2002. Test Driven Development: By Example. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.
[4] B. S. Bloom, M. B. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl. 1956. Tax-

onomy of educational objectives. The classi!cation of educational goals. Longmans
Green.

[5] Laurent Bossavit and Emmanuel Gaillot. 2005. The Coder’s Dojo – a Di#erent
Way to Teach and Learn Programming. In Proceedings of the 6th International
Conference on Extreme Programming and Agile Processes in Software Engineering
(XP’05). Springer-Verlag, 290–291.

[6] Jon Bowyer and Janet Hughes. 2006. Assessing Undergraduate Experience of
Continuous Integration and Test-driven Development. In Proceedings of the 28th
International Conference on Software Engineering (ICSE ’06). ACM, 691–694.

[7] S Chandrasekaran, A Stojcevski, G Littlefair, and M Joordens. 2012. Learning
through projects in engineering education. In Proceedings of SEFI Conference.

[8] W. K. Chen and Y. C. Cheng. 2007. Teaching Object-Oriented Programming
Laboratory With Computer Game Programming. IEEE Transactions on Education
50, 3 (2007), 197–203.

[9] R. B. d. Luz, A. G. S. S. Neto, and R. V. Noronha. 2013. Teaching TDD, the Coding
Dojo Style. In 2013 IEEE 13th International Conference on Advanced Learning
Technologies. 371–375.

[10] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[11] David Janzen and Hossein Saiedian. 2008. Test-driven Learning in Early Pro-
gramming Courses. In Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’08). ACM, 532–536.

[12] Stan Kurkovsky. 2016. A LEGO-based Approach to Introducing Test-Driven
Development. In ACM Conference on ITiCSE. New York, NY, USA, 246–247.

[13] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Di&culties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on ITiCSE (ITiCSE ’05). ACM, 14–18.

[14] Viljan Mahnič. 2015. Scrum in software engineering courses: an outline of the
literature. Global Journal of Engineering Education 17, 2 (2015).

[15] Robert C. Martin. 2002. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR.

[16] Robert C. Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship
(1 ed.). Prentice Hall PTR.

[17] A. Meier, M. Kropp, and G. Perellano. 2016. Experience Report of Teaching Agile
Collaboration and Values: Agile Software Development in Large Student Teams.
In 2016 IEEE 29th International Conference on Software Engineering Education and
Training (CSEET). 76–80.

[18] M. Missiroli, D. Russo, and P. Ciancarini. 2016. Learning Agile Software Devel-
opment in High School: An Investigation. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). 293–302.

[19] Danilo Toshiaki Sato, Hugo Corbucci, and Mariana Vivian Bravo. 2008. Coding
Dojo: An Environment for Learning and Sharing Agile Practices. In Proceedings
of the Agile 2008 (AGILE ’08). IEEE Computer Society, 459–464.

[20] John R. Savery. 2006. Overview of problem-based learning: de"nition and dis-
tinctions, The interdisciplinary. Journal of Problem-based Learning (2006), 9–20.

[21] Christiane Gresse von Wangenheim, Rafael Savi, and Adriano Ferreti Borgatto.
2012. DELIVER! - An Educational Game for Teaching Earned Value Management
in Computing Courses. Inf. Softw. Technol. 54, 3 (2012), 286–298.

[22] Alf Inge Wang and Bian Wu. 2015. The Use of Game Development in Computer
Science and Software Engineering Education. CRC Press, Taylor and Francis.

